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Cancer cachexia is a complex metabolic syndrome characterized by involuntary skeletal

muscle loss and is associated with poor clinical outcome, decreased survival and

negatively influences cancer therapy. No curative treatments are available for cancer

cachexia, but nutritional intervention is recommended as a cornerstone of multimodal

therapy. Optimal nutritional care is pivotal in the treatment of cancer cachexia, and

the effects of nutrients may extend beyond provision of adequate energy uptake,

targeting different mechanisms or metabolic pathways that are affected or deregulated

by cachexia. The evidence to support this notion derived from nutritional intervention

studies in experimental models of cancer cachexia is systematically discussed in

this review. Moreover, experimental variables and readout parameters to determine

skeletal muscle wasting and cachexia are methodologically evaluated to allow critical

comparison of similar studies. Single- and multinutrient intervention studies including

qualitative modulation of dietary protein, dietary fat, and supplementation with specific

nutrients, such as carnitine and creatine, were reviewed for their efficacy to counteract

muscle mass loss and its underlying mechanisms in experimental cancer cachexia.

Numerous studies showed favorable effects on impaired protein turnover and related

metabolic abnormalities of nutritional supplementation in parallel with a beneficial impact

on cancer-induced muscle wasting. The combination of high quality nutrients in a

multitargeted, multinutrient approach appears specifically promising, preferentially as a

multimodal intervention, although more studies investigating the optimal quantity and

combination of nutrients are needed. During the review process, a wide variation in timing,

duration, dosing, and route of supplementation, as well as a wide variation in animal

models were observed. Better standardization in dietary design, and the development

of experimental models that better recapitulate the etiology of human cachexia, will

further facilitate successful translation of experimentally-based multinutrient, multimodal

interventions into clinical practice.
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INTRODUCTION

Cancer cachexia is a debilitating syndrome characterized by
involuntary weight loss that not only affects adipose tissue but
also leads to wasting and weakness of skeletal muscle. Cachexia
is associated with an abnormal energy and substrate metabolism
that cannot be reversed by conventional nutritional support (1).
This differentiates the syndrome from (semi)starvation during
which energy expenditure and protein turnover is reduced.
Cachexia is highly prevalent in advanced cancers. One third of
all patients with cancer loses more than 5% of their original
body weight, which is a common screening criterion for cancer
cachexia (1, 2). In particular, about 70% of gastric cancer patients,
80% of lung cancer patients, and 90% of liver and pancreatic
cancer patients are at risk of developing cachexia (2). Cachexia
is associated with poor clinical outcome, decreased survival (3)
and negatively influences tumor therapy, as is illustrated by
increased postoperative mortality and decreased response to
radiation-, chemo-, and immunotherapy (4–6). Muscle wasting is
an important contributing factor to muscle weakness in cachexia,
which adversely affects performance status, quality of life and
hospitalization risk of cancer patients (7).

Many factors contribute to cancer-induced weight loss
including anorexia, altered protein and energy metabolism,
and chronic inflammation. The anorexia associated with cancer
cachexia is likely caused by the activity of pro-inflammatory
cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-
1 (IL-1), interleukin-6 (IL-6) and growth differentiation factor
15, that are produced either by the tumor or by the host in
response to the tumor, which interfere with appetite signals
within the anterior hypothalamus (8, 9). Some of these cytokines
may also increase the metabolic rate in cancer cachexia (10). In
addition to hypermetabolism, one of themajormetabolic changes
contributing to cancer cachexia is the alteration in protein
metabolism. These changes are characterized by a net protein
breakdown and an increased oxidation of branched-chain amino
acids (BCAAs), especially in the skeletal muscle, to support
energy production (gluconeogenesis) and to supply amino acids
for elevated hepatic synthesis of acute-phase proteins (11). The
breakdown of the host protein is partly stimulated by tumor-
secreted factors, including proteolysis-inducing factor and lipid-
mobilizing factor, and host-derived inflammatory cytokines such
as TNF- α and IL-6 (12).

Undernutrition is a common problem in patients with

cancer cachexia and can be a consequence of both reduced
dietary intake, poor dietary quality and hypermetabolism

(13). The reduced food intake is thought to be explained
by tumor-induced symptoms, such as mechanical interference

with nutritional intake or absorption, treatment-related side
effects, including mucositis, nausea and vomiting, and altered
taste. Undernutrition not only affects the macronutrients that
supply energy but also the micronutrients that are essential
cofactors in metabolism and vital to preserve body mass
Therefore, undernutrition is one of themain reasons that patients
with cancer cachexia have an inadequate micronutrient status
(14). Accordingly, inadequate micronutrient intake negatively
influences the course of the disease and increases the risk
of complications.

For a long time, undernutrition and cachexia remained
neglected medical conditions for which a clear therapeutic
strategy was lacking. A multidisciplinary approach is currently
considered the best option to tackle cancer cachexia, in which
nutritional intervention is recommended as an integral part of
the multimodal therapy (15). Adequate nutritional care is pivotal
to provide the essential building blocks to maintain and rebuild
tissue in cachectic patients. Furthermore, nutrition is also crucial
to supply energy and micronutrients that are vital to fuel and
catalyze metabolic processes. In addition to the nourishing of
the cachectic patients, various nutrients have been implied in the
regulation and normalization of metabolic processes underlying
the wasting in cachectic patients. Most of the metabolically active
nutrients have different functions in the various intertwined
processes that may be deregulated in cachexia. For nutrients
and their metabolites that are rate limiting in key metabolic
pathways, preventing any deficiencies will help preserve or
restore metabolic homeostasis. Furthermore, an approach where
multiple nutrients are combined in a well-balanced multi-
nutrient intervention is likely most appropriate, as it is well-
recognized that nutritional modulation includes alteration of
intermediates, precursors, catalyzers and regulators of many
metabolic pathways. Therefore, nutritional interventions have
the potential to simultaneously affect multiple targets that may
be involved in the cancer cachexia process including energy
intake, anorexia, inflammation and anabolic signaling (Figure 1).
However, identification of an optimal nutritional intervention
requires systematic experimental evaluation of the specific as well
as combined effects of individual components.

Nutritional support in patients with cancer cachexia aims
to counteract the negative energy balance as well as the
net protein breakdown, without stimulating tumor growth or
negatively influencing anti-tumor therapy. To establish a net
positive protein balance, specific nutrients mitigating catabolic
and stimulating anabolic signals should be considered. To
create an anabolic environment, adequate caloric intake, and
nutrient composition (e.g., quantity and quality of nutrients)
is instrumental, because without sufficient nutrient availability,
anabolic triggers will not lead to muscle maintenance or an
increase in muscle mass. Several nutritional agents have been
proposed to tackle cancer cachexia, however, clear evidence
of their efficacy is limited. A better understanding of specific
nutrients’ contribution to muscle anabolism in these patients
can lead to the development of specialized nutritional products
focusing on halting muscle mass loss in cancer cachexia.

Experimental animal models are used extensively to study
mechanisms underlying cancer cachexia and evaluate potential
treatments. In this narrative review, based on a systematic
evaluation of the current literature (Supplementary Table 1), we
provide an overview of preclinical studies focused on nutritional
interventions in cancer cachexia, and discuss the gaps and
highlight opportunities in current experimental models.

SINGLE NUTRIENT INTERVENTIONS

Dietary Protein
Adequate supply of dietary protein is a prerequisite for
maintenance or gain of skeletal muscle mass. A positive
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FIGURE 1 | Simplified representation of the multitarget and multinutrient approach and their mutual interactions as part of the multimodal cancer cachexia care. All

components listed under “multinutrient cancer cachexia approach” are systematically reviewed as single nutrients or as part of multinutrient approaches in the text.

protein balance is required to increase skeletal muscle mass,
and elevated plasma levels of essential amino acids from
dietary protein are considered an effective anabolic stimulus
(16). However, fundamental evidence on the sufficient and
optimal quantity and quality of protein intake for treating low
muscle mass is lacking. The ESPEN guidelines on nutrition
in cancer patients suggest a protein intake in the range
of 1.0–1.5 g/kg/day (17). Importantly, these guidelines are
recommendations and evidence-based studies to support the
optimal quantity are largely missing. Evidence concerning
the quality of proteins, regarding the optimal amino acid
composition and their digestibility (availability) in the context
of cancer cachexia, is also lacking. In contrast to their
suitability for defining the optimal quantity of protein resulting
from translational challenges, experimental models of cancer
cachexia can readily be deployed to study optimal amino
acid composition and quality of proteins to prevent or treat
cancer cachexia.

Branched-Chain Amino Acids
Branched-chain amino acids (BCAAs) have been hypothesized
to exert a therapeutic effect in diseases accompanied by muscle
wasting since they are integral components of skeletal muscle
proteins and their critical role in stimulating protein synthesis
(18). BCAAs may decrease proteolysis and increase protein
synthesis in skeletal muscle, primarily through activation of
the mTOR pathway and modulation of inflammation through
glutamine production (19, 20). Of the BCAAs, leucine is

most potent in stimulating muscle protein synthesis, whereas
isoleucine and valine are less effective (20). In MAC16 tumor
bearing mice, administration of leucine and valine significantly
reversed the loss in body weight. Only leucine produced a
significant recovery in muscle wet weight by increasing protein
synthesis and decreasing degradation (20). In C26 tumor-
bearing mice, leucine supplemented diet increased plasma amino
acid concentration and counteracted muscle mass loss dose-
dependently, while no effect of leucine-rich diet on body
weight and/or anorexia was observed (21). In rats bearing the
Walker 256 tumor, multiple studies have demonstrated that
the loss of skeletal muscle mass induced by cancer cachexia
was attenuated by leucine supplementation (22–26). Leucine
supplementation did attenuate protein degradation, potentially
through their modulatory effects on proteasome subunits; and
improved protein synthesis, via activation of the mTOR pathway
and downstream kinases. These actions were related to cachexia
amelioration but did not increase survival time or reduce tumor
growth (22, 23, 26, 27). Furthermore, a different cytokine profile
was observed in tumor bearing rats fed a leucine-rich diet
after 14 days. Both, the pro- inflammatory cytokines TNF-α,
IL-6 and IFNγ and anti-inflammatory cytokines IL-10 and IL-
4 were enhanced in the serum compared to tumor bearing
control, indicating a cytokine modulatory effect (25). Altogether,
these data suggest that leucine supplementation has a beneficial
effect on experimental cancer cachexia. The BCAA leucine
may attenuate muscle wasting by modulating protein synthesis
and proteolysis.
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β-Hydroxy-β-Methylbutyrate
β-hydroxy-β-methylbutyrate (HMB) is synthesized in the human
body through metabolism of L-leucine (28). Under normal
conditions about 5% of dietary leucine is converted into HMB
(29, 30). This leucine metabolite is thought to modulate protein
turnover, primarily by suppressing protein degradation (28).
In mice bearing the MAC16 tumor, HMB supplementation
attenuated the development of weight loss accompanied by
a small reduction in tumor weight (31, 32). HMB caused a
significant increase in the wet weight of soleus muscle and
a reduction in protein degradation. Furthermore, Smith et al.
showed that HMB was not only capable of attenuating protein
degradation in skeletal muscle of cachectic mice but also
stimulated protein synthesis (32). In rats bearing the Walker
256 tumor, HMB supplementation significantly decreased tumor
weight. These rats maintained body weight, blood metabolic
parameters (glucose, lactate, triacylglycerol, and cholesterol) and
tissue glycogen levels comparable to non-tumor-bearing rats
(33). Similar effects of HMB were obtained in rats bearing the
Yoshida AH-130 tumor fed a 4% HMB-enriched diet (34). HMB
supplementation led to a significant increase in body weight
and a significantly attenuated gastrocnemius loss. Although,
protein synthesis was not measured, HMB treatment increased
phosphorylation of mTOR and p70S6k compared to both sham
and tumor-bearing control, suggesting a direct modulatory effect
on muscle protein anabolism (34). Given the beneficial effects
of HMB on muscle protein turnover and the observed anti-
tumor effect, HMB could be a useful supplement as part of the
treatment of muscle wasting in cancer cachexia. However, further
exploration of the efficacy of lower doses will be required, as the
HMB doses used in these studies are supra-physiological andmay
not be feasible as intervention in a clinical setting.

Glutamine
Glutamine is the most abundant, non-essential, amino acid
in the body that plays a role in a variety of physiological
and biochemical processes (35). Glutamine is considered the
main metabolic fuel for gastrointestinal enterocytes maintaining
the normal integrity of the intestinal mucosa. Furthermore,
glutamine plays an essential role as a precursor of peptide,
protein, glucose and lipid synthesis (36, 37). Moreover, glutamine
is one of the precursor amino acids of glutathione, which is a
major antioxidant and a vital component of host defense (38).
Although glutamine is the most abundant amino acid in the
body, a marked glutamine depletion is observed in many patients
with cancer (35). Consequently, glutamine might be useful to
treat cancer cachexia. Supplementation with 2% L-glutamine
showed to attenuate cancer-induced cachexia, indicated as
preserved body weight loss and a lower cachexia index, in rats
bearing the Walker 256 tumor (39–43). Furthermore, tumor
growth was inhibited in tumor-bearing rats supplemented with
L-glutamine (39–42). In cachectic rats, Walker 256 tumor growth
caused considerable changes in small intestine metabolism (44).
L-Glutamine supplementation restored the intestinal mucosa
in the duodenum and jejunum by enhancing cell proliferation
as well as increasing villous height, crypt depth, and total
height of the intestinal wall (40). Furthermore, L-glutamine

supplementation was associated with a significant elevation of
glucose and insulin levels compared to control. The resulting
hyperglycemia is probably attributable to the increased activity of
gluconeogenic enzymes in the small intestine due to the increased
availability of glutamine as a glucose precursor (41). All together,
these studies suggest a beneficial effect of glutamine on cancer
cachexia via enhancing intestinal health and energy metabolism.

Glycine
Glycine is a non-essential amino acid and is often considered
biologically neutral. However, studies have shown that L-
glycine has effective anti-inflammatory, immunomodulatory
and cytoprotective properties (45). The underlying mechanisms
responsible for the protective effects of glycine are not completely
clear, but may include suppression of calcium signaling,
inhibition of inflammatory cell activation and decreased
formation of free radicals and other toxic compounds (45).
In addition, dietary glycine was also reported to inhibit the
growth of certain types of tumors, such as liver tumors (46)
and melanoma tumors (47). Only one study investigated the
effect of glycine treatment in an experimental model of cancer
cachexia. In mice bearing the C26 tumor, glycine administration
reduces tumor growth and attenuates cancer-induced cachexia
(48). Glycine treatment partially prevented the tumor-induced
loss in skeletal muscle mass and cross-sectional area. This
protective effect of glycine was associated with preserved
muscle function. In skeletal muscle, glycine normalized IL-
6 and F4/80, a marker for macrophage in filtration, mRNA
expression and reduced oxidative stress. In addition, glycine
treatment attenuated Atrogin-1 and MuRF1 mRNA expression.
In accordance, protein expression of the initiation factor eIF3-
f, a major target of Atrogin-1 and an important regulator of
protein synthesis, was preserved (48). This is the first and only
study to demonstrate a beneficial effect of glycine on cancer-
induced cachexia. Additional research is required to confirm
these promising results and to further unravel the anti-tumor and
anti-cachectic effects.

Arginine
Arginine is a conditionally essential amino acid, i.e., the
body can synthesize sufficient amounts of arginine to meet
physiological demands under well-nourished, healthy conditions
(49). Arginine is involved in a number of biological processes
including cell growth survival and protein synthesis. It is also a
precursor in the biosynthesis of nitric oxide (50). Nitric oxide
is a ubiquitous cellular messenger that stimulates the release of
certain hormones, such as insulin and growth hormone, and is
an important regulator of blood flow, tissue oxygenation, and
immune function. In addition, arginine may enhance T cell
natural killer cell activity, which inhibits tumor growth (51).
Therefore, supplementation with arginine could be beneficial
for patients with cancer cachexia through modulation of the
endogenous anti-tumor response. However, up till now, there
are no data in experimental cancer cachexia models published.
This could be related to the concern that arginine, or its
metabolites, interfere with metabolic pathways that can induce
growth of some tumors (52, 53). These findings emphasize
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the importance that not all nutrients that envision positive
effects on muscle anabolism are applicable in the treatment of
cancer cachexia.

Dietary Fat
Dietary fat is an important source of energy and contributes a
significant caloric value to our diet. In Western diets, dietary
fat may constitute 40–45% of the total caloric intake. Dietary
fat is not just a source of energy, it also functions as structural
component of cell membranes, carries fat soluble vitamins, plays
an important role in signal transduction and is a precursor for
inflammatory mediators (54).

High-Fat Ketogenic Diet
Currently, there is limited research available to substantiate an
optimal energy percentage of dietary fat in cancer cachexia but
the effect of ketogenic diets have been investigated in cancer.
The ketogenic diet is a high-fat, low-carbohydrate diet designed
to increase the blood concentration of free fatty acids and
ketone bodies as alternative sources of energy to glucose (55). As
tumor cells mostly rely on glucose as a substrate for anaerobic
energy production, i.e., Warburg effect (56), ketogenic diets
aim to reduce energy sources for the tumor, while providing
free fatty acids and ketone bodies as an energy source for
the muscle. Consequently, a high fat diet might be expected
to prevent host catabolism during cachexia, mainly by tumor
growth reduction. Only a few studies investigated the anti-
cachectic effects of ketogenic diets in experimental models of
cancer cachexia. In mice bearing the MAC16 tumor, Tisdale
et al. showed that the cachectic phenotype can be partly reversed
by a ketogenic diet [80% of calories supplied as medium chain
triglycerides (MCT)], causing reduced tumor growth and an
inhibition of body weight loss (57). Body composition analysis
showed retention of both fat and fat-free carcass mass in animals
fed high levels of MCT. In another study, an 80% MCT-
based high-fat diet reduced both tumor weight and host weight
loss and restored both nitrogen balance and urea excretion
to that of non-tumor-bearing mice (58). Furthermore, amino
acid concentrations in plasma were also restored to control
levels, suggesting that excessive nitrogen catabolism during
cachexia can be prevented. More recently, the effect of an infant
formula with a ketogenic composition used to treat patients
with refractory epilepsy was investigated on cancer cachexia
in C26 tumor-bearing mice (59). Mice receiving the ketogenic
formula showed reduced body weight loss and muscle mass
loss. Tumor growth and plasma IL-6 levels were significantly
decreased in mice receiving the ketogenic formula compared
to tumor-bearing control. It seems that the ketogenic diet
inhibits tumor growth and thereby prevents host catabolism.
Collectively, these studies suggest that the ketogenic diet with
adequate amounts of proteins has beneficial effects on the
development of cancer cachexia. However, there is some debate
concerning the use of ketogenic diets and the development of
dyslipidemia. Some (60, 61) but not all (62) studies indicate
that a ketogenic diet produce significant increases in the plasma
levels of total cholesterol and triglycerides. Elevated levels of
plasma triglycerides and cholesterol are often detected in patients

suffering from cancer cachexia (63), as a result of increased
lipolysis (64, 65). This tumor induced dyslipidemia, in turn
causes lipotoxic effects in other tissues including skeletal muscle
(65, 66). Considering the potential impact of dyslipidemia
to cancer cachexia, this potential effect should be further
investigated to probe the feasibility of the ketogenic diets in
patients with cancer cachexia.

Polyunsaturated Fatty Acids
Dietary long chain polyunsaturated fatty acids (lcPUFAs) have
an effect on diverse physiological processes affecting normal
health and chronic diseases (67–69). The n-3 and n-6 lcPUFA
families are derived from the desaturation and elongation of
the essential lcPUFAs α-linolenic and linoleic acids that are
ingested as components of food. The principal members of
the n-3 lcPUFA family are eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA), whereas arachidonic acid is the
main derivate of the n-6 lcPUFA family. It is known that
eicosanoids derived from n-6 lcPUFAs have pro-inflammatory
and immune-active functions, whereas n-3 lcPUFA-derived
eicosanoids have anti-inflammatory properties, attributable
to their ability to inhibit the formation of n-6 lcPUFA-
derived eicosanoids.

Diet supplementation with fish oil, which is rich in n-
3 lcPUFAs EPA and DHA, has been investigated to preserve
skeletal muscle mass in various experimental animal models of
cancer cachexia. Most of these studies show that fish oil is an
effective nutritional intervention to induce body weight gain,
reduce tumor growth rate and reverse food intake. In 1990,
Tisdale et al. showed for the first time that a diet enriched in
fish oil reduced both tumor growth and weight loss produced
by the MAC16 adenocarcinoma (70). Reversal of host body
weight loss was associated with an increase in total body fat
and muscle mass. Although the amount of fish oil required for
optimal activity was high (50% of total calories), no toxicities
were observed (70). Comparable results were found in Walker
256 tumor-bearing rats receiving an n-3 fish oil diet. Tumor
weight gain in fish oil fed rats was reduced and these animals
gained body weight and maintained blood metabolic parameters
(glucose, lactate, triacylglycerol and cholesterol) similar to non-
tumor-bearing rats (71). Fish oil supplementation via oral gavage
reduced body weight loss and tumor weight gain to a similar
extent (72). Finally, some studies investigated the effect of lifelong
supplementation of the diet with fish oil on cancer cachexia
(73, 74). In these studies, the diet of pregnant and lactating rats
and subsequent male offspring was supplemented with fish oil.
Lifelong supplementation of the diet with fish oil significantly
decreased tumor growth, increased survival, reversed food
intake and prevented body weight loss. Furthermore, fish oil
supplementation partly preserved blood metabolic parameters
in tumor-bearing rats compared to control (73, 74). However,
it is difficult to predict if the effects found in these lifelong
supplementation studies can be translated into a treatment
regimen relevant to cancer cachexia.

While most studies reported clinically and statistically
significant effects of fish oil supplementation on preventing
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body weight loss, Dumas et al. have found no effect (75). In
rats with peritoneal carcinosis, fish oil-enriched diet delayed
the occurrence of anorexia compared to the control diet.
Furthermore, ascites production was lower in fish oil treated
rats. However, no difference in body weight gain, fat mass and
muscle mass was reported (75). The discrepancies could be due
to differences in the design of the study. In the aforementioned
studies, in both the treatment arm and control arm relative
weight gain of animals and tissues were assessed at the same
time point, whereas Dumas et al. assessed the final measurements
when anorexia was evident in all animals, ensuing different time
points per group.

Besides fish oil, shark liver oil is a common dietary supplement
rich in n-3 lcPUFAs. Prophylactic supplementation with shark
liver oil promoted gain in body weight, reduction of tumor
weight and maintained blood metabolic parameters in Walker
256 tumor bearing rats (76, 77). However, shark liver oil
supplementation showed less potent effects compared to fish
oil (77).

The anti-cachectic and anti-tumor effect of purified EPA has
also been investigated in various experimental animal models.
In mice bearing the cachexia-inducing MAC16 adenocarcinoma,
EPA was found to stabilize weight loss, delay growth of the
tumor, and increase the overall survival (78–80). Such anti-
cachectic effect was not achieved by the use of DHA or linoleic
acid alone (79). Supplementation with EPA inhibited tumor-
induced lipolysis and reduced protein degradation without
an effect on protein synthesis (78, 81, 82). In mice bearing
the cachexia-inducing S180 ascites tumor, oral administration
of EPA prevented body weight loss by preserving the white
adipose tissue mass (83). Furthermore, EPA administration
suppressed plasma levels of pro-inflammatory cytokines such as
TNF-α and IL-6. Lastly, EPA treatment also preserved several
key lipolytic factors and raised the mRNA levels of some
adipogenic factors in the white adipose tissue (83). A higher
body weight gain in response to EPA supplementation has also
been reported in Apc(min/+) mice (84), rats implanted with MCA
sarcoma (85), and rats treated with MAT-LyLu prostate tumor
cells (86).

Taken together, these studies suggest that n-3 lcPUFAs,
in particular EPA, are effective in preventing body weight
loss and tumor growth in experimental animal models of
cancer cachexia. However, little is known on the underlying
mechanisms of n-3 lcPUFAs/EPA in cancer cachexia. The
aforementioned data suggest that n-3 lcPUFAs/EPA is able to
suppress lipolysis, probably by downregulating lipid mobilizing
factors (87). Whether the anti-lipolytic activity is a direct effect of
n-3 lcPUFAs/EPA or related to its anti-inflammatory properties
through inhibiting pro-inflammatory cytokines, such as TNF- α

and IL-6, needs to be further elucidated.

Conjugated Linoleic Acid
Conjugated linoleic acid (CLA) is a group of at least 28 isomers
of linoleic acid found mostly in red meat and dairy products
derived from ruminants (88). CLA is marketed as a weight-
loss supplement to reduce body fat and promote lean muscle
growth (e.g., Tonalin R©). Experimental studies have shown that

CLA has anti-carcinogenic effects (89, 90). Furthermore, CLA
was protective against TNF- α and LPS induced muscle wasting
(91, 92). However, data on the effect of dietary supplementation
of CLA in the treatment of cancer cachexia is contradictory.
In mice bearing the C26 tumor, Graves et al. showed that a
diet containing 0.5% CLA preserved skeletal muscle mass and
reduced TNF receptor type 1 levels in muscle homogenates (93).
In mice bearing the LLC tumor, the same diet reduced skeletal
muscle wasting, but had no effect on skeletal muscle levels of
TNF receptor type 1 (94). In mice bearing the B16 melanoma,
0.5% CLA did not affect skeletal muscle mass or TNF receptor
type 1 levels in skeletal muscle (94). The notion that CLA has
beneficial effects in cancer cachexia was also not supported by
Tian et al. (95). In this study, a 1% CLA enriched diet did
not affect skeletal muscle mass and adipose tissue mass. CLA
supplementation did not inhibit the induction of proteolytic
markers. Instead, MuRF1 expression was significantly higher in
C26 tumor-bearing mice receiving a diet containing 1% CLA. In
skeletal muscle, CLA enhanced tumor- induced gene expression
of inflammatory markers TNF- α, IL-6 receptor and F4/80.
Moreover, in epididymal adipose tissue, tumor driven lipolysis
was aggravated by CLA supplementation (95). More recently, in
rats bearing the Walker 256 tumor, CLA treatment aggravated
cachexia symptoms, including increased inflammatory status,
steatosis and hyperlipidemia (96). Collectively, these results
do not provide strong support for CLA in the treatment of
cancer cachexia.

Other Nutrients
Carnitine
Carnitine is a trimethylamine, which is synthesized in the
liver and kidney via the conversion of two essential amino
acids, lysine and methionine. Carnitine plays a major role in
the import of long chain fatty acids from the cytosol into the
mitochondrial matrix for subsequent β-oxidation (97, 98).
Inefficiency of this bioenergetics process results in increased
oxidative stress, contributing to the development of metabolic
abnormalities and the release of pro-inflammatory cytokines.
Consequently, supplementation of carnitine to enhance
mitochondrial β-oxidation may attenuate oxidative stress and
inflammation, resulting in beneficial clinical outcomes. Carnitine
supplementation has been studied in various experimental
models of cancer cachexia. In rats bearing the Yoshida AH-130
tumor, L-carnitine treatment resulted in greater food intake
(99, 100). Protein levels of carnitine palmitoyl transferase-1
(CPT-1) enzyme, a marker of carnitine effects, were higher
in the muscles of tumor-bearing rats treated with L-carnitine
compared with the non-treated cachectic animals (100). This was
accompanied by an inhibition of tumor-induced muscle wasting
(99, 100) and an increase in physical activity (99). Moreover,
L-carnitine treatment resulted in a down-regulation of atrogin-1
and MuRF1 and a decrease in the proteasome activity in
gastrocnemius muscle (99, 100). In addition, the pro-apoptotic
marker caspase-3 in skeletal muscle tended to be decreased in
muscle of tumor-bearing rats treated with L-carnitine (99). In
mice bearing the C26 tumor, L-carnitine significantly increased
food intake, muscle mass and epididymis fat weight through
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the upregulation of CPT (101). In addition, the increased CPT
activity was associated with reduced plasma levels of IL-6 and
TNF-α (101). In cachectic rats bearing the Walker 256 tumor,
CPT activity was reduced and liver and plasma triacylglycerol
content was increased. L-Carnitine treatment restored these
measures back to control values, showing that L-carnitine
preserves hepatic lipid metabolism in experimental cancer
cachexia (102). Current evidence suggests that carnitine might
help to ameliorate muscle wasting in cancer, although more
molecular studies investigating the exact working mechanism
are needed.

Creatine
Creatine is a non-protein amino acid that can be endogenously
synthesized in the liver, kidney and pancreas and is mainly
stored and utilized in the skeletal muscle. Creatine can be
phosphorylated by creatine kinase to form phosphocreatine,
which plays an important bioenergetics role by providing
rapid energy during muscle contraction, where phosphocreatine
donates a phosphate group to adenosine diphosphate to
resynthesize adenosine triphosphate (103, 104). Given that oral
creatine supplementation augments its intramuscular content
and has the capacity to effectively enhance muscle strength
and lean body mass (105–107), makes it an interesting
supplement to treat muscle-wasting diseases. Indeed, creatine
supplementation has been successfully used as an adjuvant
treatment in numerous myopathies (108–110). Furthermore,
creatine supplementation has shown antioxidant capacities as
well as effectiveness to counteract pro-inflammatory cytokines
(111, 112). Despite the promising results, only a few studies
have investigated the effects of creatine supplementation in
experimental cancer cachexia. In rats bearing the Walker 256
tumor, creatine supplementation attenuated body weight loss
and tumor growth was decreased (113–115). Cancer-induced
skeletal muscle atrophy was attenuated by creatine, as evidenced
by the increase in muscle fiber cross-sectional area. Creatine
also prevented cancer-induced increase in Atrogin-1 andMuRF1
protein levels. Furthermore, creatine supplementation prevented
the increase in plasma TNF-α and IL-6 (113, 114), while it
increased plasma IL-10 (114). However, mean survival time
was not different compared to tumor-bearing control (113,
115). Given the beneficial effects of creatine supplementation
on skeletal muscle mass maintenance in experimental cancer
cachexia and the promising results in other muscle wasting
diseases, creatine could be a useful supplement to treat muscle
wasting in cancer cachexia and should be the objective for
future studies. It should be pointed out however that creatine
supplementation may increase urinary creatinine levels, which
complicates interpretation of the latter as a marker of renal
dysfunction in patients with a history or risk of renal disease.

Flavonoids
Flavonoids are a large group of polyphenolic compounds and
are ubiquitously expressed in plants. Fruits and vegetables
are the main dietary sources of flavonoids for humans,
along with tea and wine. As a dietary component, flavonoids
are thought to have health-promoting properties due to

their antioxidant, hepatoprotective, anti-inflammatory and anti-
carcinogenic properties (116). Despite several known effects of
flavonoids on health and disease, research into the effects of
flavonoids on cachexia prevention has been limited to date.
In Apc(min/+) mice, quercetin supplementation attenuated the
progression of cancer cachexia (117). Quercetin significantly
attenuated body weight loss, but did not affect the loss
of epididymal fat in Apc(min/+) mice. After 3 weeks of
supplementation, the loss of muscle mass and grip strength
shown in Apc(min/+) mice was significantly attenuated by
quercetin. Furthermore, increased plasma IL-6 levels were
completely mitigated by quercetin in this model of intestinal
cancer. In this study, no effect of quercetin supplementation on
tumor number was observed, while a reduction of the tumor
weight was found in rats bearing the Walker 256 tumor (118).
Epigallocatechin-3-gallate (EGCG), the principal polyphenolic
component in green tea, effectively attenuates skeletal muscle
atrophy in mice bearing the Lewis lung carcinoma (LLC)
tumor (119). EGCG supplementation inhibited tumor growth
and the loss of body weight was significantly slowed down.
Furthermore, it was shown that EGCG positively regulates the
expression of muscle-specific ubiquitin ligase genes encoding
MuRF-1 and Atrogin-1 (119). Another study examined the effect
of isoflavones derived from soy extracts on muscle atrophy
in LLC-bearing mice (120). The isoflavone diet attenuated the
tumor-induced loss in wet weight and myofiber size of the
gastrocnemius muscle. Moreover, the increased expression of
MuRF-1 and Atrogin-1 was significantly suppressed by the
supplementation of isoflavones. In parallel, the isoflavone diet
significantly inhibited the phosphorylation of ERK in skeletal
muscle of tumor-bearing mice. No effect of dietary isoflavones
on tumor mass or pro-inflammatory cytokines IL-6 and TNF-
α were observed (120). Morin, another flavonoid, was able to
suppress tumor-induced skeletal muscle wasting in LLC-bearing
mice (121). Dietary morin prevented the reduction of muscle
wet weight and myofiber size. Moreover, the tumor mass in
mice fed the morin diet was significant lower compared to
mice fed the normal diet. It was suggested that morin indirectly
prevents muscle atrophy by suppressing tumor growth via
targeting ribosomal protein S10. The anti-proliferative effect
of morin had a cell specific action that was only apparent
in tumor cells, but not in muscle cells (121). Because of the
variation in flavonoids and limited number of studies, there is
not enough evidence to recommend flavonoids as a potential
supplement to treat muscle wasting in cancer. However, the
available data merits further investigation of their potential to
modulate cancer cachexia.

Resveratrol
Resveratrol (3,5,4′-trihydroxystilbene) is a phytoalexin, a class of
compounds produced by many plants when they are infected
or physically harmed (122); it has been reported to have
anti-tumor effects in rats (123). Research on the potential
positive effects of resveratrol in cancer cachexia is limited
and contradictory. In mice bearing the MAC16 tumor with
established weight loss, resveratrol partly blocked weight loss
by interfering with NF-κB activity in skeletal muscle and
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this was accompanied by inhibition of tumor growth (124).
Another study demonstrated that resveratrol inhibited skeletal
muscle atrophy induced by the C26 adenocarcinoma tumor
through its inhibition of NF-κB activity in skeletal muscle
(125), without affecting tumor growth. In contrast to these
studies, administration of resveratrol did not attenuate skeletal
muscle mass loss or body weight loss in both rats bearing the
Yoshida AH-130 tumor and mice bearing the LLC (126). In
fact, in rats, administration of resveratrol exaggerated cancer
cachexia (126). On the contrary, resveratrol was able to decrease
proteolysis in vitro (126). After absorption, resveratrol undergoes
rapid and extensive metabolism leading to low bioavailability
(127, 128). With respect to the poor bioavailability it might
be not surprising that resveratrol did not prevent muscle
wasting, as the likelihood to reach effective levels in plasma or
muscle is very low. Taking these aforementioned studies into
consideration, resveratrol is not likely able to ameliorate tumor
induced cachexia.

Prebiotic Non-digestible Oligosaccharides
A prebiotic is “a selectively fermented ingredient that allows
specific changes, both in the composition and/or activity in
the gastrointestinal microflora that confers benefits upon host
well-being and health” (129). Prebiotic oligosaccharides such
as galacto-oligosaccharides (GOS) and fructo-oligosaccharides
(FOS) have shown to have immune modulating activities,
observed in several animal experiments, and clinical trials (130–
132). These oligosaccharides have been associated with improved
gut barrier function (133). It stimulates bifidobacteria, lactobacilli
and other healthy bacteria, while it reduces harmful bacteria in
the gut. Moreover, these oligosaccharides may block or activate
specific receptors on immune cells leading to improved immune
responses. In addition, oligosaccharides are fermented by colonic
bacteria into short-chain fatty acids (133). Short-chain fatty acids
have been shown to exert anti-carcinogenic as well as anti-
inflammatory properties (134). Although, the exact role of the
microbiome in cancer cachexia is not clear yet, animal studies
suggest that the composition of the microbiota and intestinal
barrier function is affected by the presence of a tumor and the
development of cancer cachexia (135). These findings support
the rational to target the gut microbiota in cancer cachexia
using prebiotic non-digestible oligosaccharides. The therapeutic
potential of prebiotic non-digestible oligosaccharides in cancer
cachexia have been barely explored. In mice bearing the C26
tumor, diet supplemented with GOS and FOS (weight ratio 9:1)
significantly reduced skeletal muscle mass loss (136). Similar
results were obtained when the FOS was replaced by additional
GOS (136). Administration of a prebiotic candidate, pectic
oligosaccharide (POS), to leukemic mice mitigated the cachectic
phenotype, by delaying anorexia and preserving fat mass (137).
In addition, POS increased the total number of bacteria and
induced a drastic change in microbial diversity and populations.
No effect on inflammation was observed (137). Due to limited
research, the impact of prebiotic non-digestible oligosaccharides
on cancer cachexia is currently unclear and would warrants
further investigation.

MULTINUTRIENT INTERVENTIONS

As discussed in section Single nutrient interventions, numerous
nutrients led to positive results in experimental models of cancer
cachexia, targeting different aspects of the wasting syndrome.
Combining such high quality nutrients in a “multinutrient
approach” to treat cachexia, is expected to have a superior
impact compared to single nutrients. A multinutrient approach
is aimed at targeting specific factors involved in cancer cachexia,
e.g., anorexia, altered fat, and protein metabolism, and systemic
inflammation, but also the replenishment of nutrient deficiencies.

Several of these multi-nutrient approaches have been studied
in experimental models of cancer cachexia. In mice bearing
the MAC16 tumor, Smith et al. investigated the effect EPA
combined with protein (casein), amino acid mixture (leucine,
arginine andmethionine), and carbohydrate on protein synthesis
and degradation in gastrocnemius muscle (82). Treatment with
only EPA significantly reduced protein degradation, but had
no effect on protein synthesis. Combination of EPA with
casein tended to increase protein synthesis. However, when
combined with the amino acid mixture, protein synthesis almost
doubled. The addition of carbohydrate to stimulate insulin
release had no additional effect (82). In another study, Van
Norren et al. examined the effect of dietary supplementation
with a specific combination of high protein (100% casein),
leucine and fish oil (EPA and DHA in a ratio of 2.2:1) on
body composition in mice bearing the C26 tumor (138). The
multinutrient intervention targeting catabolism, anabolism and
essential amino acid supply significantly reduced loss of carcass,
muscle and fat mass. Addition of the single nutrients to the
diets resulted in no or marginal effects (138). In a second
experiment, the effect of a more humanized diet on weight loss,
muscle function and physical activity was studied, referred to
as Specific Nutritional Composition, containing high protein
(68% casein and 32% whey), leucine, fish oil (EPA and DHA
in a ratio of 2.2:1), and the oligosaccharides GOS and FOS.
The specific nutritional composition diet significantly reduced
loss of body, carcass, muscle and fat mass. Furthermore, tumor
weight was significantly lower compared to tumor-bearing
control. Muscle performance was improved and total daily
activity was normalized after intervention with the specific
nutritional composition diet (138, 139). The specific nutritional
composition diet also showed beneficial immune modulatory
effects. The nutritional combination significantly improved the
Th1 immunity and plasma levels of IL-6, TNF-α and PGE2
were significantly reduced (139). Furthermore, this combination
attenuated weight loss and inflammatory markers, and reduced
pathogen levels and bacterial translocation in a chemotherapy
model (140). In mice bearing the B16 melanoma, the effect
of a multi-nutrient intervention with BCAAs, citric acid, L-
carnitine, coenzyme Q10 and various vitamins and minerals
was investigated on the development of cancer cachexia (141).
The mice receiving the intervention diet showed a higher
cumulative food intake compared to tumor-bearing control.
In addition, tumor weight was significantly lower and lung
metastasis of the B16 melanoma cells were absent in the
intervention group. However, attenuation of muscle tissue loss
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was only observed for the suprahyoid muscles in the neck but
not for gastrocnemius or soleus muscles in the lower leg (141).
More recently, the effect of total nutrition formula on LLC-
bearing mice was investigated (142). Total nutritional formula
is an energy- and protein-dense oral nutritional supplement
fortified with micronutrients such as vitamin D, vitamin A,
coenzyme Q10 and selenium. Daily oral supplementation
with total nutritional formula significantly suppressed tumor
growth, while body weight loss and gastrocnemius muscle
mass loss were significantly attenuated. Furthermore, the
plasma levels of TNF-α and IL-6 were significantly decreased
in LLC-bearing mice supplemented with total nutritional
formula (142).

Clearly, the few studies in which the combination of
nutrients was systemically compared to single nutrients alone
strongly support the concept of a multinutrient approach.
More experimental dietary intervention studies should focus
on multi-nutrient interventions targeting multiple aspects of
the disease. Furthermore, future studies should define optimal
selection and balance of nutrients that work in concert to
produce a health benefit that is greater than the sum of the
single nutrients.

NUTRITIONAL INTERVENTIONS: GAPS
AND OPPORTUNITIES

All of the nutritional intervention studies included in this review
describe effects on phenotypic measures of cachexia, such as body
weight loss and/or muscle mass loss. However, only few of the
studies contribute to understanding the underlying mechanisms
by which beneficial effects of nutritional interventions are
mediated. Of all reviewed nutrients, only L-leucine and its
metabolite HMB have been shown to attenuate tumor-induced
muscle wasting by (directly)modulatingmuscle protein synthesis
and proteolysis. For many other nutrients, the anti-cachectic
effect is frequently associated with reduced tumor growth,
modulation of inflammatory signaling or other extra-muscular
alterations that may contribute to cachexia. In these studies, it
is difficult to discriminate whether these nutrients act directly
on skeletal muscle metabolism, or impact indirectly on cachexia.
A better understanding of the beneficial actions of nutritional
interventions will not only aid their clinical implementation, but
also the systematic evaluation of additive or synergistic effects
of rationally selected nutritional combinations with distinct or
complementary actions.

Standardization in Experimental Design
Given the heterogeneity of cancer-induced cachexia, the
results obtained in the reviewed studies must be considered
in the context of the specific models that were used, and
variations in dietary regiments that were applied. Although
these variations may cause discrepancies between results across
different animal models, and laboratory groups, preclinical
studies per se have provided advantages and results that
merit their application in cachexia research. The experimental
models of cancer cachexia allow analysis of different tissues

affected by cancer cachexia, and provide valuable insights
in the underlying mechanisms of tested interventions. In
addition, safety and efficacy parameters that are relevant and
translatable to clinical practice are defined in experimental
models, including identification of potentially harmful
interactions with other treatment modalities. Nevertheless,
various aspects in the experimental design would benefit from
standardization. When evaluating the potential beneficial effects
of the nutritional interventions in experimental cancer cachexia,
a wide variation in timing, duration, dosing and route of
supplementation was observed, as well as in animal models used
(Supplementary Table 1).

Intervention as Source of Variation
Dietary intake, composition and dose is an often overlooked
source of variation in experimental animal studies of cancer
cachexia (143). The majority of the studies reviewed provide
diets ad libitum, while only a few studies control daily food
intake. However, it should be kept in mind that anorexia
is an important contributing factor to cancer-induced muscle
wasting and that dietary intake is closely related to cachexia-
related outcome measures. This stresses the importance of
dietary standardization, recording of food intake or pair feeding
the control group, to correlate the amount of nutrient intake
with outcome measures. Details on dietary intake are often
provided, however, the exact composition of the experimental
diets is often not described. Many of the studies reviewed
used standard laboratory chow. Standard laboratory chow
diets do not have a standardized macronutrient composition
and often vary from batch to batch (144). Furthermore, the
ingredients of laboratory chow are rarely defined, therefore
it might contain unknown nutrients that may impact study
endpoints. The use of purified or semi-purified diets should
be the new standard. In comparison to standard laboratory
chow, the ingredients included in purified and semi-purified
diets are open formulas and well-characterized (145). In addition,
the formulation of the semi-purified diet can be altered by
the researcher according to the research objective. Besides the
choice of the background diet, the control diet and intervention
diet should be matched for calories and nitrogen content.
The proportions of the nutrients in relation to human intake
should also be considered, improving the translatability to the
clinic. Furthermore, the dose of the supplemented nutrients
is a point of attention. Some of the intervention studies use
supraphysiological doses that may not be feasible for a nutritional
intervention. For example, a diet with 4% HMB is rather
unbalanced considering that normal rodent chow contains only
12.5% protein.

The timing and duration of supplementation as well as
the route of administration vary between studies and is
another source of variation. The majority of the studies started
supplementation before or with tumor inoculation, while only
a few initiate supplementation when animals show evidence
of cachexia. In both study designs, the metabolic state of the
animals at the start of the intervention is different, each of which
may require a different formulation of an effective nutritional
intervention. Besides, nutrients might have a fundamental
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different action in such models, for example by affecting tumor
take or growth. In addition to the timing, the duration of the
intervention studies varies substantially, ranging from 24 h to 34
days after tumor inoculation. This suggests that the cachectic
state at the end of the study differs between these studies,
making it difficult to compare phenotypical and biochemical data
between studies.

In addition, different routes of administration were applied
in the reviewed experimental intervention studies. Only a few
administrated the intervention via intra-peritoneal injection,
subcutaneous injection or drinking water. A significant
number of studies supplemented the nutrients via oral gavage.
Similar to the injections, the advantage of administration
via oral gavage is that an exact amount of the nutrient is
delivered irrespective of the food intake, which minimizes
variation between animals. However, by administration
via oral gavage the nutrient appears as a bolus and is not
part of the food matrix. Furthermore, administration via
oral gavage may have impact on the food intake and the
intervention diet is often not isonitrogenous and isocaloric to
the control diet. In the majority of the studies the nutrients
are administered via the diet, either by modification of
semi-purified diets, or by incorporation into the standard
laboratory chow. This allows to explore the full metabolic
potential of nutritional interventions, as it takes its processing
through the complete digestive tract into consideration.
Moreover, from a translational perspective this may be the
preferred route of administration, as its clinical application will
be accordingly.

Combined, systematic attention to the aspects discussed
above will contribute to further standardization in
experimental design and reporting of experimental details.
In turn, this will greatly stimulate the speed to explore
promising leads and turn these into reproducible preclinical
intervention diets, with robust translational potential in
cancer cachexia.

Heterogeneity Between Animal Models of Cancer

Cachexia
Numerous well-established animal models of cancer cachexia are
used (Table 1). However, there is substantial variability between
them in terms of cell type, site of inoculation/implantation,
tumor growth (speed and size), development of metastasis,
the overall dynamics of the wasting process, and putative
underlying mechanisms (e.g., anorexia, inflammation) (146).
This makes it difficult to compare results across animal models.

Furthermore, these animal models often do not recapitulate all

major clinical characteristics present in cancer cachexia, which
may complicate direct translation of the findings to the clinic.
For example, the kinetics by which cachexia develops in these
models differs from that in patients. The effectiveness of some
treatments may be of transient nature and lost in patients with
chronic cachexia, while treatments that do not prove effective
in acute models of cachexia might be useful for treating chronic
cachexia. Furthermore, the majority of the animal models have
ectopically growing tumors. Although, these animal models
have been useful in investigating the underlying mechanisms

of cancer cachexia, animal models of cancer cachexia with
orthotopically growing tumors may more closely represent
clinical cancer cachexia. Orthotopic tumor growth provides
tumor cells its original stroma and microenvironment, both
of these elements may determine the etiology of cachexia and
affect the outcome of interventions. Indeed, recently, it has been
demonstrated for a murine model of pancreatic cancer cachexia
that orthotopic implantation of tumor cells on the location of
interest much better recapitulates the clinical characteristics of
cancer cachexia compared to subcutaneous tumor models (147).
The growth monitoring capabilities for palpable, subcutaneously
grown tumors is no longer a rationale for avoiding the use
of orthotopic models, as recent studies have demonstrated
the routine deployment of non-invasive imaging in various
models, including orthotopically grown lung and brain tumors,
to follow up tumor growth (148–150). Moreover, micro-CT
imaging-based automated 3D contouring algorithms have been
developed to simultaneously determine muscle mass changes
in a model of orthotopic lung cancer cachexia (151). Finally,
orthotopic tumor models provide an opportunity to study the
interaction between conventional cancer therapies (e.g., chemo-,
immune-, and radiation therapy) and adjuvant interventions
targeting cachexia. Taken together, the development of more
humanized models to study the effectiveness of interventions to
treat cancer cachexia may lead to a more rapid translation into
clinical trials.

Combining Nutrition With Anti-cancer
Therapy and Cachexia Interventions
Although not in the scope of this review, in addition to tumor
activity and host responses that may drive cachexia, there
is increasing clinical evidence that treatments directed at
the tumor may actually contribute to the development and
progression of cachexia (152, 153). Studies in healthy mice
and rats have also demonstrated that some chemotherapeutic
agents induce muscle wasting (154, 155). Recently, it was for the
first time demonstrated that distinct metabolic derangements
are present in cancer-induced and chemotherapy-induced
cachexia (156). This implies that different therapeutic strategies
to treat cachexia may be required. A better understanding
of the tumor-, host-, and treatment-induced drivers of
cachexia in combination with in-depth knowledge on the
mechanism of nutritional interventions is crucial to develop
effective therapeutic interventions for cancer-induced and
treatment-induced cachexia. Moreover, as in practice nutritional
interventions will be used in combination with anti-cancer
therapies such as chemo-, radiation- and immunotherapy, it
is necessary to investigate if such combinations are safe, and
whether they modulate the therapeutic effectiveness. Some
nutrients, such as lcPUFAs, may improve the adherence to and
efficacy of chemotherapy (157), while others, including carnitine
and glutamine are suggested to reduce the toxicity of anti-cancer
therapy in cachectic patients (158).

Considering cancer cachexia is a multifactorial syndrome,
it is expected that a multimodal approach targeting multiple
aberrant pathophysiologic pathways simultaneously will be

Frontiers in Nutrition | www.frontiersin.org 10 December 2020 | Volume 7 | Article 601329

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


van de Worp et al. Nutritional Interventions in Experimental Cancer Cachexia

TABLE 1 | Heterogeneity between well-characterized animal models of cancer cachexia.

Model Tumor origin Host Tumor

injection site

Experimental period

(days post tumor

injection)

Anorexia Inflammation Metastasis

MOUSE MODELS

C26 Colon CD2F1 and BALB/c s.c. or i.m. 11–21 No/Yes depending

on experimental

design

Yes (IL-6) No

LLC Lung C57Bl/6 s.c. or i.m. 15–34 Yes Yes (TNF-α, IL-6,

IFN-γ)

Yes

Apc(min/+) Colon C57Bl/6 Genetic No Yes (IL-6) No

MAC16 Colon NMRI mice s.c. 1–20 No Yes (TNF-α, IL-6,

IL-1)

No

B16 Melanoma C57Bl/6 s.c. 16 Yes Yes (TNF-α, IL-6) No

RAT MODELS

Walker 256 Mammary gland Wistar rats s.c. 7–33 Yes Yes (TNF-α, IL-6,

PGE2, Walker

factor)

No

Yoshida AH-130 Ascites hepatoma Wistar rats i.p. 7–24 Yes Yes (TNF-α, PGE2 ) No

MAT-LyLu Prostate Copenhagen Fisher rats s.c. 14 No Not reported Yes

s.c., subcutaneous; i.m., intramuscular, and i.p., intraperitoneal.

Tumor volume varies significantly between models. This parameter might affect the translatability to the clinical situation. However, the data provided in the reviewed papers did not

provide sufficient information to summarize relative or absolute tumor volume.

most efficient. In addition to optimized nutritional care,
other therapeutic strategies, including exercise training and
pharmacological interventions, could effectively contribute to
attenuate cancer related muscle wasting. Although not all
treatment modalities can bemodeled in pre-clinical experimental
set ups, efficacy, synergy and relevance of some combined
treatment modalities have been evaluated. In particular, exercise
training has some experimental evidence of benefit to mitigate
skeletal muscle loss and therefore should be seen as potential
tool to maximize outcomes and quality of life of patients
with cancer cachexia (159–162). Exercise training stimulates
the increase of muscle mass and strength and might improve
cancer-associated skeletal muscle wasting by stimulating anabolic
pathways as well as by down-regulating the activity of pro-
inflammatory cytokines (163). In addition, exercise training has
a beneficial effect on counteracting fatigue, which is one of
the most severe symptoms in cancer patients (164). Combining
exercise training and nutritional intervention was shown to be
more effective than either one alone, highlighting the potential
of multimodal interventions with a nutritional component (159,
161, 162). Besides exercise training, pharmacological agents such
as appetite stimulants, anabolic steroids, and non-steroidal anti-
inflammatory drugs could effectively contribute to the treatment
of cachexia (165). Carefully designed combination therapy
may maximize the impact on treating muscle wasting while
minimizing the chance for drug toxicities. Various combinations
of single nutrients with exercise or pharmacological agents have
been studied in experimental cancer cachexia, with some success.
However, the number of studies is limited and therefore more
research is needed to find the optimal combination. In future
studies, attention should be paid on the interaction between

the different components of the multimodal approach. It is
important that the combination is safe and contributes to the
total therapy effectiveness.

CONCLUSION

Targeted nutrition is pivotal in preserving muscle mass in
cancer cachexia. A large number of studies demonstrated
beneficial effects of nutritional interventions on muscle
wasting. However, evidenced-based studies that indicate
the optimal quantity and quality of the nutrients are often
missing. Furthermore, the combination of multiple nutrients
is expected to have a superior impact compared to single
nutrients alone. More studies investigating the optimal
quantity, quality and combination of nutrients are needed.
Rationally-designed nutrition intervention studies, performed
in well-characterized experimental models are an essential
approach in the design of multimodal therapies targeting
cancer cachexia.
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