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Improvement of diet at the population level is a cornerstone of national and international

strategies for reducing chronic disease burden. A critical challenge in generating

robust data on habitual dietary intake is accurate exposure assessment. Self-reporting

instruments (e.g., food frequency questionnaires, dietary recall) are subject to reporting

bias and serving size perceptions, while weighed dietary assessments are unfeasible in

large-scale studies. However, secondary metabolites derived from individual foods/food

groups and present in urine provide an opportunity to develop potential biomarkers

of food intake (BFIs). Habitual dietary intake assessment in population surveys using

biomarkers presents several challenges, including the need to develop affordable

biofluid collection methods, acceptable to participants that allow collection of informative

samples. Monitoring diet comprehensively using biomarkers requires analytical methods

to quantify the structurally diverse mixture of target biomarkers, at a range of

concentrations within urine. The present article provides a perspective on the challenges

associated with the development of urine biomarker technology for monitoring diet

exposure in free-living individuals with a view to its future deployment in “real world”

situations. An observational study (n = 95), as part of a national survey on eating habits,

provided an opportunity to explore biomarker measurement in a free-living population.

In a second food intervention study (n = 15), individuals consumed a wide range

of foods as a series of menus designed specifically to achieve exposure reflecting a

diversity of foods commonly consumed in the UK, emulating normal eating patterns. First

Morning Void urines were shown to be suitable samples for biomarker measurement.

Triple quadrupole mass spectrometry, coupled with liquid chromatography, was used

to assess simultaneously the behavior of a panel of 54 potential BFIs. This panel of

chemically diverse biomarkers, reporting intake of a wide range of commonly-consumed

foods, can be extended successfully as new biomarker leads are discovered. Towards
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validation, we demonstrate excellent discrimination of eating patterns and quantitative

relationships between biomarker concentrations in urine and the intake of several foods.

In conclusion, we believe that the integration of information from BFI technology and

dietary self-reporting tools will expedite research on the complex interactions between

dietary choices and health.

Keywords: dietary intake, metabolomics, biomarker of food intake (BFI), urinary biomarkers, habitual diet

INTRODUCTION

There is a rich history of nutrition research spanning many
decades, much of which has had at its core a need for accurate
information on dietary intake for investigation of the links
between exposure to individual food/food groups and specific
health outcomes. Food intervention projects commonly rely on
participants collecting pre-prepared foods from research centres
for consumption at home and then confirming compliance at
a later date (1, 2). On the other hand, large-scale nutritional
epidemiological projects and nutrition surveys involving free-
living individuals consuming their habitual diet rely almost
totally on self-reporting of dietary exposure. Long-established
tools to collect self-reported quantitative dietary information
include Food Frequency Questionnaires (FFQs), diet diaries,
and dietary recall methodology (3). However, because of the
complexity of eating patterns and the conceptual and practical
difficulties in recording or recalling the types and amounts
of foods and beverages consumed, errors in self-reporting of
dietary intakes by cognitively-able individuals is commonplace
and substantial (4, 5) and can be exacerbated in those who are
overweight or obese (6, 7).

Secondary metabolites derived from individual foods or
food groups present in human biofluids can provide potential
biomarkers of food intake, for reviews see (8–18). The inclusion
of biomarker technology in dietary assessment could help
to overcome some of the limitations of traditional dietary
methodologies by providing additional objective estimates of
food exposure (19). Unlike blood, urine is easy to collect and
it provides an integrated estimate of exposure over several
hours. For a panel of dietary biomarkers to have any significant
utility, it is essential that its coverage is as comprehensive as

Abbreviations: AUC, area under the ROC (Receiver Operator Characteristic)
curve; BFI, biomarker of food intake; CRN, Clinical Research Network; FFQ,
Food Frequency Questionnaire; FMV, First Morning Void; HESI, heated
electrospray ionisation; HILIC, Hydrophilic Interaction Liquid Chromatography;
HPLC, high-performance liquid chromatography; IAN-AF, Portuguese National
Food, Nutrition and Physical Activity Survey; ISRCTN, International Standard
Randomised Controlled Trials Number; LC-QQQ-MS, liquid chromatography
triple quadrupole mass spectrometry; LoD, limit of detection; logP, partition
coefficients; LoQ, limit of quantification; MACCS, Molecular ACCess System;
MAIN, Metabolomics at Aberystwyth, Imperial and Newcastle; MDS, multi-
dimensional scaling; MRC, Medical Research Council; MRM, multiple reaction
monitoring; MS, Mass Spectrometry; NDNS, National Diet and Nutrition Survey;
PCA, Principal Components Analysis; QC, Quality Control; RF, Random Forest;
RI, refractive index; ROC, Receiver Operator Characteristic; RP, reverse phase;
RSD, relative standard deviation; SG, specific gravity; SRM, Selected Reaction
Monitoring; UHPLC, Ultra High Performance Liquid Chromatography.

possible. Using data-driven approaches, we have shown that the
potential utility of a biomarker is dependent on the type, portion
size, and frequency of consumption of individual foods (20).
Data concerning nationally-representative estimates of intakes of
foods by the UK population are collected by the UK National
Diet and Nutrition Survey (NDNS) (21) and this database can
be explored to identify foods and food groups for which dietary
exposure biomarker discovery might be feasible and relevant
(1, 2, 22).

Over the past decade, our collaborative research projects and
those of other teams (see Supporting Data 1 for a comprehensive
list) have contributed to the discovery of putative dietary intake
urinary biomarkers of specific foods including poultry and red
meat (23–28) citrus fruits (29, 30), crucifers (31, 32), oily fish
(26, 27, 32), red berries/strawberries (2, 32–34), wholegrain/rye
(35–37), sugary drinks (38, 39), artificial sweeteners (2, 40),
peas/beans/legumes (2, 41, 42), grapes (41, 43–45), apples (41,
46, 47), and potatoes (48). In addition, consensus guidelines for
the critical assessment of candidate BFIs has been established
(49). These BFI candidate guidelines have focused generally on
qualifying the utility of individual BFIs for monitoring exposure
to specific foods/food groups. However, because effects on health
are a consequence of the whole diet, it is equally important to
develop approaches to assess overall dietary exposure in nutrition
surveys, epidemiological studies, and clinical trials (45).

The ideal biomarker is highly specific for one food item or
food group, is not detected in the biological sample of interest
when the specific food item is not ingested, and shows a distinct
dose- and time-dependent response following consumption (50).
Althoughmetabolites distinctive of dietary exposure to particular
foods have been described, it is not uncommon to discover
subsequently that putative biomarkers are not necessarily specific
for individual foods and therefore much rigour needs to be
applied during validation of their utility to monitor habitual
dietary intake (51). For application in the real world, the use
of multi-metabolite biomarker panels may provide more reliable
estimation of dietary exposure than a single-biomarker approach
[reviewed by (52)]; such panels need to have comprehensive
coverage and to be extendable (53). For this reason, in the future
it will be important to evaluate biomarker performance in the
context of complex exposures to multiple foods, with different
food formulations, cooking, and processing methods and within
complex meals, in eating patterns the target study population is
likely to experience (2).

Optimal sampling requirements for urine biomarker analysis
will be dependent largely on the study design and objectives
(Table 1). For example, a food intervention study with free-living
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TABLE 1 | Study objectives and biomarker of food intake (BFI) requirements.

Example study

objectives

Typical sampling requirements Biomarker requirements Data requirements Study example and

reference
Single

sample only

Multiple

samples

Biomarker(s) of

only one

food/food group

Comprehensive

biomarker

panel

Quantitative or

semi-quantitative

measurement

Exposure

range

assignment

A Confirmation of participant

compliance in a food

intervention study or

validation of a proposed

biomarker focusing on a

single food/food group,

short term or long term

Y Y Y A validation trial: (54)

A compliance trial:

(55, 56)

B Biomarker discovery and/or

validation in a free-living

population following a meal

plan emulating normal

eating patterns

Y Y Y MAIN study: (1, 2, 22)

C Investigation of individual

“metabotype” in relation to

interaction with specific

dietary chemicals

? ? Y Y Food4me study: (57)

D Assessment of habitual

(e.g., weekly, monthly, and

annual) eating behavior of

individuals

Y Y ? ? PREDIMED trial:

(58, 59)

E Observational

epidemiological survey of

eating habits in a large

population

Y Y Y ? IAN-AF: (60); EPIC:

(27, 61)

F Cohort stratification by

dietary exposure levels to

specific foods/food groups

in a small clinical trial

Y Y Y MAIN study: (45)

participants lasting several weeks investigating links between
a health outcome and a specific food/food group will require
appropriate samples on multiple days taken at random to
assess compliance with dietary intake targets (1, 2). In contrast,
assessing the general eating habits of a large population in an
epidemiological survey may only require sampling of a large
number of people on a single random day or multiple days (60).
Any urine sampling procedure would need to be (i) acceptable
for volunteers to provide samples repeatedly, (ii) require minimal
researcher time and cost, and (iii) deliver samples with high
quality information content. The theoretical optimal types of
urine(s) to be sampled [e.g., spot, cumulative (i.e., “phase”
of day) or 24 h] will also depend on study objectives (62)
and, in many instances, the sampling strategy will be limited
by cost constraints or the practicalities of collection. Twenty-
four hour urine samples and single spot urine samples taken
at random times during the day are commonly collected to
monitor discrete aspects of human physiology, metabolism, or
“exposome” in clinical trials and surveys (63–65). Unfortunately,
such samples provide information only in relation to very recent
eating behaviour andmay be of limited utility in nutrition studies
where the focus is on the whole diet or on the intakes of foods
that are not eaten frequently. Additionally, eating behaviour
and hydration levels can be very different between individuals

in free-living populations and the fact that excretion half-lives
of specific metabolites can vary enormously (49), means that
research protocols must be in place to manage adequately these
sources of variability in any biomarker discovery and validation
strategy (62, 66).

Where the aim is to estimate absolute intake of specific
foods, or the frequency of exposure, it will be desirable
to generate quantitative or semi-quantitative data on BFI
concentrations in urine. However, for other studies, it may
be sufficient to be able to assign each individual into an
exposure range (e.g., high-medium-low), typical of a specific
reference population. Urine collection(s), sample processing,
and the analytical methodology can be optimised for a
target metabolite when using a single biomarker to monitor
exposure to a single food/food group. In contrast, the desire
to monitor habitual diet comprehensively using a panel of
biomarkers requires the analytical approach to manage the
complex physio-chemical attributes of the diverse range of
putative biomarkers currently described, as well as coping with
metabolites exhibiting differential stability during collection,
transport, and storage. Other practical issues such as the
commercial availability, costs, solubility, and stability of pure
chemicals in mixtures as quantitation standards will also
impact on the design of analytical solution likely to offer

Frontiers in Nutrition | www.frontiersin.org 3 November 2020 | Volume 7 | Article 602515

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Beckmann et al. Dietary Urine Biomarker Technology Challenges

scope for simultaneous measurement of a large number of
metabolite targets.

The assessment of eating behaviour in free-living individuals is
important in a wide range of types of nutrition research (Table 1),
ranging from clinical trials investigating the mode of action of
potentially beneficial “bioactive” compounds in individuals, to
general surveys of national eating habits in large populations.
Although considerable effort is being expended on BFI discovery
and validation, there is an equally urgent need to consider
the future challenges for effective deployment of dietary intake
biomarker technology to assess habitual diet within populations.
To summarise, these major challenges include:

• Strategies for validation of food intake biomarkers suitable for
assessment of habitual dietary exposure;

• Standardised urine sampling approaches, including collection,
temporary storage, transport, and long term biobanking;

• Development of biomarker analytical methodology, using
a multi-panel of biomarkers, that is able to integrate new
markers as they become validated;

• Algorithms to convert raw biomarker data into meaningful
estimates of food intake and/or overall diet quality.

The present article aims to provide a perspective on some of these
challenges associated with the development of urine biomarker
technology to monitor recent or habitual dietary intake in free-
living individuals with a view to its future deployment in “real
world” situations. For example the UK government’s “Better
Health” campaign, a 12 week fitness and healthy eating plan
announced in July 2020 to help Briton’s lose weight and reduce
their risk of serious complications should they contract COVID-
19 (https://www.nhs.uk/better-health/). One of the key aims of
the plan is to encourage people to make healthier food choices.
We believe that the BFI technology we have been developing over
the past 10 years, alongside the low-effort, minimally intrusive
urine sampling strategies (62, 67) will soon be validated to the
point that they can be used to reproducibly and objectively
monitor the effectiveness of such plans at a population level.
A workflow summarising the overall experimental strategy is
illustrated in Figure 1.

MATERIALS AND METHODS

Ethics Approval and Consent to Participate
For Study 1, ethical approval was obtained from the National
Commission for Data Protection, the Ethical Committee of
the Institute of Public Health of the University of Porto
and from the Ethical Commissions of each one of the
Regional Administrations of Health. All participants gave
written informed consent, and the study was carried out
in accordance with the Declaration of Helsinki. The MAIN
(Metabolomics at Aberystwyth, Imperial, and Newcastle) food
intervention trial at Newcastle (Study 2) was approved by
the East Midlands—Nottingham 1 National Research Ethics
Committee (14/EM/0040). Caldicott approval for storage of
data and data protection was granted by Newcastle-upon-Tyne
Hospitals NHS Foundation Trust [6896(3109)]. The MAIN food
intervention trial in Newcastle was adopted into the UK Clinical

Research Network (CRN) Portfolio (16037) and is registered with
International Standard Randomised Controlled Trials Number
(ISRCTN), 88921234.

The participants provided written informed consent to
participate in each study, taken by an appropriately trained
researcher. All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards.

Epidemiological Study and Urine Sampling
Study 1 involved community-living individuals consuming a
freely-chosen diet. The participants (n = 95) were volunteers
who participated in the Portuguese National Food, Nutrition,
and Physical Activity Survey (IAN-AF), whose aims andmethods
have been described previously (60). A 24 h dietary record was
collected by trained nutritionists using the “eAT24” Software
(68) which facilitates the assessment of dietary data using an
automatedmultiple-pass method (5 steps) (69). Participants were
asked to collect urine samples on the day before the second 24 h
dietary record. Urine samples were collected in two separate
containers. The first one (a 2,700mL container identified as
container A) was used to collect all urine passed during the
day before the interview, except the first void of that morning.
A second one (a 500mL container identified as container B)
was used to collect just the First Morning Void (FMV) on
the day of the second interview. No preservatives were added
to the urine containers, and the participants were asked to
keep the samples refrigerated (4◦C) throughout the collection
period. Participants were asked to fill in a questionnaire with
the time of the beginning and the end of collections, details of
any medication, and whether or not they had any problems or
missed urine collections. At the laboratory, urine samples were
weighed and mixed. The weights of urine from containers A and
B were quantified separately and a proportionally pooled 24 h
urine sample (identified as “24 h urine”) was prepared by using
samples A and B. From each participant, both urine samples were
aliquoted: 1 × 45mL (in 50mL Falcon pre-labelled tube) + 10
× 1.5mL (in 2mL pre-labelled microtubes). These aliquots were
refrigerated immediately before being moved to −80◦C storage,
within 24 h, for further analysis.

Food Intervention Study Design and Urine
Sampling
The MAIN project at Newcastle included two controlled food
intervention studies in free-living people who consumed the test
foods as part of two 3day menu plans, designed to generate six
distinctive “Menu Days” (1, 22). Participants were provided with
all the foods and ingredients to prepare and consume meals at
home, following the prescribed menus. Within this manuscript
(Study 2) we have used data from 15 of the individuals from
the second 3-day menu plan (8 male, 7 female; non-smokers;
age: 21–74). We implemented urine sampling methods based on
our previous studies (23, 70) and asked participants to collect
a series of urine samples including the FMV the day after each
menu plan. Participants collected urine samples in a plastic jug
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FIGURE 1 | Workflow for biomarker panel development. Where: MAIN, Metabolomics at Aberystwyth, Imperial and Newcastle; RP, reverse phase; HILIC, Hydrophilic

Interaction Liquid Chromatography; LoD, limit of detection; LoQ, limit of quantification.

and transferred aliquots into labelled sterile 25mL Universal
tubes. Six of these 15 participants (2 female, non-smokers, age
range 22–59) also collected FMV urine samples at home using
the vacuum transfer system (67). All samples were placed in
an opaque cool bag and stored at home in a fridge at 4◦C
for up to 4 days and then brought to the research facility in
Newcastle at the end of the study week. Universal tubes were
stored immediately at −80◦C and the vacuum tubes remained at

4◦C for a further 2 weeks before storage at −80◦C. Samples were
then transported to the analytical facility in Aberystwyth on dry
ice for metabolite analysis.

Urine Sample Preparation
Urine samples were prepared and adjusted as reported previously
(1, 22). In brief, all urine samples were normalised by refractive
index (RI) prior to analysis to account for differences in fluid
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intake by participants and to ensure that all Mass Spectrometry
(MS) measurements were made within a similar dynamic range
within the linear range of the instrument. Samples were defrosted
overnight at 4◦C, centrifuged (1,600 × g for 5 mins at 4◦C),
placed on ice and aliquots of thawed urine (1,000 µL) were
transferred into labelled 2mL Eppendorf tubes. The remaining
sample were returned to a −20◦C freezer. An OPTI Hand Held
Refractometer (Bellingham StanleyTM Brix 54 Model) was used
to record the specific gravity (SG). Using these data, aliquots of
the required amounts of urine from centrifuged 2ml Eppendorf
tubes and ultra-pure (18.2�) H2O were transferred into new
tubes for extraction; this ensured that all samples had the same RI.

Strategy for Selection of Candidate Dietary
Exposure Biomarkers
The selection of biomarkers was initiated with a literature search
to generate an initial “long list” of food-related metabolites with
potential for inclusion in a panel of biomarkers that would
provide comprehensive coverage of food items consumed in
the MAIN Study (see Supporting Data 2 for a summary of
the foods). The search was carried out using Google Scholar
and Web of Knowledge using the following search terms in a
range of combinations “biomarkers + urine + food + dietary
+ BFI” and ended on 22/06/2020. Publications were screened
and information was added to the database if they contained
data relating to potential dietary exposure biomarkers measured
in urine samples (see Supporting Data 3). Specific details on
metabolite excretion profile were recorded and the availability of
a commercial supply of a pure chemical standard was investigated
(see Supporting Data 3).

Evaluation of Chemical Diversity of
Biomarkers
Biomarkers were assigned to chemical class and superclass
using the ClassyFire application (71). Classifications for each
biomarker were retrieved using the R package classyfireR Version
0.3.3. Pairwise similarity of biomarkers was measured using the
Tanimoto Distance after converting structural representations
of each biomarker to its MACCS (Molecular ACCess System)
fingerprint. Fingerprints were generated using the get.fingerprint
function from the R package rcdk (Version 3.5) and distances
computed using the fp.sim.matrix function from the R package
fingerprint. The resultant matrix of fingerprint distances,
was then reduced to two dimensions using the cmdscale
function. Chemical descriptors (–logP) were calculated using the
rcdk package.

Sample Analysis by Liquid
Chromatography Triple Quadrupole Mass
Spectrometry (LC-QQQ-MS)
Methanol (primer trace analysis grade, Fisher Scientific, UK) was
used for urine extraction and standards preparation. Acetonitrile
(Optima R© LC-MS grade, Fisher Scientific, UK), methanol
(HPLC grade, Fisher Scientific, UK), and Ammonium acetate
(Optima R© LC-MS grade, Fisher Scientific, Belgium) were used
for preparing the LC mobile phase. Water was ultra-pure water

(18.2�) drawn from an Elga Purelab R© flex water purifier system
(Taiwan). The suppliers of chemical standards are given in
Supporting Data 4.

Sample analysis was performed on a TSQ Quantum
Ultra EMR QQQ mass spectrometer (Thermo Scientific)
equipped with a heated electrospray ionisation (HESI) source.
Samples were delivered using an Accela ultra-high-performance
liquid chromatography (UHPLC) system (Thermo Scientific)
consisting of autosampler, column heater, and quaternary
UHPLC-pump. For HILIC (Hydrophilic Interaction Liquid
Chromatography) analysis, chromatographic separation was
performed on a ZIC-pHILIC (polymeric 5µm, 150 × 4.6mm)
column (Merck). The mobile phase consisted of 10mM
ammonium acetate in water: acetonitrile (95:5) (A) and 10mM
ammonium acetate in water: acetonitrile (5:95) (B). The gradient
program used was as follows: 0min, 95% B (400 µL min−1);
15min, 20% B (400 µL min−1); 15.01min, 20% B (500 µL
min−1); 20min, 20 % B (500 µL min−1); 20.01min, 95 % B
(500 µL min−1); 25min, 95% B (500 µL min−1). The HPLC
was carried out in low pressure (∼0–7,000 psi) operating mode
with 0 psi and 650 psi as minimum and maximum pressures,
respectively. For Reverse Phase (RP) analysis, chromatographic
separation was performed on a Hypersil Gold (1.9µm, 200
× 2.1mm) RP-column (Thermo Scientific). The mobile phase
consisted of 0.1% formic acid in H2O (A) and 0.1% formic
acid in MeOH (B). The gradient program used was as follows:
0min, 0% B; 0.5min, 0% B; 5min, 60% B; 11min, 100%
B; 13min, 100% B; 13.01min, 0% B; 19min, 0% B. For
RP analysis, the flow rate was maintained at 400 µL/min−1.
The UHPLC was carried out in high pressure (∼7,000–15,000
psi) operating mode with 0 and 1,000 psi as minimum and
maximum pressures, respectively. For both chromatographic
analyses, column oven and autosampler tray were maintained at
60 and 14◦C, respectively. To ensure consistent sample delivery,
20 µL were injected using a 20 µL loop and partial loop
injection mode. After each injection, syringe, and injector were
cleaned using a 10 % HPLC grade MeOH solution in ultra-pure
water (1mL flush volume; 100 µL/s−1 flush speed, 2mL wash
volume) to avoid sample carryover. Mass spectra were acquired
in multiple reaction monitoring (MRM) mode, in positive and
negative ionisation polarities simultaneously using optimised
values of collision energy and tube lens for each MRM transition
(Supporting Data 4). Spectra were collected at a scan speed of
0.010 and 0.003 s for HILIC and RP analysis, respectively. A scan
width of 0.010 m/z units and peak width (Q1, Q3) of 0.7 FWHM
were used for both HILIC and RP analyses.

Raw files (ThermoFisher) were converted to mzML (72)
using msconvert in the ProteoWizard tool kit (73). All further
processing of mzML files was performed using the R Statistical
Programming Language (74). Selected Reaction Monitoring
(SRM) chromatograms were extracted from mzML files using
the R library, mzR and peaks areas were calculated by extracting
pre-defined chromatographic windows (based on calibration
standards) around each peak apex. Absolute concentrations were
calculated using a nine-point calibration curve (0.006561–100µg
mL−1). The limit of detection (LoD) and limit of quantification
(LoQ) of all chemical standards were calculated as the lowest
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concentration of each biomarker giving a signal-to-noise ratio
of 3:1 and 10:1, respectively within the linear range of each
calibration curve.

Quality Control (QC) Strategy for Target
Biomarkers
Reproducibility of the mixture of chemical standards was
determined using the relative standard deviation (RSD) of a
multi component calibration standard and an external urine QC
sample using a “master mix” of pooled samples. The external
urine QC sample was used to determine the effect of the resultant
urine matrix on the reproducibility of selected biomarkers across
multiple experiments. The external QC (as distinct from an
experimental QC) allowed for longitudinal monitoring of RSD
without intra-experimental bias.

Data Analysis
Principal Components Analysis (PCA) was performed using the
prcomp function in R, with variables scaled to unit variance.
Supervised classification of quantitative metabolite data was
performed using Random Forest (RF) classification using the
randomForest package (75) in R (74). For all RF models,
the number of trees (ntree) used was 500 and the number
of variables considered at each internal node (mtry) was the
square root of the total number of variables. Accuracy, margins
of classification and area under the ROC (Receiver Operator
Characteristic) curve (AUC) were all used to evaluate the
performance of classification models, as described previously
(76). RF classification models were plotted following multi-
dimensional scaling (MDS). Proximity measures for each
individual observation were extracted fromRFmodels and scaled
coordinates produced using cmdscale on 1—proximity.

Spearman rank correlations of biomarker concentrations in
24 h vs. FMV urine were produced using the rcorr function
from the R (Version 4.0.3) package Hmisc (Version 4.4.0).
Reported P-values are the asymptotic p-values from the rank
correlation. Quantile–Quantile plots were produced using the
qqnorm function in R.

RESULTS

Selection of Target Foods and Design of a
Food Intervention Study for Preliminary
Survey of the Potential Utility of Urine
Biomarker Technology
A major component of our strategy to develop urine biomarker
technology to monitor habitual diet was the need for a biobank of
urine samples from a food intervention trial that was designed to
provide comprehensive exposure to foods commonly consumed
in the UK. Key food groups were identified initially from
The Eatwell Guide (77); the most commonly eaten foods were
identified within each disaggregated food group using estimates
of intakes of foods by the UK population from the UK National
Diet and Nutrition Survey (NDNS) (21). Supporting Data 2

describes the representative foods that were incorporated into
a six-menu design as part of the MAIN food intervention

trial at Newcastle [see Lloyd et al. (1) and Willis et al. (2)
for full details]. The menu plans aimed to deliver foods for
BFI discovery and validation, including the assessment of BFI
specificity and sensitivity within the context of the whole diet.
Particularly important was consideration of the impact of the
likely major sources of variance on biomarker monitoring
procedures including:

• The impact of exposure to targeted foods as part of complex
and mixed meals, rather than foods consumed in isolation;

• The use of average portion sizes and normal eating patterns
rather than exposure to huge, unrealistic portions consumed
in a fasted state;

• The impact of different food formulations, processing, and
cooking methods representing the range of ways in which
foods are processed and eaten;

• The dynamics of putative BFI retention in the body (to
inform development of biomarkers of both acute or habitual
food consumption).

The selection of biomarkers was initiated with a preliminary
literature search to identify putative urinary biomarkers
that would provide comprehensive coverage of each specific
food/food group consumed within the six menus. This database
(Supporting Data 1) suggested that 765 urinary metabolites
were potential dietary exposure biomarker candidates as
summarised in Supporting Data 2. It is clear from these
data that there is considerable choice in terms of potential
biomarkers and considerable overlap of metabolites between
some foods/food groups.

Evaluation of Approaches for Urine
Collection and Storage for Monitoring
Habitual Dietary Exposure
Using LC-MS fingerprinting methodology, we have shown
previously that the metabolome of spot urine samples taken just
before bed time on the study day is compositionally very similar
to the corresponding 24 h urine samples (62). In the present
study, RI measurements revealed that FMV spot urine samples
from a national dietary intake survey (Study 1) also had an almost
identical overall solute concentration range to that of 24 h urines
(Figure 2A). Since creatinine concentrations are often used as a
reference for normalisation in urine samples, we evaluated the
relationship between creatinine concentration and RI in both
FMV spot and 24 h urines. Creatinine concentrations were within
the same range in FMV spot and 24 h urines and exhibited a
strong linear relationship (R2 = 0.65 and 0.68, respectively) with
RI (Figure 2B), supporting the concept of sample normalisation
to the same RI. The value of FMV spot urine samples
for assessment of dietary exposure was explored further by
examining the correspondence between the concentration of
putative biomarkers in 24 h urine and spot urine samples using
targeted, quantitative measurements of individual biomarkers.
Figure 2C shows scatter plots of metabolite concentration
in FMV urine vs. 24 h urine for eight example biomarkers
from samples derived from Study 1. Although the actual
biomarker levels varied between the two urine types there was
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FIGURE 2 | Screening biomarkers to detect those with concentrations in spot urine that reflect levels found in 24 h urine from Study 1. (A) Boxplot of total creatinine

content and refractive index (RI) in First Morning Void (FMV) and 24 h urine samples. (B) Scatter plot showing the linear association between creatinine concentration

and RI in FMV and 24 h urine samples. (C) Scatter plots showing the linear association of selected biomarker concentrations between FMV and 24 h urine samples.

Where: Biomarker 7,7-Methyl xanthine; Biomarker 8, Acesulphame-K; Biomarker 12, Calystegine A3; Biomarker 19, D,L-Sulphoraphane-N-acetyl-L-cysteine;

Biomarker 23, DHPPA [3-(3,5-Dihydroxyphenyl)-1-propanoic acid]; Biomarker 42, Proline betaine; Biomarker 50, Tartarate; Biomarker 53, Trimethylamine-N-oxide (Full

list of number codes for biomarkers is in Supporting Data 4).

a strong linear relationship between concentrations in 24 h and
FMV urine (Figure 2C). More than 50% of the biomarkers
demonstrated a very strong correlation (>0.6). Further potential
biomarkers exhibited a weaker correlation in concentration
(Supporting Data 4) and it is suggested that that r > 0.2 (with a p
< 0.05 from a rank correlation test) may be considered adequate.
The Quantile–Quantile plot in Supporting Data 5 shows the
comparable distribution of biomarker concentrations measured
in FMV and 24 h urine samples.

We have shown recently that vacuum tube technology has
considerable value for spot urine sampling and that, even in
the absence of preservatives, urine composition is stable for
several days at 4◦C (67) and under different temperature regimes.
To explore further the utility of vacuum tube technology for
large-scale urine sampling in community settings, we evaluated
the compositional stability of FMV spot urine at 4◦C for 2
weeks, to mimic longer term storage in a domestic fridge. A
selection of biomarkers useful for assessment of exposure tomeat,
fish, wholegrain, fruit, and vegetable components of meals were
targeted for analysis. Metabolite concentrations after storage in
vacuum tubes at 4◦C were very similar to those of the same urine
samples after being frozen at−80◦C (Figure 3).

Literature Analysis to Select Biomarker
Leads for Inclusion in a Panel That Will
Provide a Comprehensive Survey of
Dietary Exposure
A comprehensive list of potential urinary BFIs based on a
literature analysis (53) of putative dietary exposure biomarkers in
various human biofluids is presented in Supporting Data 2. The
present biomarker panel strategy aimed to assess habitual diet in
individuals and populations; key to this objective was the need
to use spot urine samples, specifically urine samples collected
just before bedtime and FMV urines, that would be informative
of overall food consumption (1, 62). A detailed examination of
the dietary exposure biomarker literature was undertaken with
particular emphasis on the identification of biomarker candidates
present in spot urine samples > 12 h after food consumption
(Table 2 and described in further detail in Supporting Data 3).
A shortlist of candidate biomarkers for initial biomarker panel
development was generated, focusing largely on metabolites that
were available from commercial providers (Supporting Data 3).
For 28 out 54 putative biomarkers there was already evidence
in the literature of their presence in FMV urine. The majority
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FIGURE 3 | Comparison of stability of example biomarkers in First Morning Void (FMV) urine collected in vacuum tubes stored at 4◦C for 2 weeks (Vacuum transfer

method) or Universal tubes (Standard Universal collection) stored at −80◦C. Where: Biomarker 1, 1-Methyl histidine; Biomarker 3, 3-Methyl histidine; Biomarker 15,

Carnosine; Biomarker 17, Creatinine; Biomarker 18, D,L-Sulphoraphane L-cysteine; Biomarker 23, DHPPA [3-(3,5-Dihydroxyphenyl)-1-propanoic acid]; Biomarker 31,

Ferulic acid-4-O-sulphate; Biomarker 37, L-Anserine; Biomarker 50, Tartarate; Biomarker 53, Trimethylamine-N-oxide (Full list of number codes for biomarkers is in

Supporting Data 4).

of the remaining dietary exposure biomarker leads selected had
been shown to be present in 24 h urine samples and so it
was reasonable to expect their presence in FMV urine samples
collected the day after a specific food intervention.

Examination of Biomarker Behaviour
During LC-MS and Development of a
Biomarker Panel Strategy
Previous analysis of published literature revealed that the
great majority of dietary exposure biomarker candidates
were detected and quantified using LC-MS technology (53).
Chemical classification of putative biomarkers showed great
structural diversity that included metabolites from 17 Chemical
Classes representative of 7 Chemical Super-Classes (Figure 4A).
In silico multi-dimensional scaling of structural attribute
fingerprint distances shows the large diversity in chemical
structure across biomarker candidates, highlighting the necessity
for employing multiple chromatography systems (Figure 4B).
Focusing specifically on partition coefficients (logP) and
molecular weight attributes, it is clear from the scatterplot shown

in Figure 4C that a large percentage of biomarker candidates
were quite strongly hydrophilic. Based on this distribution a
decision was made to develop an analytical strategy based
largely on the use of a HILIC column to measure strongly
polar chemicals and a RP (C18) column to quantify less
polar metabolites.

LC-QQQ-MS/MS technology is used widely for measuring,
with high sensitivity, the concentration of target chemicals in
complex biological samples. Quantification of pre-determined
fragmentation products of targeted metabolites in expected
retention time windows using MRM approaches allows the
investigator to obtain data on large numbers of individual
metabolites in short (10–15min) HPLC runs. Chemical mixtures
designed as calibration standards for either HILIC or RP (C18)
chromatography were used to optimise metabolite separation
and detection conditions on a Thermo QQQ instrument
(see Supporting Data 4). Serial dilutions of the two standard
chemical mixtures (30–0.00197 µg ml−1) were used to establish
LoD and LoQ and to examine analytical reproducibility over
several months. The reproducibility of measurement of chemical
standard mixtures was determined at nine concentration levels.
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TABLE 2 | Selection of biomarkers for panel development.

Dietary component Putative urine biomarker Potential use as a habitual

dietary exposure biomarker?

Key reference in relation to

habitual dietary exposure

biomarker potential

Alcohol Ethyl-beta-D-glucuronide ** (78)

Wine Resveratrol * (59)

Coffee Chlorogenic acid * (79)

Coffee Dihydrocaffeic acid# * (80)

Coffee Ferulic acid-4-O-sulphate * (80)

Coffee Feruloylglycine ** (1)

Coffee m-Coumaric acid# * (46)

Cocoa 3-Methyl-xanthine ** (81)

Cocoa 7-Methyl-xanthine ** (81)

Cocoa/Tea Caffeic acid# * (80)

Coffee/Cocoa Caffeine * (81)

Cocoa Vanillic acid ** (46)

Sweetener Acesulphame-K ** (2)

Sugary Foods and Drinks Sucrose ** (39)

Fruit and Vegetables 3-Hydroxyhippuric acid ** (82)

Fruit and Vegetables 4-Hydroxyhippuric acid ** (82)

Fruit and Vegetables Hippuric acid * (83)

Citrus 4-Hydroxyproline-betaine ** (30)

Banana Dopamine-3-O-sulphate# ** (84)

Banana Dopamine-4-O-sulphate# ** (84)

Strawberries/red berries Furaneol ** (2)

Citrus (grapefruit) Naringenin * (85)

Grapes/wine/red berries p-Coumaric acid ** (86)

Citrus Proline betaine ** (30)

Apple Rhamnitol ** (22)

Grapes Tartarate ** (87)

Onion and tomato Quercetin * (11)

Onion and tomato Quercetin-3-O-b-D-glucuronide ** (88)

Cruciferous Vegetables D,L-Sulphoraphane L-cysteine ** (89)

Cruciferous Vegetables D,L-Sulphoraphane-N-acetyl-L-cysteine ** (1)

Wholegrain/Rye BOA (1,3-Benzoxazol-2-one) * (35)

Wholegrain DHBA (3,5-Dihydroxybenzoic acid) * (90)

Wholegrain DHBA-3-O-sulphate * (91)

Wholegrain DHPPA (3-(3,5-Dihydroxyphenyl)-1-propanoic

acid)

* (90)

Wholegrain DHPPA-3-sulphate * (91)

Meat (general) 1-Methyl histidine * (92)

Poultry/Fish 3-Methyl histidine * (27)

Meat (processed) Carnitine * (93)

Red meat Carnosine * (24)

Meat (general) Creatinine * (25)

Chicken L-Anserine ** (1)

Meat (general) Taurine * (25)

Fish/Shellfish Trimethylamine-N-oxide ** (1)

Potatoes Calystegine A3 ** (48)

Potatoes Calystegine B2/B1 ** (48)

Soy products Daidzein ** (94)

Legumes Pyrogallol ** (2)

Legumes Trigonelline ** (2)

(Continued)
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TABLE 2 | Continued

Dietary component Putative urine biomarker Potential use as a habitual

dietary exposure biomarker?

Key reference in relation to

habitual dietary exposure

biomarker potential

Strongly Heated Foods N-(2-Furoyl)glycine ** (2)

Polyphenol rich foods Epicatechin(-) * (79)

Polyphenol rich foods Ferulic acid * (95)

Polyphenol/Anthocyanin

rich foods

Ferulic acid-4-O-b-D-glucuronide * (96)

Fruit/Grapes/Tea/wine Gallic acid * (86)

Anthocyanin rich foods Protocatechuic acid ** (97)

#Normally the conjugated forms detected; the impact/use of the selected metabolite as a potential biomarker of habitual dietary exposure where *Possible and **Likely.

FIGURE 4 | In silico overview of the chemical diversity of candidate biomarkers. (A) Chemical class and Superclass classifications of 54 biomarkers using ClassyFire.

(B) Multi-dimensional scaling of Tanimoto Distances between MACCS (Molecular ACCess System) fingerprints of biomarkers. (C). Visualisation of biomarkers in

chemical space. Where: logP, partition coefficients [Full list of number codes for biomarkers in panels (B,C) is in Supporting Data 4].

RSDdata for biomarkers used tomonitor exposure to six example
foods/food groups are illustrated in Figure 5 and in all cases,
reproducibility gradually worsened as biomarker concentration

dropped. Median concentrations of the same biomarkers were
measured in FMV urine taken from 95 free-living participants
from Study 1. For each metabolite the median concentration was
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substantially greater than the level at which RSD approached 20%
(see dotted boxes in Figure 5) and usually an order of magnitude
greater than the LoQ (see Supporting Data 4).

Demonstration of Biomarker Panel Utility
to Examine Eating Behaviour in the MAIN
Study
The utility of the biomarker panel to characterise eating
habits within populations was explored by measuring the
concentrations of 54 BFIs in FMV urine samples obtained on
days following consumption of three distinctive meal plans (see
text box in Figure 6) from 15 individuals in the Newcastle MAIN
food intervention study (Study 2). The data were subjected
to PCA which showed distinctive clustering of urine samples
by Menu Day (colour coded) in relation to the zero position
in PC1 and PC2 (indicated by dotted red grid lines in the
scores plot shown in Figure 6A). Menu Day 1 and Menu
Day 2 samples separated strongly in PC1, whereas Menu Day
3 samples clustered away from samples representative of the
other 2 Menu Days in the PC2 dimension. Biomarkers that
are strongly explanatory of differences in the composition of
urines collected the morning after individual Menus Days are
shown in Figure 6B. Examination of the 4 sectors delineated
by the zero grid lines of the loadings plot revealed a strong
association between specific biomarkers and particular foods
consumed on each menu day. For example, TMAO (60) was
strongly associated with cod fish fingers consumed on Menu Day
2, 3-Methyl histidine (3) was linked to chicken consumption on
Menu Day 1 and carnosine (15) was indicative of exposure to a
100% beef burger on Menu Day 3. 1- and 3-Methyl-xanthine (4
and 7) and Epicatechin(–) (28; a marker for general polyphenol-
rich foods) detected exposure to cocoa products on Menu Day
1, whilst Acesulphame-K (8) was associated with exposure to a
diet soft drink on the same day. Sulphoraphane derivatives (18
and 19; D,L-Sulphoraphane L-cysteine and D,L-Sulphoraphane-
N-acetyl-L-cysteine) were highly explanatory of exposure to
coleslaw (containing cabbage) onMenuDay 3, whilst trigonelline
(53) and N-(2-Furoyl)glycine (39; a strongly heated food marker)
reflected exposure to coffee on the same day. Tartrate (51) and the
calystegines (12 and 13; A3 and B2/B1) contributed strongly to the
clustering of urine samples from Menu Days 2 and 3 away from
Menu Day 1 samples when grape products and potato products
were not consumed. The example box plots (colour coded by
Menu day) in Figure 6C demonstrate a clear increase in the
concentration in urine of the selected biomarkers the day after
the consumption of a specific food.

An important feature of any biomarker strategy designed to
monitor habitual diet in both individuals and populations is
the ability to add in new biomarkers as they are discovered
and validated. RF can be used to assess the stringency of
sample classification based on modelling output measures such
as accuracy, AUC, and margins (76). Figure 7 shows a MDS of
proximity scores extracted from a RF classification model of the
same 15 individuals consuming three unique menus, and panels
of 38 dietary biomarkers used in 2018 (Figure 7A) and extended
to 54 biomarkers in 2020 (Figure 7B). In both models, sample

clustering by Menu Day is very similar and modelling output
measures are still excellent, despite the challenge of measuring
many more biomarkers in each MRM experiment in the more
complex panel utilising 54 biomarkers.

DISCUSSION

More than a decade of intensive research to discover putative
BFIs has yielded a wealth of information highlighting specific
metabolites that appear in urine following consumption
of individual foods/food groups. A large number of such
metabolites have great potential as biomarker leads for particular
foods/food groups when validated in isolation (49). However,
their deployment in any cost-effective strategy aimed at
comprehensive monitoring of habitual diet imposes a substantial
number of further challenges that require both definition
and investigation (1, 22). Preliminary investigation of the
performance of any specific biomarker in the context of a
complex biomarker panel requires urine samples from complex
food intervention studies designed specifically to emulate
habitual eating patterns. The MAIN Study at Newcastle was
designed with this specific objective in mind (1, 2, 22). By
validating biomarkers in urine samples from studies researching
eating behaviour in free-living populations (62, 67) it is
anticipated that BFI technology will mature rapidly over the next
few years.

It is particularly important to consider carefully urine
sampling approaches when deploying BFI technology to help
monitor diet and to adopt a methodology that is appropriate
for the study objectives (see Table 1). Twenty-four hour urine
samples, which include the FMV after the study day, provide
an ideal type of sample to assess food intake on a single day
with the caveat that their collection imposes considerable burden
on study participants. To assess habitual diet using BFI data
would demand the collection 24 h urine samples onmultiple days
which can have a substantial influence on the acceptability of
the study requirements and compliance by participants, as well
as impacting greatly on study logistics and overall costs (1, 62,
67). Consequently, spot urine samples are becoming the urine
samples of choice for studying BFIs of a single food/food group
when compared with 24 h collections [e.g., (89, 98)] because
their collection has little impact on normal daily activities of
study participants.

Nutrikinetic studies of potential BFIs have shown that diet-
derived metabolites from individual foods reach peak levels in
urine at different times post-prandially (49). Thus, choosing an
appropriately-timed spot urine sample is clearly problematical
when considering the effective deployment of a comprehensive
biomarker panel covering the whole of diet. Our recent studies
have shown that spot urine samples are generally adequate
substitutes for 24 h urine samples for measurement of BFIs (22,
62); particularly post-evening meal (i.e., just before bed time)
and FMV urines were collected with a high degree of success
(22). In the present paper, we describe a strategy to select urinary
biomarkers for inclusion in a comprehensive and extendable
panel to monitor habitual dietary exposure that focuses on the
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FIGURE 5 | Relationship between relative standard deviation (RSD), biomarker concentration in calibration standard mixtures, and median concentration in First

Morning Void (FMV) urines from Study 1. RSD data of biomarkers used to monitor exposure to six example foods/food groups when measured at nine concentration

levels over a 6-month period. The concentration range within which the median concentration of the same biomarkers was measured in FMV urine taken from 95

free-living participants are highlighted by dotted boxes.

use of FMV urine samples. From an analytical perspective,
sampling FMV urines after a substantial overnight sleep period
allows sufficient time to elapse for any gut microbiome and
liver P450 bio-transformations of targeted metabolites to be
completed, thus extending the availability of characteristic
biomarkers and increasing their concentrations in the collected
urine. It has been shown previously that the distributions of
biomarker concentrations are comparable between post-dinner
spot samples, overnight cumulative samples, and 24 h urines
(62). We demonstrated recently (53) that more than 50 different
potential BFIs were detectable in FMV urine the day after the
consumption of targeted foods. In the present study, we show
that for many, but not all, BFIs there is a relatively linear
correlation between concentration in 24 h and FMV urine and
suggest that only those with an R2 approaching 0.2 may be
suitable for accurate quantification when using a comprehensive
biomarker panel to monitor habitual diet. Although this is
clearly a limitation for accurate quantification of food intake
it is very likely that the presence in FMV urine of BFIs with
lower correlation coefficients will still provide a useful qualitative
indication of recent exposure to their target foods.

Our recent collaborations have highlighted the importance of
understanding metabolic biotypes (metabotypes) in populations
that may impact on nutritional status (41, 45, 99). As many
dietary exposure biomarkers are derived from food chemicals
that are metabolised and/or biotransformed before excretion,
it is possible that chemical “signatures” reflective of common

metabotype groupings in any population can be visualised using
a biomarker panel. Differential metabolism of any particular BFI
by metabotype sub-groups in any population would provide an
additional limitation on its utility for quantitative assessment
of dietary intake. The hydration levels of study participants
can vary considerably and has to be adjusted for in any BFI
deployment strategy. The use of 24 h urine samples for biomarker
quantification demands the accurate measurement of the total
volume of urine produced during any 24 h period and then the
concentration and extraction of a specific aliquot before analysis
in order to calculate the overall daily excretion rate.

Logistics, the analytical and computational skills required,
and costs will also impact on the wider acceptance and adoption
of dietary exposure biomarker technology by the nutrition
research community. In the methodology we describe, urine
processing is limited to a simple dilution with ultra-pure water
as QQQ instruments operating in MRM mode are extremely
sensitive and thus there is a need to collect only small volumes
of urine for analysis (e.g., 0.5–3ml). With this objective in
mind, we have shown that spot samples can be collected in
the home with high collection compliance using vacuum tube
technology (67). Importantly, urine samples collected by this
method are compositionally stable at room temperature for
several days without preservatives (67). This feature of vacuum
tube collection methodology allows transport by domestic
mail without dry ice offering the opportunity to scale up
dietary exposure studies in community settings. A commercial
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FIGURE 6 | Biomarker panel to characterise eating behaviour on individual Menu Days in Study 2. (A) Principal Components Analysis (PCA) scores plot of biomarker

panel measurements in First Morning Void (FMV) urine of 15 individuals across three Menu Days in Study 2. (B) PCA variable loadings plot showing the variance

contributions of biomarkers on each Menu Day (Full list of number codes for biomarkers in panel B is in Supporting Data 4). (C) Boxplots illustrating the

concentration in FMV urine of top ranked biomarkers discriminating Menu Days following Random Forest classification. Text box provide details of meals consumed

on each Menu Day. Where: Biomarker 3,3-Methyl histidine; Biomarker 7,7-Methyl xanthine; Biomarker 19, D,L-Sulphoraphane-N-acetyl-L-cysteine; Biomarker 22,

DHBA-3-O-sulphate; Biomarker 50, Tartarate; Biomarker 53, Trimethylamine-N-oxide.
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FIGURE 7 | Demonstration that biomarker panel can be extended without any loss of classification power. Multi-dimensional scaling (MDS) of Random Forest

proximity extracted from a classification model of 15 individuals consuming three unique menus in Study 2. (A) MDS using a panel of 38 biomarkers of food intake

(BFIs) which was extended to 54 BFIs and (B) 2 years later.

product for spot urine collection (Supporting data 6) is
now on the market (https://www.co-vertec.co.uk/) and is
currently under evaluation in several clinical trials interested in
monitoring vulnerable populations in community environments
to study malnutrition (https://www.hra.nhs.uk/planning-
and-improving-research/application-summaries/research-
summaries/stream-feasibility-study/), impact of homelessness
on diet (100) and evaluating the eating behaviours in pre-diabetic
individuals (https://waru.org.uk/cms/waru_news/targeting-pre-
diabetes-through-primary-care/).

Targeted profiling of urine using high resolution hybrid
quadrupole/ion trap technology, coupled with RP C18 UHPLC,
can capture information about the relative concentrations
of a substantial number of metabolites in a sample when
combined with urine concentration by solid phase extraction
methodology [e.g., (101)]. However, sample processing can
add significant time and cost to any analytical process and
in our experience differential metabolite recovery from ion
exchange cartridges can add a significant degree of uncertainty
and variance in metabolite measurement. In the present study,
we have described a fully quantitative approach using QQQ-
MS/MS to measure biomarker abundance. This methodology
uses complex mixtures of chemicals standards for quantitation
and utilises two HPLC columns solutions to provide optimal
resolution of a structurally diverse range of chemicals using short
chromatography runs.

As outlined in Table 1 the utility of any biomarker panel
will depend on the study objectives. The biomarker panel
described in the present study was optimised specifically to
investigate eating behaviour in free-living populations and was
targeted towards frequently consumed foods of high public
health importance in the UK (2). One limitation of the
present study is that only relatively small populations have
been used in these initial validation studies and in future BFI
technology will need to be tested rigorously in multiple larger
populations. We have shown that the biomarker panel can be
extended incrementally as new biomarker leads are evaluated
and current evidence suggests that it should be straightforward
to adapt our strategy to develop biomarker panels that provide
comprehensive coverage of foods consumed frequently in other

populations. Combined with existing bespoke software for
data extraction, it is expected that the development of high
throughput, automated biomarker measurement procedures to
assess dietary intake is within scope in the near future. In
addition, the routine generation of quantitative BFI data will
offer further opportunities to develop novel “healthy eating
indices” to summarise and “score” eating habits for use in
personalised nutrition applications (26, 45). In conclusion,
we believe that the integration of information from BFI
technology and dietary self-reporting tools, combined with
a deeper understanding of nutritional metabolic biotypes in
populations, will help to provide more robust understanding
of the complex interactions between dietary behaviour and
human health.
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