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Type 1 diabetes (T1D) appears most frequently in childhood, with an alarming increasing

incidence in the last decades. Although the genetic predisposition is a major risk factor,

it cannot solely explain the complex etiology of T1D which is still not fully understood.

In this paper, we reviewed the most recent findings on the role of early nutrition and the

involvement of the gut microbiota in the etiopathogenesis of T1D. The main conclusions

that are withdrawn from the current literature regarding alleviating the risk of developing

T1D through nutrition are the encouragement of long-term breast-feeding for at least

the first 6 months of life and the avoidance of early complementary foods and gluten

introduction (before 4 months of age) as well as cow milk introduction before 12 months

of life. These detrimental feeding habits create a gut microbiota dysbiotic state that can

contribute to the onset of T1D in infancy. Finally, we discussed the possibility to introduce

probiotics, prebiotics and post-biotics in the prevention of T1D.
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INTRODUCTION

Diabetes is a serious issue tackled globally. It’s considered one of the top 10 causes of death in
adults. According to the International Diabetes Federation Atlas, in 2019, the number of people
with diabetes was ∼463 million (1). Children represent 5–15% of total diabetic patients (2). Type
1 diabetes (T1D) is an autoimmune disease resulting from the destruction of insulin-producing
β-cells in the pancreas which is promoted by T-cells (3), producing autoantibodies. Although the
disease can occur at any age, T1D develops mostly in youth as 85% of all cases worldwide are
diagnosed in individuals under 20 years of age (4). Results from EURODIAB study held in 22
European countries showed that T1D incidence rate in children under 14 years old increased by
3.4% annually from 1989 to 2013 (5). A similar trend is reported by the Centers for Disease Control
and Development (CDC) in the United States describing increasing incidence of T1D by 1.9% per
year between 2002 and 2015 in children younger than 20 years old (6).

The etiology of T1D is complex and not fully understood; the genetic susceptibility along with
environmental triggers can contribute to the development of the disease (7). Genetics play a crucial
role in acquiring T1D as supported by familial inheritance studies; however, the inheritance pattern
is complex and unclear (8). The risk of developing T1D is enhanced in individuals with multiple
first-degree relatives affected by the disease (9). Besides, T1D is more common in males than in
females (10), and children of fathers with T1D are more likely to get the disease than those who
have mothers with T1D (11). However, among all children with genetic risk to develop diabetes,
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only a 5% of them develop the disease (12). The potential role of
environmental factors is suggested by many facts: the increasing
incidence of T1D in industrialized countries and in young
children (13, 14); the low concordance among homozygotic
twins (15); and the evidence that moving from a low incidence
to a high incidence region increases the risk of the disease
(16). Environmental factors that could trigger T1D progression
in children are numerous: viral infections (8, 17, 18), obesity
(19, 20), lack of exercise, puberty, rapid longitudinal growth,
psychological stress (19), diet and particularly high glycemic
index diets (21), vitamin D deficiency and low diversity of gut
microbiome (8, 19).

Currently, there is no clear evidence of the impact of
nutritional and environmental factors in the development of
autoimmunity and T1D. Understanding their pathogenetic role
could be a crucial strategy for the prevention of the disease in
early infancy. In this review we will discuss the most recent
findings on the role of early nutrition and the involvement of the
gut microbiota in the etiopathogenesis of T1D.

EARLY NUTRITION AND ITS ROLE IN T1D

Recent studies show that β-cells autoimmunity develops in the
first years of life; indeed, in most cases autoantibodies can be
detected by 2 years of age (14). This led researchers to look for
environmental factors that act early in life, and special attention
has been directed toward nutritional factors (22).

Many retrospective and prospective studies have been
conducted to define the role of dietary factors in the development
of T1D; however, results are still controversial. The inconsistency
of these results might also reflect the influence of genetic
background on the individual susceptibility to external factors.
Moreover, most of these studies focused on adult diet, whereas
recent researches highlighted the role of infant feeding practices
and early nutrition in the development of T1D (23). Hereafter,
we will review and discuss the available evidence about the role of
breastfeeding and the introduction of complementary and single
foods, such as cow milk and gluten, in the onset of T1D.

Breastfeeding
Breastfeeding has several beneficial effects on maternal and
child health (24), and many studies were performed to assess
its potential impact on T1D ending in controversial results.
Data from two large population-based cohorts of a total of
155,392 Danish and Norwegian children revealed that the
risk of T1D doubled in those who were not breastfed. No
significant difference was observed upon comparing the duration
of breastfeeding (25). However, data from a meta-analysis of 43
studies, including 9,874 patients with T1D, showed that exclusive
breastfeeding for >2 weeks is associated with a reduction in
the risk of diabetes by 15% while a prolonged duration (>3
months) resulted in a weaker association. No association was
found for non-exclusive breast-feeding independently from the
duration (26). Similarly, conflicting results were obtained from
previous prospective cohort studies assessing the link between
breastfeeding and beta cells autoimmunity in children with
genetic susceptibility to T1D (27).

There are many hypothetical mechanisms implicated in
the protective effect of human milk. Breastfeeding has a
central role in influencing gut microbiota and immunity. It
contains nutrients and bioactive substances (cytokines, growth
factors, immunomodulators, oligosaccharides) that promote the
maturation of immune system and modulate its functions
(16, 28, 29). A study conducted on diabetes-prone rats showed
that breastfeeding decreases the number of activated lymphocytes
and the production of pro-inflammatory cytokines (IL-4, IL-10,
IFN-γ) while it increases the number of T regulatory cells
(CD4+ CD25+ FoxP3+). In particular, long-term exclusively
breastfed rats have reduced number of CD4+ T cells in the
mesenteric lymph nodes and an expansion of both effector
and natural T regs. Exclusive and prolonged breastfeeding
reduced the risk of autoimmunity by limiting the introduction
of external antigens and by shifting the balance between
tolerogenic cells and autoreactive cells (30, 31). A recent
research on non-obese diabetic mice (NOD-mice) showed that
a 4-weeks supplementation with human milk oligosaccharides
(HMOS) leads to a significant reduction in T1D incidence
(29). Furthermore, human milk bacteriome (HBM) could play
a role in immunoregulation through competitive exclusion of
pathogenic bacteria and active production of antimicrobial and
metabolic molecules (32). In-vitro studies demonstrated that
HBM-derived Lactobacilli have anti-bacterial activity against
Staphylococcus aureus in vitro, and it also inhibits adhesion
of Salmonella enterica in infected mice (33). HBM inhibits
anaerobic and facultative bacteria by producing acids and
therefore lowering gut pH (34). HBM-derived Lactobacilli
strains have immunomodulatory activity in vitro by modulating
immune cell function, cytokines and chemokines. This effect
was not observed with probiotic bacteria not derived from
human milk (35). In addition, breast milk contains insulin that
has a protective effect against autoimmunity as was proved in
rats by driving the maturation of gut epithelium as well as
in humans by downregulating production of IgG antibodies
to bovine insulin (16). A case–control analysis of fatty acids
serum concentration in infants with genetic susceptibility to T1D,
within the Finnish Dietary Intervention Trial for the Prevention
of Type 1 Diabetes (FINDIA), at the age of 3 and 6 months
revealed that docosahexaenoic acid (DHA) levels were inversely
associated to islet autoimmunity, while higher n-6:n-3 fatty acids
ratio increased the risk. Moreover, the quantity of breast milk
consumed per day was inversely associated with primary insulin
autoimmunity, while the quantity of cow milk consumed per day
was directly associated. Even if further studies are warranted to
clarify the independent role of fatty acids in the development of
T1D, omega-3 long chain polyunsaturated fatty acids consumed
during breastfeeding might provide protection against type 1
diabetes-associated autoimmunity (36).

Complementary Foods
According to World Health Organization (WHO)
recommendations for infant feeding, exclusive breast-feeding
represents the ideal nutritional strategy during the first 6 months
of life for its beneficial effects on maternal and infant health (37).
After 6 months of age, human milk alone is not sufficient to
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meet the energetic and nutritional needs of the baby. From this
age on, the introduction of complementary foods is required to
ensure the adequate infant growth and development. Any food
can be offered by gradually increasing consistency and variety;
however, sugars, salt and sugar-sweetened beverages should be
avoided (38).

Evidence from systematic reviews revealed that
complementary feeding initiation before 3–4 months of age
is associated with higher risk of allergic conditions, while
gluten introduction before 4 months can be linked to the
development of celiac disease and type 1 diabetes mellitus
(39). The Type 1 Diabetes Prediction and Prevention Project
(DIPP), a prospective cohort study, aimed to evaluate the effect
of complementary foods introduction on β cell autoimmunity.
More than 3,000 newborn babies with genetic susceptibility
to T1D were periodically screened for β cell autoimmunity
seroconversion until 12 months of age. The study revealed
that early introduction (between 3 and 4 months) of fruit,
berries and roots was associated with a higher risk to develop
β cells autoimmunity (27). Nevertheless, there is no consisting
evidence that delaying the introduction of certain foods has a
beneficial role in preventing T1D. Results are often discordant or
inconclusive, and more data from large randomized controlled
trials are needed.

Cow Milk
According to current recommendations for infant feeding,
cow milk introduction should be avoided before 12 months
of life: early exposure has been linked to higher risk of
developing allergy and to occult gastrointestinal blood (38).
In the past years, different authors studied cow milk as
potential trigger for T1D with discordant results, finding both
an increased (40) or a decreased risk (41) of developing beta
cells autoimmunity and T1D. Conversely, the TRIGR study
on genetically susceptible children, found no protective effect
of extensively hydrolyzed casein-based formula compared to
a standard formula in the development of islet autoimmunity
(42). To similar conclusions ended the prospective cohort study
The Environmental Determinants of Diabetes in the Young
(TEDDY study) which collected information on feeding pattern
of 8,506 children with increased genetic risk for type 1 diabetes
and founded no significant association with islet autoimmunity
in infants fed with extensively hydrolysed compared to non-
hydrolysed formula feeding (43). Cow milk proteins are known
to have an intrinsic allergenicity particularly beta-lactoglobulin,
bovine serum albumin, α-casein, κ-casein (44). Oral tolerance to
cowmilk antigens could be impaired in individuals with a genetic
susceptibility to T1D, and this could trigger autoimmunity
(45, 46). Bovine albumin and insulin have also been considered
as possible triggers for autoimmunity given their similarity to
endogenous pancreatic antigens (21, 30, 47). Immunological
cross-reactivity between bovine proteins and beta cells’ antigens
could represent another hypothetical mechanism explaining the
association between cow milk and T1D (48). Early exposure to
cow’s milk has been associated with increased gut permeability
and altered barrier function, which predispose to exogenous
antigen reactivity and immunologic dysregulation (49). Recent

observations suggest that altered intestinal permeability could
be a key step in the pathogenesis of the subclinical enteropathy
underlying type 1 diabetes (50). It’s worth to note the different
position of fermented milk and dairy products known for the
beneficial effect on human health (51). A recent systematic review
on the effect of yogurt and fermented milk in infants and toddlers
(0–24 months) confirmed the health benefits also in this age
class, reporting positive effects on acute diarrhea as well as atopic
dermatitis and food sensitivity. The same review reported the
benefic effect on the gut microbiota that we discussed more
in detail in Section Complementary Feeding-Induced Microbial
Changes and Immune Response (52). No direct data have
been found of the effect of the yogurt and fermented milk in
T1D children.

Gluten and Cereals
In the last decade, studies on rodents revealed a potential
diabetogenic effect of gluten by inducing an immune
dysregulation (53). According to the study of Funda et al.,
a gluten-free diet in NOD mice prevented the progression of
T1D (54). Gluten proteins resist to enzymatic digestion and
represent a constant immunologic trigger that can lead to
immune dysregulation. This mechanism could explain gluten
role in the similar pathogenic pathways of celiac disease and T1D
(55). The Diabetes Autoimmunity Study in the Young (DAISY)
examined dietary pattern of 1,835 infants at increased risk for
diabetes (development of at least two specific autoantibodies
in succession): islet autoimmunity and diabetes progression
were not influenced by gluten cumulative amount in the first
years of life, while introduction of gluten before 4 months was
significantly associated with a higher risk of developing T1D
(56). Nevertheless, previous prospective observational cohort
studies could not find any link between the time of gluten
introduction and islet autoimmunity (55). Accordingly, a small
randomized controlled trial found no significant beneficial effect
from delaying gluten introduction from 6 to 12 months (57).

The most recent opinion of experts regarding the appropriate
age for introducing complementary foods concluded that gluten
introduction before or after 6months of age has neither beneficial
nor negative effect on the risk of developing T1D. Gluten can be
introduced between 4 and 12 months, but earlier introduction
(before 4 months) is associated with the development of celiac
disease in children at higher risk (56, 58). The prospective birth
cohort FINDIA followed 6,081 infants with genetic susceptibility
to type 1 diabetes up to 6 years and revealed that higher intake
of oats, gluten-containing cereals and gluten (estimated trough
3 days food record) is associated with an increased risk of islet
cell autoimmunity (59). The exposure to gluten was analyzed in
a cohort od 6,605 children from the TEDDY study and the data
showed that higher gluten intake during the first 5 years if life was
associated with an increased risk for celiac disease (60). Further
studies are needed to clarify the pathogenetic role of gluten and
whether a gluten-free diet could be an essential component of
medical nutrition therapy to prevent the onset and progression
of T1D.
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Micronutrients
Increasing attention has been recently focused on the potential
role of micronutrients intake during early life in etiology of T1D.
As clearly outlined in a recent review, vitamin D and E and zinc
are the most studied factors (22).

Vitamin D is commonly known for regulating of
calcium and phosphate metabolism but also exerts several
immunomodulatory effects on innate and adaptive immune
system. Association between low levels of serum 25-
hydroxyvitamin D have been linked to increased risk of
many immune-related disorders, including T1D (61). Recently,
Norris et al. described that higher serum levels of 25(OH)
vitamin D are associated with lower risk of islet autoimmunity
in children at increased genetic risk for T1D (62). However, the
results of follow-up studies on children showed no significant
association between vitamin D status at a pre-diagnostic stage
and T1D progression later in life (63–65). Inconsistent results
came from studies on maternal vitamin D supplementation
for prevention of T1D in offspring (66). Moreover, a recent
systematic review of randomized controlled trials suggests that
vitamin D supplementation in both children and adults plays
a role in the control of disease activity by reducing insulin
requirement and stimulating C-peptide levels (67) but there
is still no evidence of long-term effects of vitamin D early
supplementation on T1D risk.

The action of vitamin A to control immune response has led to
a growing hypothesis of potential role of vitamin A in T1D as an
autoimmune disease. VitaminA regulates the adaptive and innate
immune responses by different mechanisms for example, by its
ability to transform Th1 to Th2 lymphocytes. A recent review
reported that both vitaminA and all-trans retinoic acid effectively
induced immune tolerance that inhibited islet inflammation
and progression to diabetes (68). Further studies are needed to
evaluate the vitamin A modulating effect on the development
of T1D.

Recent research has been focused on the potential role of
oxidative stress induced by free radicals in the pathogenesis of
T1D. Based on this assumption, micronutrients with antioxidant
properties as vitamin C (ascorbic acid), zinc (Zn) and selenium
(Se) may play a role in the pathogenesis and exacerbation
of this disease. Mattila et al. examined plasma ascorbic acid
concentration in children at high genetic risk of T1D (within the
TEDDY study), initially at 6 and 12 months and then annually up
to 6 years of age. The Authors found that higher plasma ascorbic
acid levels were associated with decreased islet autoimmunity
risk, but not with T1D risk progression (69).

Results from animal studies revealed that selenium-
dependent proteins (seleno-proteins) with redox properties
are involved in glucose metabolism, given that insulin release
and signaling are influenced by the cellular redox potential
(70). Significantly lower levels of Se and Zn were found
in children affected by T1D and glycosylated hemoglobin
(HbA1c) levels appeared inversely correlated with Se and
Zn levels (71). Moreover, Zn concentration in drinking
and stream water has been inversely associated to T1D
(72, 73).

THE POTENTIAL ROLE OF THE GUT
MICROBIOTA AS AN ENVIRONMENTAL
TRIGGER FOR T1D

Consistent evidence from literature shows that the gut
microbiota can influence the innate and adaptive immune
system (74, 75), and many studies have highlighted the long-
term impact of shaping the microbiota during early life on the
immunity (76–80). The term “Microbiota” was first used in
2001 by Lederberg and McCray (81) and has been described
as the “assemblage of microorganisms present in a defined
environment” (82). The human body hosts up to 100 trillion
symbiotic bacteria, primarily in the intestinal track, defined as
the gut microbiota (83).

As for many other autoimmune diseases, the gut microbiota
has been implicated in T1D pathogenesis through multiple
mechanisms that involve the intestinal inflammation (49, 84),
the epithelial barrier integrity (85, 86) and the modulation
of tolerance to dietary antigens (87). The role of the gut
microbiota in T1D pathogenesis was first discovered in animal
studies on the Myd88−/− NOD mice that developed T1D under
germ-free conditions in contrast to pathogen-free conditions
(88). Antibiotic treatment exhibited a prompting response for
T1D development in the non-obese diabetic (NOD) mice
by selectively eliminating specific bacterial species (89, 90).
Interestingly, the antibiotic treatment had a more pronounced
influence at the early age (from birth to day 28) compared to
the mice that were given antibiotics starting 8 weeks of age
until the disease’s onset (91). Similarly, probiotics can alter the
microbial profile by enhancing favorable bacterial species. In
NOD mice (92–94) and bio-breeding diabetes-prone (BB-DP)
rats (95), probiotics administration prevented T1D development.
Dysbiosis, is hypothesized to be the underlying factor behind
the triggered autoimmune response. A recent cohort study
confirmed a microbial dysbiosis state in children who had
multiple islet autoantibodies as well as children who were
recently diagnosed with T1D; the reported dysbiosis was linked to
permeability in the epithelial membrane (96). Themicrobiome in
the duodenal mucosa showed a disease-specific manner in T1D
patients, and it was associated with the expression of T1D-related
genes (97). Consistently, taxonomic and functional differences
in the gut microbiota were observed in T1D cases compared to
healthy controls and to non-autoimmune diabetes cases such as
Maturity Onset of Diabetes of the Young (MODY) (98).

Human studies conducted on diabetic patients have
demonstrated the presence of dysbiosis that is associated with
increased intestinal permeability and mucosal inflammation
contributing to the development of islet autoimmunity (28, 99).
In children with T1D, the microbiota is characterized by
a low bacterial diversity, reduced microbiota stability, an
increased amount of Bacteroides, Clostridium and Veillonella
and a reduced number of Firmicutes (100, 101). Interestingly,
Bacteroides dorei was found enriched in T1D-prone children
before they developed autoimmunity (102). Moreover, at the
onset of autoimmunity of ß-cells, the species Bacteroides ovatus
was found 16 times more abundant in T1D cases than in the
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control group; several other Bacteroides species were enriched as
well (103). In T1D patients a decreased abundance of Prevotella,
Bifidobacteria, and Lactobacilluswas reported; this led to reduced
production of butyrate and lactate that have anti-inflammatory
and immunomodulator functions and can improve the integrity
of the mucosal barrier (104). The TEDDY study concluded
that the microbiome in healthy controls resulted in a higher
expression of genes related to fermentation and biosynthesis of
short-chain fatty acids, that have a protective role against the
development of autoimmunity. The healthy subjects had higher
levels of Lactobacillus rhamnosus in their stool samples (105).

The mechanism of how the immune response is translocated
from the intestine to the pancreas is still elusive. However, it
is known that the mesenteric lymph nodes, which are part of
the gut-associated lymphatic tissues (GALT), are linked to the
pancreatic lymph nodes (106). Moreover, evidence shows that
the intestinal immune response can be resembled in the pancreas
by allowing T cells imprinted with homing receptors, that have
adhesion molecules expressed in the pancreas, to infiltrate the
pancreas and attack the islets cells (107).

EARLY NUTRITION AS MODULATOR OF
MICROBIOTA IN RELATION TO T1D

Results from animal and human studies confirm that diet is
one of the primary modulators of the gut microbial community
also in T1D (108). A high carbohydrate (CHO) diet has been
associated with a higher abundance of Prevotella (109) which
was found reduced in T1D subjects (110, 111). Diets rich in fat
increase the abundance of Bacteroides genus (109, 112), that was
found enriched in children prone to develop T1D (102) as well at
the onset of ß-cells autoimmunity in T1D cases (103).

The role of the gut microbiota significantly lies in the effect
of the metabolites that they produce such as vitamins (113,
114), short-chain fatty acids (SCFA) (115–117), indole derivatives
(118, 119) and organic acids (120). Consistently, high fiber
diets yielding a high amount of butyrate and acetate, separately
and combined, contributed to improved immune regulation
and protection against T1D through different mechanisms. In
diabetes-prone rats, although introducing butyrate during early
life did not prevent T1D, it seemed to be associated with delayed
T1D progression by reducing gut leaking compared to the control
group (121). In humans, achieving a causal relationship among
diet, SCFAs and T1D development is still challenging. Here
below, we discuss the potential mechanism of early nutrition
as modulator of microbiota in triggering T1D that remains not
well elucidated.

Breast-Feeding Effect on Microbiota of
T1D Infants
In the past, the newborn babies were thought to have a sterile
gut at birth; however, recent evidence suggests that the fetus is
exposed to colonization of intrauterine bacteria (122). Several
studies confirmed presence of bacteria in meconium samples
in the 65–75% of infants with full-term delivery (123, 124).
The variability of newborn microbiota is influenced by many

factors such as the mode of delivery, vaginal delivery or cesarean
section (122), and breastfeeding. The similarity between mother’s
milk bacteria and infant gut flora confirmed that microbiota
can be transferred through breastfeeding. The diversity and the
composition of infants’ microbiota seem to be influenced by the
amount and the duration of breastfeeding (125). The microbiota
of infants exclusively breastfed for 6 months is enriched with
Bifidobacterium longum subsp. Infantis, which is involved in
child’s immunity (126, 127). It belongs to lactic acid bacteria,
Bifidobacterium and Lactobacillus,which can break down human
milk oligosaccharides (128).

Former studies reported that the bacterial colonization was
significantly different between breastmilk-fed and formula-fed
babies (129–131). For instance, Lactobacillus johnsonii/L.gasseri,
L. paracasei/L. casei, and Bifidobacterium longum are prevalent
in exclusively breastfed infants whereas Clostridium difficile,
Granulicatella adiacens, Citrobacter spp., Enterobacter cloacae,
Bilophila wadsworthia are the most common bacterial species in
the 4-months formula fed infants (132). Moreover, E. coli was
found to be significantly lower in the gut microbiota of breastfed
infants compared to formula-fed infants (133). Interestingly,
Davis et al. described changes in the gut microbial composition
upon shifting from breastfeeding to cow milk after 1 year and
a half of life: C. difficile almost disappeared with a relative
increase in Bacteroides spp., Blautia spp., Parabacteroides spp.,
Coprococcus spp., Ruminococcus spp., and Oscillospira spp. and
decrease of Bifidobacterium spp., Lactobacillus spp., Escherichia
spp., and Clostridium spp. (134).

Breast feeding importance in modulating the gut microbiota
in relation to T1D has been tackled in many studies with
controversial results (8, 23). In breastfed infants, an abundance
of Bifidobacterium was observed, which has been inversely
correlated with T1D risk by a number of cross-sectional
and longitudinal human studies (126, 128). Lactobacillus and
Bifidobacterium species in breast milk have a protective role
in preserving the gut integrity and stimulating the growth of
Firmicutes bacteria phylum, that is found deficient in people with
T1D (103, 135). The TEDDY study demonstrated a temporal
development of the gut microbiome in T1D infants that can
be divided in three phases: a developmental phase (months 3–
14), a transitional phase (months 15–30), and a stable phase
(months 31–46). Breastfeeding, either exclusive or partial, was
associated with the microbiome temporal structure, with higher
levels of Bifidobacterium species (B. breve and B. bifidum) at the
development phase, and the cessation of breast milk resulted in
faster maturation of the gut microbiome, marked by the phylum
Firmicutes (136).

Furthermore, breast milk can be a source of insulin
hormone, that enhances the gut microbiota diversity through
the stimulation of the Gammaproteobacteria (137), which is
crucial for infant gut microbiota maturation, especially during
the first weeks of life (138). Leptin is another hormone
contained in breast milk which is involved in beneficial bacterial
metabolic pathways, such as stimulating microbial diversity and
reducing bacterial proteases linked to intestinal permeability
and inflammation (137). In addition, breast milk contains
non-digestible oligosaccharides which promote the growth of
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beneficial bacteria, leading to a balanced microbiota (139). The
beneficial effect of a breast milk rich in omega-3 fatty acids
observed in the FINDIA study (36) can be explained with an
involvement of the gut microbiota, as demonstrated in an animal
model of type 2 diabetes. Animals fed with flaxseed oil, rich
in omega-3, showed improved glycemic indexes, blood lipids,
inflammatory cytokines and reduced levels of Firmicutes and
Blautia, as well as an increase in the levels of Bacteroidetes
and Alistipes. SCFA were also improved in the supplemented
animals (140). No data are available on effect of omega-3 on gut
microbiota of T1D patients.

Formula milk composition was also investigated in a
multicenter double-blind clinical trial (from the FINDIA study),
where 1,113 infants with HLA-conferred susceptibility to T1D
were sorted into 3 groups and given respectively cow milk
formula, hydrolyzed formula or bovine insulin-free formula
during the first 6 months of life. The primary finding was that
infant fed with insulin-free formula had a lower incidence of
beta-cell autoimmunity by 3 years of age (141). In addition,
an increase in Bacteroides and a decrease in Bifidobacterium
amount were found in formula-fed infants who shifted to
seroconversion (142).

Complementary Feeding-Induced
Microbial Changes and Immune Response
It is demonstrated that the diet composition (i.e., amount of
fat, sugars, calories, vegetarian diet, etc.) affects the microbiota
composition and the intestinal function (104). More importantly,
nutrition in early life plays a critical role in the development of
microbiota and the mucosal immune system starting from the
breastfeeding habits to the introduction of solid food.

Early introduction of cow milk has been associated with
increased intestinal permeability and gut inflammation (14).
Children with T1D express higher levels of circulating antibodies
against cow milk proteins (β-lactoglobulin, insulin, albumin);
this could be the effect of a dysregulated immune response
or an increased intestinal permeability (14). On another side,
fermented milk products, i.e., yogurt, are frequently introduced
at early stage as complementary food. Consumption of yogurt,
kefir and other fermented dairy products are known for
the health benefits mainly because of their probiotic effects
on the gut flora (51). A systematic review summarized the
beneficial findings of multiple studies performed in pediatric
populations (0–24 months of age), discussed above, and it
confirmed the hypothesis of the gut microbiota involvement
to explain the improved diseases outcomes, particularly due
to an increase in the Bifidobacteria genera (52). Animal
studies have been performed to test the effect of fermented
diary product on diabetes and cardiovascular biomarkers. A
recent experimental obesity model showed improved insulin
sensitivity and cardiometabolic risk factors in obese mice
fed with Streptococcus-fermented milk or Greek-style yogurt,
modulating the gut microbiota composition and the intestinal
immune response (143). A second animal study on diabetic
rats fed with yogurt fermented with Lactobacillus casei showed
improved blood glucose and insulin level and reduced expression

of genes involved in the liver gluconeogenesis, together with
a shift in the microbiota composition and SCFA abundance
(144). A human study testing the effect of fermented dairy on
the Trimethylamine-N-oxide (TMAO) metabolites of the gut
microbiota associated to the cardiovascular risk, demonstrated
that healthy young men consuming yogurt or acidified milk
for 2 weeks showed decreased levels of TMAO and different
microbiome composition (145). To the best of our knowledge,
no studies have been performed on the effect of fermented dairy
in T1D subjects or animal models.

Complementary feeding is associated with a modification
in the gut microbiota composition, influenced by proteins and
fibers from solid foods. Non-digestible carbohydrates contained
in solid foods provide substrates for the development of specific
microbes (146). During the complementary feeding period,
there is a reduction in Bifidobacteriaceae, Lactobacillaceae,
Enterobacteriaceae, and Enterococcaceae and an increase of
Clostridium coccoides, Lachnospiraceae, Ruminococcaceae,
Bacteroidaceae, and Sutterellaceae (147, 148). However,
Bifidobacteria, together with Bacteroides, remain among the
prevalent species found in children’s microbiota even after
the introduction of complementary feeding (146). A recent
study showed that the early introduction (<3 months) of
complementary food is associated with an altered microbial
composition with a higher diversity and an accelerated
maturation pattern (149). Increased fecal excretion of butyrate
and other SCFAs is associated with both local and systemic
effects. It is a sign of a reduced microbial diversity and an
increased gut barrier permeability, and it is associated with
systemic inflammation, hyperglycemia, dyslipidemia and an
increased risk of developing obesity and hypertension (150).
Moreover, the lower level of Bifidobacterium, which plays a
key role in digesting oligosaccharides and producing vitamins
and SCFAs, may also contribute to inflammation. Instead, the
greater abundance of Akkermansia Muciniphila promotes an
early growth of adult associated bacteria, impairing the growth
of taxa typical of the developmental phase. Finally, the early
introduction of food results in an increased concentration of
fecal butyrate (149).

Gluten and Cereals Modulate the Gut
Microbiota in T1D
A diet rich in fat and sugar like the “western diet” leads to
an increase in Clostridium innocuum, Eubacterium dolichum,
Catenibacterium mitsuokai, and Enterococcus spp. and a
reduction in Bacteroides spp. (151). A carbohydrate-reduced
diet or a low-caloric diet can revert the trend as observed in
mice (152). The western diet also reduces the growth of other
species such as Clostridium coccoides, Lactobacillus spp., and
Bifidobacteria spp.; however, a diet rich in complex carbohydrates
enhances the reduction of Mycobacterium avium subspecies and
Enterobacteriaceae and the increase in Bifidobacteria spp. (153).
Protein-rich diets can stimulate the activity of bacterial enzymes
(β-glucuronidase, azoreductase, and nitroreductase); this leads to
the production of toxic metabolites that promote inflammation
(154). On the contrary, the vegetarian diet, which is rich in
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fibers, stimulates the short chain fatty acids’ production, causing
a decrease in the intestinal pH and preventing the overgrowth of
pathogenic bacteria (104, 155, 156).

The link between dietary gluten and T1D is gaining the
interest of researchers. The concomitant presence of T1D
and celiac diseases is not rare (8% of coexistence) and it is
challenging the clinicians with complex immunological and
clinical management. At the date, the insulin and a gluten-free
diet (GFD) are still the only recommended treatments for T1D
and the celiac disease, respectively. However, these treatments
pose certain challenges to both the clinicians and the patients,
as GFD has a high glycemic index that affects the glycemic
control. Moreover, intermittent gluten intake by these patients
due to non-compliance with GFD stimulates the autoreactive
immune cells which in turn result in an augmented immune
response (157). A randomized controlled trial adopting GFD for
1 year on T1D and subclinical celiac disease patients, showed a
decrease number of hypoglycemic episodes and a better glycemic
control (158). Conversely, an observational case-control study
on T1D and GFD-treated celiac patients compared with T1D
alone showed that a long-term GFD does not affect the glycemic
control, but it has a different impact on diabetes complications
(159). The evidence is still unclear regarding the dietary approach
for T1D and celiac patients, yet selected gluten free food high
in fibers can better control the glycemia (160). Further studies
and clinical trials are needed to test different types of GFD and
gluten free foods. Moreover, other factors need to be included in
the discussion such as the gut microbiota.

Concerning the role of gluten on the gut microbiota, no
specific study has been conducted. However, in the latest
years many studies have been published on the role of
microbiome in the development of celiac disease (CD), resulting
in heterogeneous data. Children affected by celiac disease have
microbial dysbiosis, and this is thought to contribute to the
pathogenesis of CD. The function of Th17 cells, that play a role in
the inflammatory response against gliadin peptides, is influenced
by the microbiome (161). Children with CD has a microbiome
characterized by a higher amount of Proteobacteria, Bacteroides,
Actinobacteria, Neisseria spp., and Haemophilus spp. and a
lower abundance of Lactobacillus and Bifidobacterium (162).
The gluten-free diet can restore the microbiome composition
only partially and the reasons are obscure; a possible hypothesis
could be the influence of genetic background on the microbial
composition (163). Moreover, a gluten free diet in healthy
subjects has been associated with a decrease of “healthy
bacteria” (Bifidobacterium, Lactobacillus, Roseburia) and an
increase of potentially unhealthy bacteria (Enterobacteriaceae,
Clostridiaceae) (164). Therefore, based on the available data, it is
not possible to draw any conclusion about the role of gluten on
the T1D associated to gut microbiota changes.

The use of Bifidobacterium strains as probiotics showed
a reduction in the gut inflammation and the production of
proinflammatory cytokines which consequently improve the gut
barrier’s function. It was also demonstrated that probiotics can
reduce the toxicity of gliadin by degrading the proinflammatory
gluten peptides and reducing their immunogenicity (165).

Micronutrients Intake and the Effect on the
Gut Microbiota in T1D
Micronutrients are able to interfere with the function of
the microbiota (166). No studies investigated the effect of
micronutrients deficiency on the gut microbiome of T1D
patients. However, many evidences are available of the role of
micronutrients in affecting microbiota in early life and in similar
disease setting.

Vitamin D in particular plays a pivotal role in intestinal
integrity, intestinal immunity andmicrobiomemodulation in the
autoimmune diseases, assuming a common mechanism of action
affecting the immune response and the gut permeability (167).
Microbial composition has been found affected by the season
and directly correlated with vitamin D levels in Inflammatory
Bowel Disease (IBD) patients (168). No data were found directly
measuring the effect of vitamin D on gut microbiota of T1D
patients, but we can speculate on similar mechanisms because of
the frequent comorbidity of T1D and IBD (169).

Vitamin A and its receptor are involved in the response to
pathogens modulating the response of IL-18 and IFN-γ (170)
and the gut microbiota composition (166), but no studies have
been performed to investigate the effect of vitamin A on the
infant microbiota of T1D patients. One study tested the effect of
vitamin A supplementation within 48 h of life on healthy group
of newborns and measured the effect on the gut microbiota at 6–
15 weeks of life and later at 2 years of age. The authors found a
difference between gender where the boys were more responsive
to the treatment with increased abundance of the Bifidobacterium
compared to the girls in early infancy, and instead girls at 2
years of life showed an increased level of Akkermansia (171),
concluding on a potential contribution of vitamin A in the
development of a heathy gut microflora.

SunGold kiwifruit, containing high levels of vitamin C, was
tested on prediabetic people and the daily consumption over
12 weeks, even if it improved metabolic and anthropometric
parameters, slightly impacted on the gut microbiota (172). An
animal model was used to investigate the effect of antioxidant
blends supplementation, including vitamin C, in piglets at
the weaning age. The supplementation was able to restore
the unbalanced antioxidant capacity, the intestinal levels of
Lactobacillus and Bifidobacterium and to reduce free radicals and
levels of Escherichia coli caused by the early weaning stress (173).

Vitamin E and iron supplementation in a group of iron-
deficient infants and toddlers showed an increase of Roseburia
compared to subjects supplemented with iron only (174). The
effect of iron supplementation on the gut microbiota is not clear.
Many studies have been performed with discrepant results due
to different iron doses, chemical formula and administration
routes (166).

Data on minerals and gut microbiota are also limited. Animal
studies showed that the selenium supplementation increases the
microbial diversity, and that the many species are selenium-
dependent competing with the host on the selenium availability
(175) and contributing to the metabolism of the seleno-proteins
(176). Zinc and copper supplementation in pigs at the weaning
age showed also decrease levels of Streptococcus, Enterobacter and
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TABLE 1 | Summary of the dietary factors affecting gut microbiota and their direct or indirect role in T1D.

Dietary factors Type of study Findings References

Breast milk Human studies (T1D infants in the first 3 years

of life)

Increased abundance of Bifidobacterium

inversely correlated with T1D risk

(126)

Human study (T1D infants 3–46 months of age) Increased abundance of Bifidobacterium (136)

Human studies (infants at 2 weeks of life) Insulin and leptin hormones in the breast milk

increased microbial diversity and abundance of

Gammaproteobacteria

(137)

Formula milk Human clinical trial (infants 0–6 months of age

at risk of T1D)

Insulin-free Formula milk Decreased AI (141)

Human clinical trials (infants 0-8 months of age

at risk of T1D)

Positive association of AI with Bacteroides and

negative association with Roseburia

(142)

Cow milk Human studies (T1D children) Early introduction of cow milk association with

increased gut permeability

(14)

Fermented milk products Human study (infants 0–24 months of age) Increase in the Bifidobacterium (52)

Obese animal model Improved insulin sensitivity, increased

abundance of Streptococcus, improved

immune response

(143)

Diabetic animal model Improved glycemic indexes and shift in

microbiota and SCFA composition

(144)

Complementary food Human study (infants 0–12 months of age) Early introduction (<3 months of life) was

associated with accelerated maturation and

higher diversity of the gut microbiota and

increased levels of SCFA

(149)

Gluten and Cereals Randomized clinical trial on CD–T1D adult

patients

GFD improved glycemic control (158)

Observation case-control study on CD–T1D

adult patients

GFD affects diabetes complications (159)

Observational case-control study on CD

pediatric patients (5 years old)

GFD can partially restore microbiota (163)

Clinical trial on healthy adults GFD decreases Bifidobacterium and

Lactobacillus, levels of SCFA and affect the

immune response

(164)

omega-3 PUFA T2M animal model Improved glycemic indexes, inflammatory

status, increased levels of Bacteroides and

SCFA, reduced levels of Firmicutes

(140)

Vitamin D Observational study on IBD adult patients Seasons affect levels of Vitamin D and

microbiome composition

(168)

Vitamin A Interventional study on healthy newborns

(effects measured at 6–15 weeks and 2 years

of age)

Increased levels of Bifidobacterium at 6–15

weeks old boys; increased levels of Akkermasia

in 2 years old girls

(171)

Vitamin C Interventional study on prediabetic adult

population

Improved metabolic parameters and slightly

affected microbiota

(172)

Antioxidants supplementation on animal model

at weaning age

Increased levels of Bifidobacterium and

Lactobacillus, reduced level of E. Coli,

improved antioxidant capacity

(173)

Vitamins C and E Interventional study on T1D adolescents

(mean age 12 years old)

Improved endothelial function (179)

Vitamin E and iron Interventional study on iron-deficient infants

and toddlers

Increased levels of Roseburia (174)

Zinc and Copper Supplementation on animal model at weaning

age

Decreased levels od Streptococcus,

Enterobacter, Escherichia, increased levels of

Lachnospira and Roseburia

(177)

Probiotics T1D animal model Lactobacillus johnsonii N6.2 induced a delay in

T1D onset, improved intestinal epithelial

function, reduced the inflammation, modulated

microbiota

(95)

(Continued)
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TABLE 1 | Continued

Dietary factors Type of study Findings References

T1D animal model Lactobacillae-enriched probiotic VSL#3

decreased the risk of T1D, reduced amount of

Bacteroides, increased amounts of

Lactobacillae, Clostridia and Rikenellaceae,

improved immune response and intestinal

epithelial function

(93)

Interventional studies on T1D infants

(<27 days of life)

Probiotic administration reduced the risk of islet

AI

(180)

Interventional studies on T1D infants

(0–6 months of life)

No correlation of probiotic mixture

administration with the risk of islet AI and

diabetes progression

(181)

Prebiotics T1D animal model β-glucan supplementaion reduced levels of

Firmicutes increased Bacteroidetes,

Verrucomicrobia and

polysaccharide-fermenting bacteria, improved

carbohydrates metabolism, improvef immune

function, reduced insulitis degree

(184)

Interventional studies on T1D children

(8–17 years old)

Study on going. Expected to improve intestinal

permeability and glycemic control

(185)

Post-biotics T1D animal model Protective role of SCFA, reduced AI, improved

immune function

(186)

AI, auto immunity; SCFA, short chain fatty acids; CD, celiac disease; GFD, Gluten-free diet.

Escherichia, and increased levels of Lachnospira and Roseburia
(177). No studies are available on the effect of minerals on the gut
microbiota of children affected by T1D, however there are clear
evidences of micronutrients deficiencies in T1D adult population
(178) and of the beneficial effect of antioxidant vitamins C and
E on endothelial function in T1D cohort (179). Further studies
are needed to investigate the effect of micronutrients deficiencies
and potential supplementation during transition to solid foods to
reduce the risk of T1D and its complications.

PROBIOTICS/PREBIOTICS/POSTBIOTICS
PROTECTIVE EFFECT AGAINST
AUTOIMMUNITY

Given the influence of altered microbiota in the development
of the disease, an increasing number of studies evaluated the
chance to modulate microbiota through dietary interventions
or probiotic supplementation, in an attempt to induce a
more tolerogenic environment and reduce the risk of islet
autoimmunity and diabetes (16, 100).

Results from experimental studies and clinical trials
support that the modulation of gut microbiota by probiotics
administration may be protective toward T1D through several
mechanisms: probiotics can increase the expression of junction
and adhesion proteins, promote the barrier’s function, reduce
the oxidative stress and modulate the inflammatory response
which lead to increased number of T-regulatory cells and
anti-inflammatory cytokines (99). NOD mice supplemented
with probiotics have a lower degree of insulitis (93). Another
study, conducted in the USA on diabetic prone rats, showed
that post-weaning administration of Lactobacillus johnsonii

N6.2 reduces or delays the onset of T1D, by influencing the
microbiota, the intestinal proteins and the oxidative stress.
Rats that received probiotics had lower IFNγ, INOs, and
occluding, a higher amount of claudin, COX 2, and an increased
expression of Globet cells. This leads to a reduction in the
inflammation and the oxidative stress and an improvement
in the intestinal barrier integrity. The same effect was not
observed with the supplementation of Lactobacillus reuteri
(95). An Italian study showed that supplementation with
Lactobacillaceae-enriched probiotic VSL#3, given alone or along
with retinoic acid (RA), decreases the risk of developing diabetes
in non-obese diabetic (NOD) mice (93). The microbiome
profile of NOD mice supplemented with VLS#3 is characterized
by a reduced amount of Bacteroides and increased quantity
of Lactobacillaceae, Clostridia (promoting FoxP3+ Treg cell
differentiation in the intestinal mucosa) and Rikenellaceae.
In addition, probiotic VLS#3 reduces the expression of
proinflammatory cytokine IL-1β and increases the production
of pro-tolerogenic and immunomodulatory factors, such as
indoleamine 2,3-dioxygenase (IDO) and IL- 33. Moreover,
VLS#3 stimulates the differentiation of tolerogenic dendritic
cells (CD103+) and limits the expansion and the differentiation
of inflammatory T-cells (Th1 and Th17) in the intestinal tract,
the spleen and the pancreatic lymph nodes. The combination
of VLS#3 with RA induces proliferation of T-regulatory cells
in the intestinal mucosa. VLS3# also increases the expression
of zonulin-1 in the intestinal mucosa, promoting the integrity
of the intestinal barrier (93). The TEDDY study showed that
early probiotic administration (<27 days of life) is associated
with a reduced risk of islet autoimmunity compared to a
later or any supplementation (180). By contrast, a Finnish
study could not find any correlation between probiotic
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FIGURE 1 | The figure shows the role of the early nutrition in improving a healthy gut microbiota and counteracting gut dysbiosis and autoimmune response as

potential mechanism involved the pathogenesis of T1D (Created using Biorender.com).

supplementation and the development of islet autoimmunity
by 5 years, not even with T1D progression by 13 years
(181). However, results from clinical trials depend on specific
bacterial strains used as probiotic and cannot be applied to
other species.

Prebiotics are non-digestible carbohydrates that can have a
role in modulating the immune system and the gut microbiome,
contributing to the development of autoimmune diseases such
as T1D (182). Studies conducted on animals and humans
showed a positive effect of prebiotics’ supplementation on the
microbiome and the immune system that can reduce intestinal
permeability and inflammation, reducing the risk to develop T1D
(183). A study conducted on NOD mice showed that long-term
oral supplementation of low-dose β-glucan derived from yeast
modifies the microbiota composition by reducing the amount
of Firmicutes and increasing the abundance of Bacteroidetes
phylum, Verrucomicrobia phylum and the polysaccharide-
fermenting bacteria. The β-glucan supplementation increases
also some metabolic pathways, such as the carbohydrates

metabolism and the glycan biosynthesis and metabolism. The
use of this prebiotic has also an immunomodulatory effect,
with an increased number of T-regulatory cells in the intestinal
wall, favoring the development of immunotolerance, which
reduces the degree of insulitis and the subsequent risk of
developing T1D (184). A pilot study on T1D pediatric patients
using administration of oligofructose-enriched inulin are on-
going, expecting to improve the glycemic control modulating
the gut microbiota and the intestinal permeability (185). The
immunomodulatory effect of prebiotics could lead to consider
the possibility of introducing their supplementation in infants in
order to reduce the risk of developing T1D.

A different strategy to prevent the development of
autoimmunity and T1D can be the supplementation of
microbial products (also known as post-biotics), such as SCFA,
in order to modulate the microbiota and the immune system.
The SCFAs (acetate, propionate and butyrate) have indeed an
anti-inflammatory and immunomodulatory function. They
promote the T-regulatory cells function, modulate cytokines’
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production, increase the expression of anti-microbial peptides,
reduce oxidative stress and regulate the epithelial barrier function
by increasing the expression of tight junction and the production
of mucin (28). A study conducted on NOD mice confirmed the
protective role of a combined acetate- and butyrate-yielding diet
against diabetogenic pathways by decreasing the autoimmune
response and boosting the function of regulatory T cells (186).

The probiotic, prebiotic and post-biotic therapeutic approach
looks extremely interesting, but it still requires more clinical trials
to confirm the efficacy and specificity of the treatment in T1D
patients of different age groups, with different environment, diets
and genetic backgrounds.

CONCLUSIONS

The T1D is a complex disorder with an unclear etiopathogenesis
and an increased incidence in the last decades that presumes
the contribution of multiple factors: genetics, age, environment,
and diet. In this review, we focused our attention on the role
of early diet as a modular of the gut microbiota and, indirectly,
of the immune system (Table 1). We hypothesize a mechanism
where long-term breastfeeding and avoiding early (<4 months)
introduction of solid foods, associated with a diet rich in
micronutrients, contribute to developing healthy gut microbiota
that boosts the maturation of the immune system and hence
reduce the risk of T1D (Figure 1). The usage of probiotics,
prebiotics and post-biotics in the prevention of T1D also gained
great interest, yet it still requires further studies that will define
the precise microbial profile of different types of patients (age,

ethnicity, environment, diet, etc.) and test the specific treatment
of each type of T1D microbial profile.

The key messages from this paper are that promoting long-
term breast-feeding during the first 6 months of life, avoiding
early complementary foods and gluten introduction (before 4
months of age), and avoiding cow milk introduction before
12 months of life, may reduce the risk of developing T1D.
The gut microbiota is affected by early nutrition, and the gut
microbiota dysbiosis in infancy may contribute to the onset of
T1D. Therefore, there is a need to plan randomized clinical
trials testing the role of probiotics, prebiotics and post-biotics in
T1D prevention.
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