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Microbiota-targeted therapies for hypercholesterolemia get more and more attention and

are recognized as an effective strategy for preventing and treating cardiovascular disease.

The experiment was conducted to investigate the cholesterol-lowering mechanism of

Lactobacillus delbrueckii in a pig model. Twelve barrows (38.70± 5.33 kg) were randomly

allocated to two groups and fed corn–soybean meal diets with either 0% (Con) or 0.1%

Lactobacillus delbrueckii (Con+ LD) for 28 days. L. delbrueckii–fed pigs had lower serum

contents of total cholesterol (TC), total bile acids (TBAs), and triglyceride, but higher fecal

TC and TBA excretion. L. delbrueckii treatment increased ileal Lactobacillus abundance

and bile acid (BA) deconjugation and affected serum and hepatic BA composition. Dietary

L. delbrueckii downregulated the gene expression of ileal apical sodium-dependent bile

acid transporter (ASBT ) and ileal bile acid binding protein (IBABP), and hepatic farnesoid

X receptor (FXR), fibroblast growth factor (FGF19), and small heterodimer partner

(SHP), but upregulated hepatic high-density lipoprotein receptor (HDLR), low-density

lipoprotein receptor (LDLR), sterol regulatory element binding protein-2 (SREBP-2), and

cholesterol-7α hydroxylase (CYP7A1) expression. Our results provided in vivo evidence

that L. delbrueckii promote ileal BA deconjugation with subsequent fecal TC and TBA

extraction by modifying ileal microbiota composition and induce hepatic BA neosynthesis

via regulating gut–liver FXR–FGF19 axis.
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INTRODUCTION

Cholesterol is an indispensable fundamental building block for
all cell membranes, but long-term high level of blood cholesterol
may induce hypercholesterolemia-associated cardiovascular
diseases (CVDs), a major contributing factor of adult deaths
worldwide (1, 2). It is reported that a 1% reduction in blood
cholesterol translates to a 2% decrease in heart disease risk
(3, 4). Blood cholesterol level is determined by dietary fat and
cholesterol intake and the body’s cholesterol biosynthesis and
excretion (5). Endogenous synthetic cholesterol accounts for
nearly 70%, whereas the remaining 30% amount is mainly
derived from animal products (6). Pork products are rich in
cholesterol ranging from 57 mg/100 g in loin to 116 mg/100 g in
dewlap (7). In China, pork is the most popular animal meat, and
its production and consumption contribute about 50% of global
pork output ranking first in the world (8). Therefore, clarification
of underlying mechanisms of cholesterol metabolism in pigs and
development of low cholesterol pork products has a promising
potential of scientific researches and consumer markets.

Cholesterol is a precursor to bile acid (BA) biosynthesis.
Approximately 30% to 40% of cholesterol is converted into
primary BAs in liver via two pathways, with CYP7A1 as the
rate-limiting enzyme in the classic pathway and CYP7B1 as an
important enzyme in the alternative pathway (9, 10). Synthesized
primary BAs are conjugated either with taurine or glycine and
temporarily stored in the gallbladder. Upon cholecystokinin
stimulation, often as a result of a meal, BAs are released into the
duodenum via the bile duct. About 95% of BAs are reabsorbed
all along the intestine, especially in the distal ileum, via passive
diffusion and carrier-mediated transports entering enterohepatic
cycle to maintain the BA pool homeostasis (11, 12). In each cycle,
nearly 4% BAs are excreted along with feces, which is offset by the
hepatic de novo synthesis of BAs from cholesterol (12). Obviously,
the conversion of cholesterol to the BAs is the major route for
cholesterol excretion, and the increased fecal BA excretion favors
the conversion from cholesterol to BAs and reduces its release
into the systemic circulation (13).

The hypocholesterolemic effect of Lactobacillus or its related
products are reported extensively in animals and clinical

researches (4, 12, 14, 15). Several proposed potential cholesterol-
lowering mechanisms of Lactobacillus products chiefly cover
cholesterol assimilation, cholesterol conversion to coprostanol,
BSH activity, production of short fatty acids, and regulation
of key enzyme in cholesterol metabolism (3, 12). However, the
majority of explanations were based on in vitro test or high-fat or
cholesterol animal models, and there was no adequate supporting
evidence from normal subjects to validate these assumptions.
Interestingly, our prior work confirmed that dietary Lactobacillus
delbrueckii [1.01 × 109 colony-forming units (CFU)/g] lowered
serum TC and triglyceride (TG) and increased the fecal TC and
total BA (TBA) excretion of fatten pigs in commercial condition;

unfortunately, we did not explore the further mechanism (16).
Given that the close relationship between cholesterol and BA

metabolism, we supposed that L. delbrueckii with BSH activity
affected the enterohepatic circulation of BA, which contributed to
the reduced serum TC in a pig model. Therefore, we investigated

the BSH activity of L. delbrueckii through plate assay and gene
identification and also evaluated the effects of L. delbrueckii on
intestinal microbiota, BA and cholesterol metabolism, and tissue
lipids of growing–finishing pigs.

MATERIALS AND METHODS

All protocols and procedures involved in the experiment
were approved by the Animal Ethics Committee of Hunan
Agricultural University (Changsha, China). L. delbrueckii was
provided by the microbiology functional laboratory of the
College of Animal Science and Technology in the Hunan
Agricultural University (Changsha, China). The strain was
activated and sent to the PERFLY-BIO (Changsha, China) for
large-scale production, and the viable count of final products
reached 5× 1011 CFU/g.

Animals and Experimental Design
Twelve Landrace× Yorkshire crossbred barrows with an average
initial body weight of 38.70 ± 5.33 kg were randomly allocated
to two groups, and each group had six pigs individually housed
in the metabolism cage. Pigs were fed with corn–soybean
meal diets (basal diets, Con) or basal diets containing 0.1% L.
delbrueckii preparation (5 × 1010 CFU/g, Con + LD) for 28
days. The basal diets (Table 1) were formulated to meet the
nutritional requirement of 50- to 75-kg pigs recommended by
the NRC 2012 (17). All pigs were fed twice each day (8:00
A.M. and 3:00 P.M.) and had free access to water. The body
weight of each pig was weighed at the beginning and end of
the experiment, and the daily feed consumption per pig was
recorded during the experimental period. Fecal samples were
collected, freeze-dried, and stored at −20◦C for total cholesterol
(TC) and TBA detection. On day 29, the jugular vein blood
samples were collected from the fasting pigs before slaughter
using electrical stunning. Serum was obtained, aliquoted, and
stored at−20◦C for lipid analysis and BA profiles quantification.
Digesta (in ileum) and tissues (in ileum, liver, longissimus dorsi,
subcutaneous fat, and leaf lard) were quickly removed, snap-
frozen in the liquid nitrogen, and stored at−80◦C for microbiota
composition, BA quantification, gene mRNA expression, lipid
profile, and enzyme activity measurements.

Qualitative Determination of BSH Activity
Qualitative BSH activity of L. delbrueckiiwasmeasured according
to the method introduced by Jayashree et al. (18) and Guo et al.
(19) with a minor modification. Briefly, five sterile paper discs
(8-mm diameter) were placed on an MRS agar plate containing
2 g/L taurodeoxycholate and glycodeoxycholate, 2 g/L sodium
thioglycolate and 0.37 g/L CaCl2, and 100 µL L. delbrueckii
solution (1 g bacterial power was diluted with 9mL of sterile
water to get final concentrations of 1.5 × 1010 CFU/mL) were
added to the paper discs immediately. The plates were incubated
at 37◦C for 72 h. The BA precipitates (i.e., opaque granular white
colonies with silvery shine) around the discs were considered as
BSH activity.

Genomic DNA of the L. delbrueckii was extracted using the
TIANamp Stool DNA kit [Tiangen Biotech (Beijing) Co., Ltd,
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TABLE 1 | Diet composition and nutritional levels of basal diets (air-dry basis, %).

Ingredients Contents

Corn 66.76

Wheat middling 4.00

Wheat bran 6.00

Soybean meal (43% crude protein) 18.00

Soybean oil 1.00

L-Lysine 0.24

Premixa 4.00

Total 100.00

Calculated nutritional levels

Digestible energy (DE, kcal/kg) 3,413.79

Crude protein 14.82

Standardized ileal digestible lysine (SID Lys) 0.85

Calcium 0.60

Total phosphorus 0.55

aThe premix provided the following per kg of diet:VA2 512 IU, VD3 1 200 IU, VE 34 IU,

VK3 1.5mg, VB12 17.6 µg, lactoflavin 2.0.5mg, pantothenic acid 6.8mg, niacin 20.3mg,

choline chloride 351, Mn 10mg, Fe 50mg, Zn 50mg, Cu 20mg, I 0.3mg, Se 0.3 mg.

China]. According to the report by Jayashree et al. (18), two
primers (Table 2) for BSH1 and BSH2 were used to amplify the
corresponding target gene, and the polymerase chain reaction
(PCR) product sizes were 927 and 978 bp, respectively. The PCR
reactions were carried out in 25-µL reaction system in a TaKaRa
PCR Thermal Cycler. The PCR conditions were 5min at 94◦C
for the initial denaturation followed by 35 cycles of denaturation
at 94◦C for 30 s, 1min at 52◦C for annealing, 1min at 72◦C for
extension, and 5min at 72◦C for the final extension.

Determination of Serum and Tissue Lipids
Fasting blood of pigs were collected and placed at room
temperature for 30min, and the serum were separated by
centrifugation (3,000 revolutions/min for 10min at 4◦C). Serum
concentrations of TG, glucose (GLU), TBA, TC, high-density
lipoprotein cholesterol (HDL-C), and high-density lipoprotein
cholesterol (LDL-C) were measured by the BS 200 automatic
blood biochemical analyzer (Mindray) with corresponding kits.

The total protein contents (g protein/L) in tissues were
quantified using a BCA protein assay reagent kits (Nanjing
Jiancheng Bioengineering Institute, Nanjing, China). About
100mg of liver, longissimus dorsi, subcutaneous fat, or leaf lard
was homogenized with 1mL of chloroform/methannol solution
(2:1, vol/vol), respectively. The homogenate were centrifuged
at 3,000 revolutions/min for 10min at 4◦C to extract tissue
lipids. The contents of TC (mmol/g · protein), TG (mmol/g ·

protein), and TBA (µmol/g · protein) in the selected tissue were
measured by corresponding commercial kits (Nanjing Jianchen
Bioengineering Institute, Jiangsu, China).

Measurement of Hepatic Enzyme Activity
Using ELISA Kits
Hepatic total protein contents (g protein/L) were measured
as described above, and the concentrations of hepatic 3-
hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR, U/g ·

TABLE 2 | Primers used in the study.

Items Gene Sequence (5′-3′)

BSH gene BSH1 F: GCCACCATGGTAATGTGCACGGCCGTTTCC

R: CGATGGATCCTTAGGGTACTTGCGATAGG

BSH2 F:ACCCATGGGTATGTGCACGAGCATCAACGTCA

R: AAGGATCCGTTCAATTTCACCGGCGCCCAA

BA receptor and

signaling

FXR F: GGTCCTCGTAGAATTCACAA

R: TGAACGGAGAAACATAGCTT

FGF19 AGTACTCGGATGAGGACTGTGCTT

AGAGACGGGCAGATGGTGTTTCTT

SHP F: GCCTACCTGAAAGGGACCAT

R: CAACGGGTGTCAAGCCTTTA

BA transport ASBT F: TACGCGGTATACAGGAAATGGTA

R: TTTGCCTTTTGGAATGATGACT

IBABP F: GTGAACAGCCCCAACTACCACCA

R: TCGTAGCTCACGCCTCCGAC

BA biosynthesis CYP7A1 F: GAAAGAGAGACCACATCTCGG

R: GAATGGTGTTGGCTTGCGAT

CYP27A1 F: ACTGAAGACCGCGATGAAAC

R: CAAAGGCGAATCAGGAAGGG

Cholesterol

biosynthesis and

transport

SREBP-

2

F: GATGGGCAGCAGAGTTCC

R: ACAGCAGCAGGTCACAGGT

HMGR F: ATGGCATGACTCCAGTGGTACGTT

R: GCAAATCTGCTGGTGCTGTCGAAT

HDLR F: CACTATGCCCAGTACGTGCTC

R: CCTGAATGGCCTCCTTATCCTT

LDLR F: TTCTTCACCAACCGCCACGAG

R: CTCAGTGTCCAGAGCGACC

Housekeeping

gene

GAPDH F: ATGGTGAAGGTCGGAGTGAAC

R: CTCGCTCCTGGAAGATGGT

BSH, bile salt hydrolase; FXR, farnesoid X receptor; FGF19, fibroblast growth factor;

SHP, small heterodimer partner; ASBT, apical sodium-dependent bile acid transporter;

IBABP, ileal bile acid binding protein; CYP7A1, Cholesterol-7α hydroxylase; CYP27A1,

cholesterol-27α hydroxylase; SREBP-2, sterol regulatory element binding protein-

2; HMGR, 3-hydroxy-3-methyl glutaryl coenzyme A reductase; HDLR, high-density

lipoprotein receptor; LDLR, low-density lipoprotein receptor.

protein) and cholesterol-7α hydroxylase (CYP7A1, U/g · protein)
were measured following the instruction of corresponding
commercial ELISA Kits (Jiangsu Yutong Biological Technology
Co., Ltd., Jiangsu).

Fecal TC and TBA Excretion
Fecal lipids were extracted as described above for TC analysis.
Fecal TBA was extracted according to the method by De Smet
et al. (5). Briefly, 1 g frozen fecal sample was dissolved in 40mL
methanol. After 4-min sonication and 1-h shock, the mixture was
centrifuged at 10,000 g for 10min to collect the supernatants.
Total TC (mmol/L) and TBA (µmol/L) concentrations in
the supernatants were determined using a commercial kit
purchased from the Nanjing Jianchen Bioengineering Institute.
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At last, fecal TC and TBA contents (mg/g) were obtained by
formula conversion.

BA Profile Analysis
Metabolite Extraction
About 30mg of solid samples (ileal digesta or hepatic tissue) were
homogenized in 100 µL of precooled ultrapure water, vortexed
with 5,000 µL of iced methanol and 10 µL of internal standard
solution (for liquid sample, 100 µL serum was directly vortexed
with 500 µL of iced methanol and 10 µL of internal standard
solution), incubated at −20◦C for 20min for depositing protein,
and centrifuged at 14,000 relative centrifugal force (rcf)/min
for 15min at 4◦C. The supernatants were vacuum dried for
subsequent analysis.

Ultraperformance Liquid Chromatography–Mass

Spectrometry (UPLC-MS) Analysis
BA profiles were analyzed with a Waters ACQUITY UPLC I-
Class coupled with a 5500 QTRAP mass spectrometer with an
ESI source (Waters, Milford, MA). Briefly, the samples above
were resolved in 1:1 (vol/vol) methanol solution and centrifuged
at 14,000 rcf/min for 15min at 4◦C to obtain supernatants.
The supernatants were separated using an ACQUITY UPLC
BEH C18 chromatographic column (1.7µm, 100 × 2.1mm)
(Waters, Milford, MA), and column temperature reached 50◦C.
The injection volume was 2 µL. A mobile phase system included
Solvent A (0.1% FA solution) and Solvent B (methanol), in a
gradient system at a flow rate of 0.3 mL/min. The mobile phase B
was linearly changed as follows: from 60 to 65% (0–6min), 65 to
80% (6–13min), 65 to 80% (6–13min), 80 to 90% (13–13.5min),
and stabilization at 90% (13.5–15min). The mass spectrometer
was used in Multiple Reaction Monitoring function in the ESI-
negative mode to achieve information of tested ion pairs. The
operating parameters were as follows: source temperature 550◦C;
ion source gas1 55 psi; ion source gas1 55 psi; curtain gas 40
psi; and IonSapary voltage floating −4,500V. UPLC-MS raw
data were analyzed using MultiquantTM software (v. 2.1) to
obtain calibration equations and the quantitative concentrations
of each BA.

Ileal Microbiota Analysis
Microbiota composition was analyzed according to our
previous study (20, 21). Briefly, the ileal digesta were collected,
frozen in liquid nitrogen, and stored at −80◦C for further
analysis. Total DNA was extracted and purified from digesta
samples (n = 5 pigs/group) using TIANamp Stool DNA
kit [Tiangen Biotech (Beijing) Co., Ltd, China]. DNA
quality and quantity were evaluated by gel electrophoresis
and a NanoDrop ND-1000 spectrophotometer (Thermo
Fisher Scientific, USA), respectively. Ten acceptable DNA
samples were delivered to Novogene (Beijing) for 16S
rDNA sequencing.

The V3–V4 hypervariable region of the bacterial 16S rDNA
gene was amplified with the barcoded universal primers (341F-
806R). Purified amplicons were sequenced on the Illumina HiSeq
platform (Illumina, USA) according to the standard procedures
in Novogene (Beijing). Sequences with 97% similarity were

assigned to the same operational taxonomic units (OTUs). An
OTU table was further generated to record the abundance of
each OTU in each sample, and a profiling histogram was made
using R software (v. 3.1.1) to represent the relative abundance of
taxonomic groups from phylum to species. A Venn diagram was
generated to visualize the occurrence of shared and unique OTUs
among groups.

Real-Time PCR
Total RNA of ileal or hepatic tissue was isolated and reversed
transcribed to cDNA as previously described (20, 21). The
two-step qRT-PCR reactions were performed in triplicate on
96-well plates using a 7500 Real-time PCR system (Applied
Biosystems, Foster, CA) with the SYBR Premix Ex TaqTM

(TaKaRa Biotechnology (Dalian), China). The primer sequences
(Table 2) of farnesoid X receptor (FXR), fibroblast growth
factor (FGF19), SHP, ASBT, IBABP, CYP7A1, cholesterol-
27α hydroxylase (CYP27A1), sterol regulatory element binding
protein-2 (SREBP-2), HMGR, high-density lipoprotein receptor
(HDLR), low-density lipoprotein receptor (LDLR) and GAPDH
were synthesized by the Sangon Biotech (Shanghai, China).
Target gene expression was calculated by the 2−11t method
relative to GAPDH gene amplification.

Statistical Analysis
All results were expressed as mean ± SD. Statistical analyses,
except for microbiota data, were conducted by the two-tailed
unpaired Student t-test of SPSS 17.0 (SPSS Inc., Chicago, IL,
USA), with individual pig as an experimental unit. The Kruskal
test was used for post hoc comparison of taxonomy. For all tests,
P < 0.05 was considered as significant difference, while 0.05 < P
< 0.10 as a tendency.

RESULTS

Qualitative Identification of BSH Activity
After incubation for 12 h, non-obvious BA precipitates appeared
around the discs in the plate (Figure 1A); however, the opaque
granular white colonies with silvery shine were observed after 72-
h incubation (Figure 1B). PCR amplification of two designated
genes showed that the BSH2 gene was identified, not BSH1, on
the genome sequence of L. delbrueckii (Figure 1C).

Serum Lipid Profiles
Serum TC, TBA, and TG contents in L. delbrueckii–fed pigs
were found to be lower than the pigs in the Con group
(P < 0.05; Figures 2A,C,D). L. delbrueckii treatment tended
to reduce the concentration of serum LDL-C (P = 0.075)
and elevate serum HDL-C (P = 0.093) level (Figure 2A).
No significant changes in serum GLU and HDL-C/LDL-
C contents were observed between two groups (P > 0.05,
Figures 2B,E).

Alterations in BA Profiles of Serum, Ileal
Digesta, and Liver
Compared with the Con group, lower serum levels of CDCA,
HCA, GCA, GCDCA, GHDCA, TUDCA, THDCA, primary
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FIGURE 1 | Identification of bile salt hydrolase (BSH) activity in Lactobacillus delbrueckii. Incubation on MRS plate containing bile salts for 12 h (A) and 72 h (B),

respectively. Amplification of BSH genes in L. delbrueckii (C) and target band sites for BSH1 and BSH2 gene were marked with blue and yellow box, respectively.

BA, secondary BA, unconjugated BA, and total BA were
found in the Con-LD group (P < 0.05, Figure 3A). Dietary
addition of L. delbrueckii increased the ileal concentrations of
CA and unconjugated BA (P = 0.085), but reduced GCDCA
and GLCA (P < 0.05, Figure 3B). Hepatic concentrations of
DCA (P = 0.052), HDCA, TCDCA, TUDCA, THDCA, and
secondary BA (P = 0.094) in L. delbrueckii–fed pigs were
decreased compared to the pigs in the Con group (P < 0.05,
Figure 3C).

Ileal Bacteria Composition
The Venn picture presented 546 shared OTUs between two
groups, and there were 219 and 153 unique OTUs in the Con
and Con + LD group, respectively (Figure 4A). The bacterial
population was dominated by Firmicutes and Proteobacteria,
with minor populations such as Actinobacteria and Bacteroidetes
(Figure 4B). Administration of L. delbrueckii increased the
abundance of Actinobacteria (P = 0.071), Spirochaetes (P =

0.070), and Kiritimatiellaeota (P = 0.029) and reduced the
abundance of Melainabacteria (P = 0.091) and Elusimicrobia
(P = 0.029). Down to the genus level, the higher abundance of
Lactobacillus (P = 0.002) and lower abundance of Clostridiales
(P = 0.031), Ruminococcaceae (P = 0.061), Enterococcus (P =

0.035), Streptococcus (P = 0.052), and Rothia (P = 0.049) were
found (Figure 4C and Supplementary Table 1).

BA and Cholesterol Transport,
Biosynthesis, and Excretion
Administration of L. delbrueckii downregulated the gene
expression of ileal FGF19 (P = 0.089), ASBT, and IBABP and
enhanced fecal TC and TBA excretion (P < 0.05, Figures 5A,B).
Hepatic gene expressions of FXR, FGF19, and SHP were reduced,
but HDLR, LDLR, SREBP-2, and CYP7A1 were increased in the
Con+ LD group (P< 0.05, Figure 5C). Hepatic CYP7A1 activity
tended to be greater in the L. delbrueckii–fed pigs than those in
the Con group (P= 0.062, Figure 5D). No changes were found in
hepatic concentrations of TC, TG, and TBA between two groups
(P > 0.05, Figures 5E,F).

Tissue TG and TC Deposition
The concentrations of TG and TC in the longissimus dorsi,
subcutaneous fat, and leaf lard had no differences between two
groups (P > 0.05, Figure 6).

DISCUSSION

Fluctuation of blood lipids parameters can reflect the body’s
lipid metabolism and health status; chronically high serum TC
and LDL-C levels are strongly associated with the increased
risks of CVD (22, 23). TC and TG are the main components
of blood lipids; lowering their concentrations can prevent
hyperlipemia. Considerable researches have confirmed that
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FIGURE 2 | Effects of Lactobacillus delbrueckii on serum levels of TC, HDL-C, and LDL-C (A); ratio of HDL-C/LDL-C (B); TBA (C); TG (D); and GLU (E) in

growing–finishing pig (*P < 0.05; **P < 0.01).
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FIGURE 3 | Bile acids profile in the serum (A), ileal digesta (B), and liver (C) of growing–finishing pigs (*P < 0.05; **P < 0.01).
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FIGURE 4 | Ileal bacterial composition of growing–finishing pigs. Venn picture showed shared or unique OTUs between two groups (A). Relative abundance of ileal

microbiota at the phylum (B) or genus (C) level.

consumption of Lactobacillus products reduced concentrations
of serum cholesterol and improved lipid profiles (24–26). In the
current study, dietary addition of L. delbrueckii decreased serum
levels of TC, LDL-C, and TG of pigs. Our findings were again
the proof of our previous reports (16) and also offered another
evidence for cholesterol-lowering role of lactic acid bacteria in
normal subject. The hypocholesterolemic effect of L. delbrueckii
might provide a potential dietary manipulation way to prevent
and improve hyperlipidemia.

Probiotics with BSH activity is hypothesized to be an
important character in lowering serum cholesterol, which might
be tightly related to the BSH genes on their genome (1, 4, 12,
22, 27). BSH activity has been characterized in Lactobacillus,
Bifidobacterium, Clostridium, Enterococcus, and Bacteroides (12).
L. delbrueckii tested in this study possessed the BSH2 gene
identified by PCR amplification and exhibited a good BSH
activity on the modified agar plate, demonstrating the strain
was capable of bile salts deconjugation. BSH enzyme or activity
is specific to the microbiota and is not present in eukaryotic
cells, which is regarded as a crucial probiotic marker that help
organisms resist toxic bile salt environment in the digestive
tract and also an important colonization factor for gut bacteria
(12, 28). Lactobacillus with BSH activity contribute to their
survival and colonization in the gastrointestinal tract and exert
a beneficial effect on host by regulating cholesterol and BA

enterohepatic circulation (1, 4, 15, 29). Our results suggest that
L. delbrueckii might own a good ability of intestinal survival and
colonization and play a key role in regulating cholesterol and
BA metabolism.

Intestinal microbiota and BAmetabolism are mutually linked,
enteric bacterial enzymes shape BA pool size and composition
by mediating deconjugation and 7α-dehydroxylation of primary
BAs (27). Liver cells synthesize primary BAs from cholesterol,
mainly consisting of CA and CDCA in human, CA, α-/β-MCA
in rodent and CA, HCA, and CDCA in pigs, and these BAs
were conjugated with either glycine (G-BAs) or taurine (T-BAs)
via their N-acyl amidate to increased solubility before secretion
into intestine (30). Bile salt deconjugation is carried out by
BSH, expressed in Lactobacillus, Bifidobacterium, Clostridium,
and Bacteroides (9, 31). The genus Lactobacillus and its BSH
activity could result in deconjugation of conjugated BAs (32).
The conjugated BAs are very soluble, and most of them are
reabsorbed in the ileum into enterohepatic circulation. In our
study, L. delbrueckii administration obviously increased the
ileal Lactobacillus abundance, indicating that ileal bacterial BA
deconjugation might enhance. Interestingly, we found ileal
concentrations of GCDCA, GLCA, and unconjugated BAs were
decreased in the Con + LD group. Bacterial deconjugation of T-
BA or G-BA can reduce serum cholesterol levels via amplifying
the formation of new bile salts needed to replace those that
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FIGURE 5 | Bile acid and cholesterol transport, biosynthesis, and excretion of growing–finishing pigs. Bile acid receptors and transporters along the ileum (A). Fecal

TC and TBA excretion (B). Bile acid metabolism-related genes in the liver (C). Hepatic enzyme activity related to cholesterol and bile acid synthesis (D). Hepatic TC

and TG (E) and TBA (F) concentrations (*P < 0.05; **P < 0.01).
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FIGURE 6 | Concentrations of TG and TC in the selected tissues of growing–finishing pigs.

have escaped enterohepatic cycle (26). Therefore, the potential
mechanism of cholesterol reduction in L. delbrueckii might
be the conversion of bile salt to free BA by improving ileal
Lactobacillus abundance with BSH activity and interfered with
BAs enterohepatic circulation.

In the intestine, bile salts play an important role in emulsifying
lipids. Ileum is confirmed as the major site for BA reabsorption,
and the highest expression of BA transporters and FGF19
was observed along the intestinal segment (10). Intestinal BA
transporters play a vital role on the BA reabsorption process.
ASBT and IBABP are important BA transporters engaging in BA
active or passive transport. ASBT imports luminal BAs to the
enterocytes where the BAs bind to IBABP and are transferred to
the basement surface and then enter into portal vein with the
help of MRP3 and OSTα/OSTβ transporters in the basolateral
membrane (10). In the present study, ileal expression of ASBT
and IBABP in L. delbrueckii–treated pigs was markedly down-
regulated, indicating that less ileal BAs were reabsorbed after L.
delbrueckii consumption.

The liver is the center of the synthesis and metabolism of
cholesterol and BAs. Cholesterol de novo synthesis begins with
acetyl-CoA, and HMGR is the rate-limiting enzyme responsible
for catalyzing the conversion of HMG-CoA into mevalonic acid.
Our results showed that administration of L. delbrueckii did not
affect HMGR activity and mRNA expression, but upregulated
hepatic SREBP2, LDLR, and HDLR expression. SREBP2 is a key
nuclear transcription factor for regulating LDLR and HMGR
target genes in charge of extrahepatic cholesterol uptake and
endogenous cholesterol biosynthesis (33). Hepatic HDLR and

LDLR are responsible for combining bloodHDL-C and LDL-C to
remove cholesterol, respectively. HDL-C carries cholesterol from
peripheral tissues to liver; conversely, LDL-C transports hepatic
cholesterol to peripheral tissues. Our observations implied L.
delbrueckii treatment had no influence on hepatic cholesterol
synthesis, but it might change its metabolism via hepatic
clearance. The conversion of cholesterol to BAs is the main
way to eliminate hepatic cholesterol, and CYP7A1 is the rate-
limiting enzymes in the pathway (4). In the present study,
hepatic CYP7A1 expression was increased, and CYP7A1 activity
also tended to rise in the Con + LD group, indicating that
dietary L. delbrueckii might lower cholesterol via enhancing
BAs biosynthesis.

Hepatic BA synthesis is negatively regulated by FXR signaling
and FGF19 signaling (34). Ileal FXR activation contributes to
FGF19 production, and then FGF19 translocates to the liver
via hepatic portal vein where it binds to the FGFR4/β-Klotho
complex and inhibits CYP7A1 expression (9, 15). CYP7A1 is
the rate-limiting enzyme in classic pathway for hepatic BA
synthesis. Our results showed that ileal FGF19 expression and
hepatic FXR and FGF19 expression were downregulated, but
CYP7A1 expression and CYP7A1 activity were increased by L.
delbrueckii treatment, suggesting that this strain increased the
conversion of cholesterol to BAs in the liver via suppressing FXR–
FGF19 signaling and improving CYP7A1 activity. Additionally,
reduction of hepatic FXR and SHP expression could also explain
the increased CYP7A1 activity, because hepatic FXR stimulation
resulted in SHP expression upregulation to inhabit CYP7A1 and
CYP8B1 activity (3).
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FIGURE 7 | Potential cholesterol-lowering mechanisms of Lactobacillus delbrueckii–fed pigs. Ileal microbiota modification (mainly increased ileal Lactobacillus

abundance) with L. delbrueckii administration led to bile salts deconjugation by BSH activity and facilitated fecal TBA and TC excretion. Meanwhile, less deconjugated

BAs are reabsorbed into enterohepatic circulation and downregulate BA transporter expression (ASBT and IBABP) and promote BA synthesis via increasing the

conversion of cholesterol to BA with the help of CYP7A1, a rate-limiting enzyme, in the liver. Additionally, ileal BA deconjugation by microbiota alteration affects BA

signaling (FXR–FGF19 axis) to regulated BA synthesis. Enhancement of BA synthesis using circulating cholesterol (blood transport) to restore the bile acid pool.

The homeostasis of BAs pool is maintained by enterohepatic
cycle. Quantitative determination of BAs profiles via UPLC-MS
analysis could reflect the enterohepatic circulation of BAs (35,
36). In our study, we observed great changes in BA composition
of serum, ileal digesta, and liver, which might ascribe ileal
microbiota modification with L. delbrueckii. Deconjugation of
ileal bile salts causes less BAs to enter portal vein and return to
liver, and unabsorbed BAs flow into hindgut and are excreted
along with feces. Fecal BA excretion is almost equal to the hepatic
synthesized BAs under the normal physiological condition (4,
37). Enhancement of BA synthesis using circulating cholesterol
to restore the BA pool is an important manner for reduction of
serum cholesterol (38, 39). In our study, dietary L. delbrueckii
accelerated fecal TC and TBA output of pigs, which was closely
associated to the decrease in serum TC and LDL-C. Reduction of
serum cholesterol might lower cholesterol deposition in tissues;
however, we found no alterations in TG and TC contents in
longissimus dorsi, subcutaneous fat, and leaf lard, which implied

that short-term L. delbrueckii treatment could not change tissue
cholesterol deposition of growing–finishing pigs.

CONCLUSIONS

Ileal microbiota modification induced by L. delbrueckii enhances
BA deconjugation and fecal excretion in growing–finishing
pigs. These events involved changes in ileal BA reabsorption,
repression of the enterohepatic FXR–FGF19 axis, and increased
hepatic BA neosynthesis (Figure 7).
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