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Over 650 million adults are obese (body mass index ≥ 30 kg/m2) worldwide. Obesity

is commonly associated with several comorbidities, including cardiovascular disease

and type II diabetes. However, compiled estimates suggest that from 5 to 40% of

obese individuals do not experience metabolic or cardiovascular complications. The

existence of the metabolically unhealthy obese (MUO) and the metabolically healthy

obese (MHO) phenotypes suggests that underlying differences exist in both tissues

and overall systemic function. Macrophage accumulation in white adipose tissue (AT)

in obesity is typically associated with insulin resistance. However, as plastic cells,

macrophages respond to stimuli in their microenvironments, altering their polarization

between pro- and anti-inflammatory phenotypes, depending on the state of their

surroundings. The dichotomous nature of MHO and MUO clinical phenotypes suggests

that differences in white AT function dictate local inflammatory responses by driving

changes in macrophage subtypes. As obesity requires extensive AT expansion, we posit

that remodeling capacity with adipose expansion potentiates favorable macrophage

profiles in MHO as compared with MUO individuals. In this review, we discuss how

differences in adipogenesis, AT extracellular matrix deposition and breakdown, and AT

angiogenesis perpetuate altered AT macrophage profiles in MUO compared with MHO.

We discuss how non-autonomous effects of remote organ systems, including the liver,

gastrointestinal tract, and cardiovascular system, interact with white adipose favorably in

MHO. Preferential AT macrophage profiles in MHO stem from sustained AT function and

improved overall fitness and systemic health.

Keywords: adipose, macrophage, metabolically healthy, metabolically unhealthy, obesity

INTRODUCTION

As of February 2020, more than 1.9 billion adults worldwide were overweight [body mass index
(BMI): 25–29.9 kg/m2], and over 650 million were obese (BMI ≥ 30 kg/m2) (1). Obesity decreases
lifespan and increases the risk of developing hypertension, dyslipidemia, and type II diabetes
(T2D) (2–4). Despite the number and variety of deployed weight-loss interventions, very few
overweight or obese patients maintain weight loss over time, and globally, the number of obese
individuals continues to increase (5). Across the BMI spectrum, not all obese individuals suffer
the same comorbidities. Roughly 60% of obese individuals present with dysglycemia, hypertension,
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and/or dyslipidemia, and cutoff criteria associated with each of
these maladies define obesity as either healthy [metabolically
healthy obese (MHO)] or unhealthy [metabolically unhealthy
obese (MUO)] (6, 7). The majority of individuals are classified as
MUO; however, between 5 and 40% of obese individuals do not
present with metabolic abnormalities and are defined as MHO
(6–8). Definitions of MHO vary, as some studies identify only
insulin-sensitive individuals as MHO, whereas others identify
individuals with two or fewer metabolic abnormalities as MHO
(7, 9, 10). A recently proposed definition of MHO identifies
individuals based on the diagnosis of obesity and the following
criteria: serum triglycerides ≤150 mg/dl, HDL-cholesterol
concentrations >40 mg/dl in men or >50 mg/dl in women,
systolic blood pressure ≤130 mmHg, diastolic blood pressure
≤85 mmHg, no antihypertensive treatment as an alternative
indicator, fasting blood glucose ≤100 mg/dl, and no treatment
with glucose lowering agents (11). Significant controversy exists
over the definitions and stability of MHO classifications. There
is no universally accepted definition of MHO; many MHO
individuals progress to MUO over time, and, although MHO
individuals do have higher all-cause mortality and an increased
risk of cardiovascular events compared with healthy lean
individuals (12, 13), they are at a decreased risk of cardiovascular
complications and all-cause mortality compared with the MUO
individual. Despite this controversy, understanding the biological
mechanisms that maintain metabolic health with overt obesity
would aid the development of therapeutics to convert MUO
individuals to MHO and ultimately reduce the financial burden
of obesity-related comorbidities.

Although obesity results in white adipose tissue (AT)
expansion, maintenance of metabolic function may underlie
MHO individuals’ superior metabolic homeostasis. AT functions
as an endocrine organ that maintains energy equilibrium,
but function can differ by location. White AT accumulates
throughout the body, including in the epicardial, mesenteric,
omental, retroperitoneal, gonadal, subcutaneous abdominal,
gluteal, and femoral regions (14). Intra-abdominal, or visceral,
and subcutaneous white AT depots perform different functions
and thus differentially impact metabolic health. Visceral AT
accumulation is positively associated with cardiometabolic
risk factors (15) and correlation with decreased insulin
sensitivity (16). On the contrary, subcutaneous white AT
accumulation protects against cardiometabolic risk factors (15)
and corresponds with maintained insulin sensitivity (17), as
evidenced by subcutaneous adipose transplantation into visceral
depots alleviating metabolic dysregulation (18). Both adipocytes
and immune cells in AT express and secrete bioactive hormones
and signaling proteins that regulate metabolism (19–21). The
goal of this review is to summarize macrophages as key AT
immune cells and their influences, which drive tissue function
(Figure 1). Elucidating changes in white AT composition is
crucial to unraveling the mechanisms behind the observed
metabolic differences between MHO and MUO groups.

Obesity-associated AT expansion often results in the
accumulation of immune cells, including macrophages,
contributing to low-grade chronic inflammation. Macrophages
are the most abundant leukocytes in AT and assist in regulating

physiological processes, including tissue remodeling and insulin
sensitivity. Macrophage accumulation was originally thought
to be universally pro-inflammatory and contributory to insulin
resistance. However, macrophage subtypes stimulate different
responses within AT. Macrophage subtypes exist along a
continuum, as they demonstrate variable metabolic activation
and ranges in inflammatory signaling (22, 23). As such, they are
often classified by whether they are more pro-inflammatory or
more anti-inflammatory. M1 macrophages are thought to be
more pro-inflammatory and secrete pro-inflammatory cytokines
that ultimately inhibit proper insulin signaling in adipocytes
(23, 24). Contrarily, M2 macrophages are thought to be more
anti-inflammatory and secrete anti-inflammatory cytokines that
maintain functional insulin signaling (23, 24).

In obese states, macrophages play crucial roles in damage
response. Macrophage polarization patterns are influenced by
environmental cues and inflammatory signaling (23), and
macrophages accumulate when danger signals propagate and
incite more inflammation to manage their resolution. In
obese states, macrophages clear dead adipocytes and other
cell debris, exocytose excess lipid, secrete both pro- and anti-
inflammatory cytokines, and contribute to adipose remodeling
(23). Macrophage responses are interrupted by insulin resistance,
hypoxia, and reactive oxygen species generation, metabolic
endotoxemia or cell senescence, and death. While macrophage
accumulation in obese individuals is typically affiliated with
inflammation and these downstream consequences, healthy
obese individuals do not demonstrate the same levels of
inflammation as their MUO counterparts. In this review, we
discuss how differences in white AT components give rise to
contrasting macrophage M-phenotypes in MHO compared with
MUO persons. We also discuss how diet and aspects of systemic
metabolic health impact AT macrophages.

ADIPOSE MACROPHAGE SUBTYPES

Obesity alone incites the recruitment and proliferation of AT
macrophages, the predominant adipose leukocyte population
(25, 26). As plastic cells that respond to their microenvironments,
macrophages range from highly pro-inflammatory, orM1-like, to
highly anti-inflammatory, orM2-like (27). M1macrophages fight
against intracellular pathogens, are induced by pro-inflammatory
factors including lipopolysaccharide and interferon-γ, and
secrete inflammatory cytokines including interleukin (IL)-6, IL-
1β, and monocyte chemoattractant protein-1 (MCP-1) (28).
Hematopoietic-derived M1 macrophages utilize glycolysis and
are recruited into AT and where they can proliferate (29–31). M2
macrophages, on the other hand, contribute to tissue repair and
produce anti-inflammatory cytokines, including IL-4 and IL-13.
Contrary to M1 macrophages, yolk sac-derived M2 macrophages
utilize oxidative phosphorylation (31). White AT homeostasis
requires a balance of both these pro- and anti-inflammatory
macrophage subtypes. Excess M1 macrophage infiltration results
in increased tissue inflammation, whereas an overabundance
of M2 macrophages can lead to aberrant fibrogenesis, limiting
the remodeling required for AT to respond to changing lipid
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FIGURE 1 | Metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO) may be defined by differences in AT. This review focuses on macrophage

phenotypes (M-Types) as a key element driving adipose health, as these immune cells have potent effects on the local AT niche and are influenced by diet and other

systemic health characteristics. Differences in dietary components and aspects of adipose expansion perpetuate MHO and MUO adipose macrophage phenotypes.

Increased consumption of omega 3 polyunsaturated fatty acids (n-3 PUFAs), polyphenols, and fiber results in anti-inflammatory adipose macrophage (M2)

programming in MHO. These dietary components combined with improved white adipose adipogenesis and corresponding adipocyte hyperplasia increase tissue

vascularization and extracellular matrix (ECM) turnover, and downstream anti-inflammatory signaling propagates anti-inflammatory M2 macrophage proliferation while

abating harmful pro-inflammatory M1 macrophage recruitment into tissue. Parallel to effects of diet and adipose structure, systemic drivers, including functional

liver-adipose cross talk and improved vasoreactivity, also decrease MHO AT pro-inflammatory signaling and maintain insulin sensitivity. Alternatively, increased

consumption of saturated fat, cholesterols, trans fat, and fructose incites pro-inflammatory macrophage recruitment in MUO adipose. Consumption of these dietary

components in conjunction with dysfunctional adipogenesis results in adipocyte hypertrophy. This combined with decreased angiogenic signals, disrupted ECM

turnover, and downstream pro-inflammatory cytokine secretion stimulates pro-inflammatory M1 macrophage recruitment. Systemic dysfunction in the form of a

decreased vasoreactivity and oxidative stress concurrently fosters insulin resistance while promoting pro-inflammatory M1 macrophage recruitment into MUO adipose.

Once M1 macrophages enter the tissue, they secrete additional pro-inflammatory cytokines that recruit more M1 macrophages. This vicious cycle of inflammation,

perpetuation of unhealthy AT, and greater multisystemic dysfunction characterize MUO individuals who are defined by increased expression of metabolic syndrome

components. Created with Biorender.com.

storage needs (32, 33). In diet-induced obese states, macrophage
polarization shifts from a 4:1 M2-to-M1 ratio in lean animals to
a 1.2:1 ratio in obese animals, as M1 macrophages are recruited
into white AT (29).

MHO individuals display an anti-inflammatory adipose
macrophage profile that more closely resembles that of
metabolically healthy lean individuals, including an increased
M2:M1 ratio (34). Of note, MHO individuals likely accumulate
metabolically active adipose macrophages, which is a subtype
that may be distinct from coarsely defined M1 or M2. Although
we will focus primarily on M1 and M2 macrophages in the

remainder of this text, metabolically active macrophages are
associated with decreased nicotinamide adenine dinucleotide
phosphate oxidase 2, which reduces the inflammation associated
with obesity and downstream insulin resistance (30, 35, 36).
These macrophages are thought to better regulate lipid,
catecholamine, and iron availability and perform other
functions, including modulating local inflammation and
clearing dead adipocytes during prolonged obesity (30, 35, 36).
This suggests that, in contrast to MUO, MHO individuals’ anti-
inflammatory AT macrophage profile helps maintain insulin and
glucose regulation and deters pro-inflammatory macrophage
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recruitment. In the following sections, we will discuss the
relationships between aspects of AT function, macrophage
polarization, and metabolic regulation in MHO compared
with MUO.

ADIPOCYTE FUNCTION AND
ADIPOGENESIS

MHO adipocyte function mediates anti-inflammatory AT
macrophage activation and polarization (37). Adipocytes secrete
cytokines, depending on their inflammatory state, that influence
immune cells. Secretion of Th2 cytokines, including IL-
4 and IL-13, induces macrophage peroxisome proliferator-
activated receptor (PPAR)δ activation, a regulator of fatty
acid metabolism (38), which also improves whole-body insulin
sensitivity (39). Insulin-sensitive obese individuals have higher
PPARγ (i.e., PPARγ2) messenger RNA (mRNA) expression levels
in peripheral blood mononuclear cell and their visceral adipose
than do insulin-resistant obese individuals (40, 41). Ablation of
both PPARγ, a regulator of adipogenesis and lipogenesis, and
PPARδ renders macrophages unable to transition to the M2
subtype (38, 42, 43). Therefore, in MHO individuals, adipocyte
cytokine secretion and its downstream effects on fatty acid
metabolism and adipogenesis regulators incite M2 macrophage
polarization and whole-body insulin sensitivity while promoting
sufficient adipogenesis (i.e., proliferation and differentiation of
preadipocytes) to manage the concurring nutrient overload.

Fluctuations in AT macrophage ratios correspond to changes
in preadipocyte differentiation and adipogenic signaling. The
factors secreted by pro-inflammatory M1 macrophages possess
anti-adipogenic properties (44). Unlike M1 macrophages,
both M2 macrophages and inactive macrophages promote
preadipocyte survival by releasing a platelet-derived growth
factor (PDGF) (45). However, excess M2 macrophages have
been shown to impair preadipocyte differentiation through the
transforming growth factor-beta (TGF-β) pathway (46). The
effects of ATmacrophage balance on preadipocyte differentiation
and adipose expansion require further investigation (47);
however, differences in the AT macrophage profiles of MHO
and MUO individuals likely drive the rate and format of
adipogenesis, as in vitro differentiation protocols illustrate that
adipogenesis is greater in MHO than MUO people (48–51). The
nuclear hormone receptor PPARγ acts as a master transcription
factor of adipocyte differentiation by inducing and maintaining
the expression of key adipogenic genes, such as GLUT4 and
adiponectin, which are necessary for normal adipocyte function
and downstream insulin sensitivity (52). Diabetic patients treated
with PPARγ-activating thiazolidinediones, a class of antidiabetic
drugs, often experience weight gain in the form of subcutaneous
AT expansion. Accordingly, the subcutaneous AT expansion that
occurs through adipocyte hyperplasia (increasing number of cells
through differentiation of new adipocytes) appears metabolically
favorable and contributes to systemic insulin sensitization (53),
and the same PPARγ signaling promotes an M2-positive AT
balance. In obese states, AT macrophages provide signals that
communicate with mature adipocytes and preadipocytes to incite

either adipocyte hypertrophy or preadipocyte differentiation
and adipocyte hyperplasia. In MHO, de novo adipogenesis
driven by improved glucose uptake and anti-inflammatory
signaling—including increased PPARγ and adiponectin—results
in smaller, more numerous adipocytes (54); the resulting
adipocyte hyperplasia maintains a more anti-inflammatory AT
macrophage profile (54). In MUO, hypertrophic adipocytes
communicate with recruited M1 macrophages and secrete pro-
inflammatory leukotrienes, such as LTB4, which inhibit insulin
signaling in metabolic tissues and thus further recruit more pro-
inflammatory macrophages (55). Proteomic analyses of visceral
AT from T2D MUO obese individuals reveal mitochondrial
dysfunction and reduced adipocyte differentiation, which
additionally incites M1 macrophage recruitment (56). This
vicious cycle continues with tumor necrosis factor-alpha and IL-
1β secreted by M1 macrophages, further impairing adipogenic
differentiation, with reduced adipogenic gene expression in
subcutaneous AT and, in some cases, increased numbers of
small adipocytes (48, 57, 58). In contrast, normoglycemic
obese individuals show an increase in the percent of adipose
progenitors within their tissue compared with both pre-diabetic
and T2D obese subjects (59). MHO individuals benefit from
a positive insulin sensitizing cycle, where anti-inflammatory
signals from adipocytes result in M2 macrophage polarization,
which promotes healthy adipocyte hyperplasia and further anti-
inflammatory signaling from adipocytes.

EXTRACELLULAR MATRIX REMODELING

Healthy AT expansion requires extracellular matrix (ECM)
remodeling. Adipocytes are surrounded by a network of ECM
proteins that serve as a mechanical support and respond
to different signaling events (60). AT expansion relies on
adaptive cellular and extracellular responses to prevent ectopic
lipid deposition and lipotoxicity (61–63). Within AT, collagens
produced primarily by adipocytes and endothelial cells comprise
most non-cell tissue mass, whereas integrins are the major tissue
receptors for cell adhesion to ECM proteins (64, 65). Increased
interstitial fibrosis due to excess collagen deposition likely
decreases ECM flexibility and reduces tissue plasticity, which
leads to adipocyte dysfunction and immune cell infiltration
(66). Insulin-resistant individuals demonstrate aberrant ECM
deposition and insufficient ECM breakdown (59, 67).

Important protein families that comprise the ECM include
matrix metalloproteinases (MMPs), enzymes that process and
degrade pericellular substrates and play a vital role in regulating
ECM remodeling in normal and disease states (68). Tissue
inhibitors of metalloproteinases (TIMPs), which comprise a
family of four protease inhibitors, inhibit MMPs to achieve a
balance in production and breakdown (69). Adipose expression
of MMP-9, increased in MUO compared with MHO (38, 70),
positively correlates with insulin resistance and cardiovascular
risk in obese persons. Similarly, visceral AT MMP-14 expression
correlates with adipose accumulation and insulin resistance in
women (71). MMP-11 is also increased in the white adipose
of obese insulin-resistant mice (72). TIMP-3 regulates white

Frontiers in Nutrition | www.frontiersin.org 4 February 2021 | Volume 8 | Article 625331

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Ruggiero et al. Adipose Macrophages in Obesity Phenotypes

adipose inflammation and insulin sensitivity, and its deletion
in mice increases M1 macrophage accumulation in white AT
(73), whereas its overexpression in macrophages resulted in
improved glucose tolerance and insulin sensitivity and decreased
inflammation in high-fat diet-fed mice (74).

Individuals with worsening glycemic control exhibit excess
AT deposition of collagens I, III, IV, and VI (59). Collagen VI
gene expression coincides with more visceral adipose mass and
pro-inflammatory macrophage accumulation (75, 76). Excess
collagen VI deposition imparts stress by inhibiting adipocyte
expansion (60). AT fibrosis creates rigidity, restrains adipocyte
expansion, and, ultimately, triggers adipocyte inflammation
in response to the increased mechanical stress. Collagen IV,
which accounts for up to 50% of the basement membrane,
also increases with TGFβ-1 and TGFβ-3 gene expression in
human subcutaneous adipose, resulting in pro-inflammatory and
pro-fibrotic phenotypes (77). Increases in collagens, including
Col24α1, are associated with insulin resistance in AT and
skeletal muscle (78, 79). Also, gene expression of CD44, which
regulates cell–cell and cell–matrix interactions, is 3-fold higher
in subcutaneous AT of MUO individuals, and CD44 density on
macrophages is associated with the M1 phenotype (80). These
data indicate that a vicious cycle of aberrant ECM turnover
and increased inflammatory signaling, includingM1macrophage
recruitment, results in insulin resistance in obese AT.

MHO individuals possess improved ECM turnover rates, as
their more flexible ECM constitution allows for increased lipid
storage. As previously mentioned, the expandability of MHO
individuals’ subcutaneous AT is thought to contribute to their
decreased visceral AT accumulation and healthier metabolic
profile (60), resulting in less cell death and decreased M1
macrophage recruitment (23). Decreased amounts of MMPs and
TIMPs, including TIMP-1, allowMHOadipocytes to differentiate
more readily (81), as insulin-sensitive obese patients demonstrate
less fibrosis than diabetic obese patients before and after bariatric
surgery (82). Improving ECM turnover in MUO individuals
could permit increased subcutaneous fat mass and ameliorate
metabolic dysfunction and shifts in macrophage balance (83).
M2 secretion of TGF-β provides essential structural support
and necessary remodeling. However, in pathological instances,
this secretion results in aberrant fibrosis development. Secretion
of TGF-β by M2 macrophages is intended to promote anti-
inflammatory tissue remodeling, though if aberrant, results in
increased collagen deposition, downstream fibrosis, and insulin
resistance (84). MHO individuals’ M2/M1 AT macrophage ratio,
corresponding TGF-β secretion, and adequate ECM turnover
allow for decreased adipocyte mechanical stress.

Genes and gene product regulation in different obesity
subtypes also determine ECM turnover by controlling
macrophage polarization. For example, microRNAs (miRNAs)
alter gene expression and modulate downstream glucose
metabolism and insulin sensitivity in obesity (85), and exosomes
from AT-derived stem cells control M2 macrophage polarization
(86). Specifically, exosomal miRNA-34a secreted by adipocytes
suppresses M2 macrophage polarization and promotes obesity-
induced adipose inflammation and metabolic dysfunction (87),
whereas increased expression of miRNA-145 in visceral adipose

reduces macrophage expression of pro-inflammatory cytokines
through adenosine diphosphate ribosylation factor 6 (88).
MiRNA-145 also promotes preadipocyte differentiation and
angiogenesis, leading to healthier AT (89). Adipocyte-derived
exosomes contain many miRNAs still being characterized,
such as miRNA-23b, miRNA-148b, and miRNA-4429, which
are expected to alter TGF-β signaling and potentially mitigate
downstream fibrosis (90). For example, upregulation of miRNA-
23b mitigated kidney fibrosis in leptin-deficient mice (91),
suggesting that exosomal miRNAs secreted from MHO adipose
likely promote both anti-inflammatory macrophage polarization
and preadipocyte differentiation while mitigating fibrosis.

Current data indicate that MHO adipose corresponds
with sufficient ECM deposition and breakdown coupled with
balanced AT macrophage populations and anti-fibrotic/pro-
adipogenic miRNA secretion. Of note, miRNA promotion
of preadipocyte differentiation co-occurring with new blood
vessel formation (89) highlights that adipose expansion
necessitates vascularization.

ANGIOGENESIS

Adipose vascularity dictates tissue metabolism and
insulin sensitivity. In obese states, AT expansion requires
neovascularization that allows for sufficient oxygenation,
nutrient delivery, and adipocyte differentiation. Adipose
microvasculature plays a primary role in glucose homeostasis, as
impaired tissue perfusion results in decreased glucose uptake and
is a hallmark of T2D (92). Adipocyte hypertrophy that can occur
within just three days of high-fat diet consumption incites signals
to increase angiogenesis and alleviate hypoxia (93). Successful
neovascularization and its concomitant ECM remodeling reduce
hypoxia to maintain AT health (94).

MHO individuals typically accumulate subcutaneous white
AT, which possesses improved angiogenic capabilities as
compared with visceral adipose (95). MHO individuals maintain
peripheral capillary density similar to metabolically healthy
lean individuals, which allows for enhanced nutrient flow, and
demonstrate improved fitness compared with MUO (96–98).
Vascular endothelial growth factor (VEGF) contributes to new
blood vessel formation, as it induces the growth of both
preexisting and new vessels (65). Adequate AT VEGF signaling
in high-fat diet-fed mice protected the animals against insulin
resistance by reducing hypoxia and, in turn, increasing their
M2/M1 tissuemacrophage profile (99–101). Increases in capillary
density coincided with improvements in metabolic function
in obese rats with metabolic syndrome (98). Improved fitness
achieved through aerobic training of high-fat diet-fed rats
increased AT capillary density and increased the number of M2
tissue macrophages (102).

Improved vascularity in MHO AT also is likely to increase
numbers of adipose progenitor cells, as such cells reside
within adipose vasculature (103). Increased numbers of adipose
progenitors allow for hyperplastic expansion, which perpetuates
an anti-inflammatory immune profile, including an increased
M2/M1 macrophage ratio, as demonstrated by increased
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adipocyte hyperplasia in the subcutaneous AT of obese women
(104). These data suggest that hyperplastic subcutaneous depot
expansion that co-occurs with increased AT vascularity facilitates
an anti-inflammatory AT milieu in the MHO.

Prolonged hyperglycemia makes the cells within AT vessels
susceptible to injury and promotes microvascular dysfunction.
A vicious cycle occurs in MUO patients, where impaired
glycemic control worsens vascular reactivity, which then
exacerbates AT hypoxia, inflammation, and tissue insulin
resistance. MUO patients have a 44% decrease in capillary
density and 58% lower VEGF signaling in the subcutaneous
adipose, highlighting the occurrence of vascular rarefaction
with hyperglycemia (105). Likewise, VEGF expression in both
subcutaneous and visceral adipose decreases in a stepwise fashion
with worsening insulin resistance (106). ECM dysregulation
contributes to insufficient vascularization, as obese patients with
T2D demonstrate increased basement membrane thickness (59)
and higher collagen VI synthesis, which correlated inversely with
AT oxygenation in MUO patients (105). The two-hit process of
impaired ECM remodeling and poor vascularization stimulates
a pro-inflammatory immune cell response in MUO adipose,
exemplified by CD68 mRNA and macrophage inflammatory
protein 1α expression inversely correlating with AT oxygenation
in MUO subjects (105). Accordingly, contrary to MHO adipose,
decreased angiogenic capacity and increased vessel injury
in MUO adipose result in increased pro-inflammatory M1
macrophage recruitment and pro-inflammatory signaling.

As angiogenic capacity influences adipose macrophage
subtypes, existing macrophages in adipose impact angiogenesis.
Macrophage deletion results in a reduction of vascular density
in AT (107). Macrophages are a significant source of AT
PDGF, which assists with blood vessel growth and repair
of damaged vessels; their deletion also leads to a significant
reduction in PDGF mRNA (108). M2 macrophages promote
angiogenic signaling, as evidenced by increased endothelial
cells and tubular structures in subcutaneous adipose post-M2
macrophage injection (109). M2 macrophage polarization, but
not the M1 phenotype, caused a substantial downregulation of
TIMP-1 expression, resulting in the production of the angiogenic
activated zymogen, proMMP-9 (110). These data suggest that the
anti-inflammatory MHO adipose macrophage profile stimulates
angiogenesis, which not only ensures sufficient AT nutrient
supply but also contributes toMHO individuals’ improved fitness
and systemic health.

NUTRITION AND ADIPOSE MACROPHAGE
PROGRAMMING

Nutrient overload caused by excess food consumption is the
most common initial trigger for obesity, and diet represents the
paramount environmental health factor that is both modifiable
and variable across populations. High caloric intake per se
can effect macrophage polarization (27); however, dietary
factors can influence either augmentation of M1 subtype
abundance or support M2 programming. Macrophages have
evolved to be effective responders to pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs), which share common effector pathways.
These patterns have been best explored with “microbial”
inputs where these pathogen signals (endotoxin, lipoproteins,
membrane proteins, peptidoglycans, DNA fragments, and
lipoteichoic acid are examples) bind to receptors and initiate
both phagocytosis/destruction and activation of inflammatory
outcomes crucial to effective innate immunity (111). Toll-like
receptors (TLRs), scavenger receptors, and mannose receptors
are pattern recognition receptors present in all macrophages,
and binding and activation of the inflammasome and subsequent
release of cytokines and interferons lead to polarization toward
the M1 type of local resident macrophages, recruitment of
circulating monocytes for activation, and proliferation of
macrophages in situ (112).

Diet has profound effects on the magnitude of DAMPs
and PAMPs to which adipose macrophages are exposed. One
of the important observations made in people was coined
“metabolic endotoxemia,” whereby caloric excess was related
to increased biomarkers of microbial translocation, such as
lipopolysaccharide-binding protein 1 (LBP1) (113). LBP1 is
released from the liver into the circulation in response to
PAMPs and functions as a co-receptor for TLRs present on
the macrophage cell membrane, thus initiating inflammatory
responses in peripheral tissues, such as adipose (114, 115).
In addition to just caloric excess, specific dietary components
are known to induce LBP1 and PAMP signaling through
modulation of the microbial interactions at the intestinal
mucosal barrier. Fructose is the best described dietary factor
proven to increase intestinal barrier dysfunction in rodents,
humans, and non-human primates (116–120). Fructose is
additionally associated with excess caloric consumption, obesity,
andmetabolic diseases, such as diabetes andmetabolic-associated
fatty liver, and these disease states further augment macrophage
accumulation and the inflammatory cycle of insulin resistance
in AT (27). Lipoproteins are additionally recognized as PAMPs,
and low-density lipoproteins reliably increase in concentration
in response to caloric excess and fructose exposure, as the liver
packages and processes TGs for export (121). This lipoprotein-
delivered TG is the substrate for AT to uptake and store
peripherally, which, in unhealthy obesity, may not be an efficient
process. Impaired insulin sensitivity and excess adipocyte
hypertrophy lead to hypoxia, further inflammatory signaling
and macrophage recruitment, and even adipocyte apoptosis or
necrosis—the sequelae being more local DAMPs to drive local
macrophages to respond, recruit, and additionally augment the
M1 response.

The endotoxemia resulting from caloric excess or dietary
fructose has been described as sterile; however, more recently,
antibiotic and probiotic therapy deployed tomodify the pathogen
response has shown effectiveness in improving inflammatory and
metabolic outcomes (117). More evidence to suggest that local
adipose PAMP responses are to actual pathogens includes the
recent demonstration of an adipose microbiome in obese people
(122–124). These bacteria are confirmed to include whole live
organisms and be present in the circulation and visceral and
subcutaneous AT depots (124). From the data suggesting that
dietary calories and ingredients increase microbial translocation
and shape the microbiome, it is likely that the number and
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type of microbes filtered out into adipose also are diet driven
(125) and will influence the abundance and polarization of
adipose macrophages.

Saturated fat is another dietary component with the ability
to function as a PAMP/DAMP. Structurally, a longer chain of
single carbon–carbon bonds may mimic the saturated fatty acids
in phospholipids of most microbial membranes and the long fatty
acid chains incorporated in the structure of endotoxins, which
in intact gram-negative microbes reside in the outer membrane
(126). Saturated fat intake has been related to endotoxemia,
but studies that include calorie control are not available, and
caloric excess alone is sufficient to elevate LBP1 and induce
peripheral inflammation (127–129). Similarly, trans-fatty acids
structurally resemble saturated fatty acids and are presumed to
act as pro-inflammatory danger signals and a potent dietary
ingredients famous for induction of metabolically unhealthy
obesity (130, 131). A diet rich in unhealthy attributes, such
as excess caloric amounts, high fructose or added sugars,
cholesterol (132), saturated and/or trans-fatty acids, all drive
macrophage activation through highly conserved pathways
evolved to detect pathogens and resolve tissue damage (133).
The result perpetuates an inflammatory state and M1 phenotypic
predominance in AT in response to signals that indicate the
need for active phagocytic and antigen presentation functions.
Depot differences are not well-described; however, some evidence
for dietary factors inducing intra-abdominal fat shifts do exist.
Examples include trans-fat consumption being linked to visceral
fat accumulation, and in an obese patient cohort, the abundance
of ectopic bacteria in omental fat tissue was slightly higher than
that in subcutaneous fat, both of which are consistent with
the body of knowledge that indicates intra-abdominal AT is
more contributory to unhealthy obesity than is subcutaneous fat
expansion (122, 124).

Few dietary factors directly influence macrophages positively
to effect an M2 inflammation-resolving state. Polyunsaturated
fatty acids (PUFAs) do have a direct role on macrophage
function (134), whereas most dietary components have indirect
contributions to adipose health and consequential reductions
in DAMP/PAMP sensing by local macrophage populations
(135). These indirect effects will not be discussed, but examples
include dietary fiber, which shifts the microbiome and improves
mucosal barrier function, thus decreasing LBP1 and endotoxemia
(136–138), dietary components, such as isoflavones, which are
rich in fermented foods, and polyphenols, which are rich in
fruits and vegetables. Isoflavones can have a lipid-lowering
effect (139), thus decreasing lipoprotein sensing by scavenger
receptors, and can have estrogen receptor (ER) activity, which
indirectly can reduce inflammation and promote vascular
reactivity. Macrophages express ER (predominantly α-isoforms
and G-protein coupled ER1), and dietary isoflavones can bind
and decrease Nuclear factor-kappa B (NF-κB) activation and
cholesterol oxidation in the context of lipid and cholesterol
exposure (140), thus facilitating or maintaining M2 polarization
in culture and vascular tissue, an effect likely to be also seen
in adipose macrophages (141). Polyphenols can be effective free
radical scavengers, thus reducing local inflammation and tissue
damage signaling (142, 143).

Omega-3 polyunsaturated fatty acids (n-3 PUFA) cannot
be synthesized de novo by humans due to the lack of delta-
12 and delta-15 desaturase enzymes and must, therefore,
be acquired from the diet (144). The major n-3 fatty acid
in the diet, α-linolenic acid (18:3n-3), can be converted to
other more anti-inflammatory lipids, such as eicosapentaenoic
acid (20:5n-3), docosahexaenoic acid (22:6n-3), and the less
recognized docosapentaenoic acid (22:5n-3), which can be
directly sourced through consumption of fish and derived
fish oils. The utilization of dietary n-3 fatty acids in the
synthesis of complex PUFAs, such as docosahexaenoic acid,
eicosapentaenoic acid, and anti-inflammatory prostaglandins
is well-noted and thought to contribute to the reduction of
pathologies associated with chronic disease, including metabolic
syndrome. The challenge is that the conversion of α-linolenic
acid into these anti-inflammatory lipids is very limited in people;
thus, increasing dietary intake, coupled with counseling to reduce
the negative dietary features described earlier, is a popular
strategy to improve metabolic health in obesity. N-3 PUFAs
directly interact with G-protein coupled receptor (GPR) 120 to
generate an intracellular signaling complex that inhibits multiple
inflammatory pathways, such as NF-κB and activated c-Jun N-
terminal kinase, which are downstream of TLR and cytokine
receptors (145). This effect is not limited tomacrophage signaling
and shifting the profile toward a resolving M2 phenotype;
these healthy long-chain fatty acids also signal through GPR120
on adipocytes to reduce inflammation and improve insulin
sensitivity, leading to less DAMP signaling from hypoxic,
stressed adipocytes and decreased paracrine inflammatory effects
on tissue-resident macrophages. In summary, healthy dietary
features, such as fiber, n-3 PUFAs, and bioactive flavonoids can
directly and indirectly drive the macrophage profile toward an
M2 anti-inflammatory profile and a healthier state, even if the
subject is obese (27). Diet can influence the balance of M1 and
M2 macrophages in adipose both directly, by modifying the
burden of DAMP/PAMP signaling and indirectly by influencing
insulin sensitivity and tissue function of adipocytes and vascular
cells in adipose. Therapeutic strategies that capitalize on dietary
mechanisms are in development, including synthetic GPR120
ligands, probiotics, and synbiotics to improve intestinal barrier
function, as methods to improve health in obese persons
(70, 138).

IMPACTS OF NON-ALCOHOLIC FATTY
LIVER DISEASE ON ADIPOSE
MACROPHAGE TYPES

MHO individuals’ liver composition and inflammatory signaling
moderate the anti-inflammatory profile of their peripheral
tissues. Obesity-related nutrient overload incites spillover of
free fatty acids from AT that are taken up by the liver
through the portal vein. Accordingly, increased visceral adipose
accumulation corresponds with liver triglyceride accumulation.
The severity of non-alcoholic fatty liver disease and non-
alcoholic steatohepatitis has been shown to correspond with
an expression of inflammatory genes in AT (146). Increased
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pro- and anti-inflammatory macrophage infiltration in visceral
adipose was observed in obese patients with non-alcoholic
steatohepatitis (146). MHO individuals demonstrate less liver
triglyceride accumulation and liver fibrosis and overall improved
liver function compared with MUO individuals (147, 148).
Decreased liver fibrosis corresponded with fewer omental AT
macrophages in obese humans, as macrophage accumulation
decreased with decreasing fibro-inflammation indexes (149).
Adiponectin, an adipokine that promotes AT lipid storage,
lipid oxidation, and downstream anti-inflammatory signaling,
is increased in MHO compared with MUO, providing another
physiologic mechanism for MHO individuals’ decreased liver
triglyceride accumulation (150–152). Adiponectin has also been
shown to correlate with insulin resistance in obese female
people (153). Decreased liver triglyceride accumulation and
fibrosis, along with increased effectiveness of anti-inflammatory
signaling from the liver, correspond with reduced macrophage
accumulation in MHO and allow for improved adipose storage
and sustained AT glucose uptake.

PARACRINE ADIPOSE EFFECTS ON THE
CARDIOVASCULAR SYSTEM

In addition to their decreased risk of all-cause mortality,
MHO individuals experience a decreased risk of heart
failure even compared with metabolically unhealthy lean
individuals (154). The interactions between MHO individuals’
AT and their cardiovascular system explain the observed
cardiometabolic outcomes.

The AT perivascular and epicardial fat depots are in direct
proximity to cardiovascular tissue and interact positively in
a paracrine fashion with the myocardium and vasculature
in MHO persons. Perivascular AT, located around the large
arteries, produces nitric oxide and secretes adipocyte-derived
relaxing factors and other adipokines that relax vascular smooth
muscle cells and are able to go into microcirculation (155).
As perivascular adipose maintains vascular bed homeostasis, it
controls the effects of insulin on microcirculatory systems in
metabolic tissues. For instance, perivascular adipose successfully
facilitates insulin-mediated vasoreactivity and glucose uptake in
skeletal muscle (156). Interestingly, loss of perivascular AT in
lipoatrophic mice (A-ZIP/F1) enhances the contractile responses
of blood vessels, which results in hypertension (157). In instances
of pathological perivascular dysfunction, the perivascular AT
release of adipocyte-derived relaxing factors diminishes, whereas
its release of pro-inflammatory cytokines, including IL-6,
tumor necrosis factor-alpha, and MCP-1, increases, and a
negative cycle of perfusion and AT dysfunction perpetuates
as described earlier. This directly impacts endothelial and
vascular smooth muscle cells and incites vascular inflammation
(155). Pro-inflammatory perivascular AT signaling is initiated
by decreased nitric oxide production, increased reactive oxygen
species, and pro-inflammatory cytokines released by the
dysfunctional endothelium, vascular smooth muscle cells, or
vascular macrophages (155). In MUO individuals, dysfunctional
perivascular AT alterations stem from adipocyte hypertrophy,

hypoxia, oxidative stress, and pro-inflammatory macrophage
infiltration (158, 159). These data suggest that MHO perivascular
AT successfully facilitates glucose uptake while promoting anti-
inflammatory macrophage accumulation.

Like perivascular AT, interactions between healthy epicardial
AT and the myocardium mitigate pro-inflammatory signaling
in MHO individuals. Epicardial AT, located between the
myocardium and visceral pericardium, acts as an energy source
for the myocardium, as epicardial adipose has a higher capacity
for uptake and release of free fatty acids and a lower rate of
glucose utilization than other visceral depots (160). Given its
ability to take up free fatty acids, epicardial adipose is thought
to act as a buffer for the myocardium against lipotoxicity
(160, 161). However, in pathological settings, the epicardial
adipose may provide excess free fatty acids associated with
myocardial steatosis and systemic insulin resistance (162).
Insulin resistance and T2D are associated with increased
MCP-1 expression in epicardial adipose, and peri-coronary
adipose displays increasedM1macrophage infiltration compared
with other regions distal to the coronaries (163, 164). The
importance of whole-body health highlights that peri-coronary
epicardial adipose inflammation may influence vascular function
negatively as well as positively (163). In unhealthy obese
states, hypoxic perivascular adipose transports macrophages that
may carry oxidized cholesterol from systemic circulation to
epicardial adipose through the neovascularized vasa vasorum
(165, 166). Local epicardial AT inflammation also stems from
dysregulated miRNA expression. Patients with coronary artery
disease demonstrate increased miR-103-3b upregulation, which
is a potential modulator of the pro-inflammatory cytokine CCL13
(167). Insulin resistance and T2D are characterized by changes
in miRNAs, including miR-29a and miR-143, which regulate AT
browning and inflammation (168). Importantly, miR-29a has
been associated with myocardial fibrosis, whereas miR-143 is a
biomarker of vascular smoothmuscle cell activation that is linked
to atherosclerosis and hypertension (169, 170). Adipose acts as a
local renin–angiotensin system by producing angiotensinogen, a
precursor to angiotensin II (171). The hypertension medication
telmisartan—an angiotensin II type 1 receptor blocker and
PPARγ agonist—improved insulin resistance while decreasing
M1 and increasing M2 macrophage gene expressions in visceral
adipose from high-fat diet-fed mice (171). These data suggest
that a hypertensive MUO person who has more M1macrophages
recruited into their adipose, when treated with telmisartan, may
experience a shift in their adipose macrophage profile and a
reduction in local inflammation. While epicardial AT function
protects MHO individuals from lipotoxicity and maintains the
anti-inflammatory immune cell profile, more work is needed to
understand the crosstalk between epicardial adipose miRNAs,
the cardiovascular system, and their relationship to health
and disease.

DISCUSSION

In this review, we discuss how macrophage phenotypes drive
adipose health in MHO and MUO persons, as these immune
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cells affect the local AT niche and are heavily influenced by diet
and systemic health characteristics (Figure 1). Improved white
adipose function in conjunction with the consumption of n-3
PUFAs, polyphenols, and fiber results in anti-inflammatory M2
macrophage programming in MHO. Functional white adipose
adipogenesis, increased tissue vascularization, ECM turnover,
and downstream anti-inflammatory signaling in combination
with consumption of the dietary components mentioned
earlier propagate M2 maintenance and proliferation while
abating harmful pro-inflammatory M1 macrophage recruitment.
Gut mucosal barrier integrity, functional liver-adipose, and
cardiovascular system-adipose cross talk parallel the effects of
diet by decreasing MHO AT pro-inflammatory signaling and
maintaining insulin sensitivity. Alternatively, increased dietary
consumption of saturated fat, cholesterols, trans fat, and fructose
incites pro-inflammatory adipose macrophage recruitment in
MUO adipose, which inhibits adipogenesis. Consumption of
these dietary components, in conjunction with dysfunctional
adipogenesis, results in augmented adipocyte hypertrophy.
This, combined with decreased angiogenic signals, disrupted
ECM turnover, and downstream pro-inflammatory cytokine
secretion, stimulates further pro-inflammatory M1 macrophage
recruitment. Impaired gut mucosal barrier integrity in the MUO
drives multi-organ inflammation. This results in dysfunctional
adipose-liver and adipose-cardiovascular system cross talk,
which concurrently promote pro-inflammatory M1 macrophage
recruitment in MUO adipose. Once M1 macrophages enter
the tissue, they secrete additional pro-inflammatory cytokines
that recruit more M1 macrophages. This vicious cycle of
inflammation and perpetuation of unhealthy AT, further
expansion, and greater multisystemic dysfunction characterizes
MUO individuals.

Clearing M1 macrophages from unhealthy adipose may
reestablish metabolic health. Obesity incites senescent cell
accumulation in AT and M1 macrophage recruitment, and
pharmacological senescent cell clearing agents have effectively

reduced macrophage accumulation and pro-inflammatory
signaling while restoring metabolic function in obese mice
and people (172–174). Calcium/calmodulin-dependent protein
kinases (CaMKs) play roles in myocardial ischemia/reperfusion
injury, regulating food intake and energy expenditure. Activation
of CaMK II δ in cardiomyocytes prompted pro-inflammatory
macrophage recruitment and associated NF-κB signaling that
results in fibrosis and myocardial dysfunction (175). Loss of
CaMK kinase II (CaMKK2) reduced AT M1 macrophage-
derived NF-κB signaling caused by a high-fat diet, highlighting
an important function for CaMKK2 in controlling diet-induced
adipose M1 macrophage inflammation (176). For example,
treatment with a CAMKK2 inhibitor, tilianin, decreased pro-
inflammatory signaling in cardiomyocytes (177). The use of
CaMKK2 inhibitors in MUO may reduce AT inflammation,
although more research is needed to determine how CaMK
inhibition impacts AT immune cell populations over time.

As obesity rates continue to rise and weight-loss interventions
prove largely unsuccessful, understanding how to mediate
the vicious AT macrophage cycle in MUO individuals is
imperative. Although long-term obesity ultimately increases
the risks of multisystem adverse events, breaking the pro-
inflammatory macrophage cycle will potentially shift MUO
individuals to MHO and reduce current health burdens.
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