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Complex dietary carbohydrate structures including β(1–4) galacto-oligosaccharides

(GOS) are resistant to digestion in the upper gastrointestinal (GI) tract and arrive intact

to the colon where they benefit the host by selectively stimulating microbial growth.

Studies have reported the beneficial impact of GOS (alone or in combination with

other prebiotics) by serving as metabolic substrates for modulating the assembly of the

infant gut microbiome while reducing GI infections. N-Acetyl-D-lactosamine (LacNAc,

Galβ1,4GlcNAc) is found in breast milk as a free disaccharide. This compound is

also found as a component of human milk oligosaccharides (HMOs), which have

repeating and variably branched lactose and/or LacNAc units, often attached to sialic

acid and fucose monosaccharides. Human glycosyl-hydrolases do not degrade most

HMOs, indicating that these structures have evolved as natural prebiotics to drive the

proper assembly of the infant healthy gut microbiota. Here, we sought to develop a

novel enzymatic method for generating LacNAc-enriched GOS, which we refer to as

humanized GOS (hGOS). We showed that the membrane-bound β-hexosyl transferase

(rBHT) from Hamamotoa (Sporobolomyces) singularis was able to generate GOS and

hGOS from lactose and N-Acetyl-glucosamine (GlcNAc). The enzyme catalyzed the

regio-selective, repeated addition of galactose from lactose to GlcNAc forming the

β-galactosyl linkage at the 4-position of the GlcNAc and at the 1-position of D-galactose

generating, in addition to GOS, LacNAc, and Galactosyl-LacNAc trisaccharides which

were produced by two sequential transgalactosylations. Humanized GOS is chemically

distinct from HMOs, and its effects in vivo have yet to be determined. Thus, we evaluated

its safety and demonstrated the prebiotic’s ability to modulate the gut microbiome in 6-

week-old C57BL/6J mice. Longitudinal analysis of gut microbiome composition of stool

samples collected from mice fed a diet containing hGOS for 5 weeks showed a transient

reduction in alpha diversity. Differences in microbiome community composition mostly
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within the Firmicutes phylum were observed between hGOS and GOS, compared to

control-fed animals. In sum, our study demonstrated the biological synthesis of hGOS,

and signaled its safety and ability to modulate the gut microbiome in vivo, promoting the

growth of beneficial microorganisms, including Bifidobacterium and Akkermansia.

Keywords: galactooligosaccharide (GOS), N-Acetyl-D-lactosamine (LacNAc), safety, humanmilk oligosaccharides

(HMOs), LacNAc synthesis, mouse models

INTRODUCTION

Gut microbial communities play a critical role in the
maintenance of host health (1, 2). Hence, beneficial modulation
with probiotics (live microorganisms that when administered
in adequate amounts provide a benefit to their hosts) (3) and
prebiotics (selectively fermented dietary carbohydrate structures
that promote the growth of beneficial microorganisms) (4, 5)
is desirable and potentially effective translational therapeutics
to treat gastrointestinal (GI) diseases linked to disrupted
microbial communities (4, 6–9) [reviewed in (10)]. Synbiotics
(combinations of prebiotics and probiotics) are also emerging
as a focal point of GI biology research, as each component,
individually and synergistically, could provide unique benefits
reestablishing community resilience and host physiology (11, 12).
In previous studies we evaluated highly pure β(1–4) galacto-
oligosaccharides (GOS) formulations produced by the optimized
version of the hexosyl-transferase gene from Hamamotoa
(Sporobolomyces) singularis heterologously expressed in
Komagataella (Pichia) pastoris (13, 14). This enzyme is one of
the most promising catalysts in the field of glycobiology due to
its high stability, highly desirable enzymatic properties, and the
metabolism of its reaction products (GOS) by specific members
of the gut microbial community, impacting its composition and
function (15, 16). Beneficial members of the gut microbiota,
including Lactobacillus and Bifidobacterium, hydrolyze GOS
via β-galactosidases (17). Lactobacillus rhamnosus utilize
PTS transporters to internalize GOS prior to hydrolysis (17),
while other organisms like specific strains of Bifidobacterium
(bifidum) secrete glycosyl hydrolases to break down complex
carbohydrates, internalizing the products of hydrolysis (18).
Short-chain fatty acids (SCFAs) generated as the result of GOS
assimilation include acetate and lactate (17), which community
members, including Roseburia and Faecalibacterium, can
transform into butyrate (6, 19).

LacNAc is an essential component of human milk

oligosaccharides (HMOs) and has been demonstrated to be
a major bifidogenic factor in the 1950s (20–22). Several HMOs

contain lactose (Galβ1-4Glc) at their reducing end, which
can be elongated by the addition of β1-3- or β1-6-linked
lacto-N-biose (Galβ1-3GlcNAc) or LacNAc (Galβ1-4GlcNAc).
Lactose or the oligosaccharide can be then fucosylated by
fucosyltransferases in α1-2, α1-3, or α1-4 linkage and/or
sialylated by sialyltransferases in α2-3 or α2-6 linkage to yield a
variety of terminal structures (23). The study by Yoshida et al.

(24) characterized β-galactosidases of Bifidobacterium longum
subsp. infantis to determine how this organism degrades type-1
(lacto-N-biose,) and type-2 (LacNAc,) isomers of HMOs. LacNAc
has also been recognized as a building block of glycoproteins
and glycolipids in the GI tract. These backbones serve to connect
the core structure, which is directly linked to a protein or lipid
aglycon with terminal sugars [reviewed in (25)]. LacNAc building
blocks and terminal sugars also act as an important precursor of
several blood group epitopes (Lewis A, Lewis B, sialyl Lewis A),
which are involved in biological processes including fertilization
(26), mediation of cell adhesion and pathogen adhesion
to colonocytes (27–29).

Chemical and enzymatic synthesis processes have been the
most frequently evaluated methods for LacNAc production
(30). In recent years, glycoside hydrolases (EC 3.2.1.-)
and β-galactosidases (EC 2.1.23) with both hydrolytic and
transglycosylation activities, have gained special attention for
regio- and stereo-selective synthesis of LacNAc oligosaccharides
(https://www.cazypedia.org/index.php/Transglycosylases) (31–
37). Enzymatic biosynthesis is considered the most efficient
method for producing LacNAc due to specificity, synthesis
in one-step reactions, low-cost substrates, sustainability,
and overall low environmental impact, [reviewed in (38)].
Conversely, chemical methods to generate LacNAc require
multiple reactive hydroxyl groups and laborious protocols
for group protection and deprotection to control the stero-
and regio-specificities (39, 40). Compared to enzymatic
synthesis, generation of LacNAc by chemical synthesis has
low yields, a cost-competitive disadvantage for industrial
production, hindering the use of LacNAc as an additive in
food products (30, 41, 42).

In this study, we describe a novel biological synthesis solution
to produce N-Acetyl-lactosamine (LacNAc)-enriched GOS
(which we refer to as humanized GOS, hGOS) using optimized
Hamamotoa (Sporobolomyces) singularis β-hexosyl transferase
[rBHT (13, 14)]. The enzyme generates LacNAc-enriched GOS
as the product of the reaction between lactose as a galactose
donor and N-Acetylglucosamine as acceptor. We first evaluated
the efficiency of a Komagataella (Pichia) pastoris cell line carrying
membrane-bound β-hexosyl transferase on the generation of
GOS and hGOS from lactose and N-Acetyl-glucosamine. Then,
conventionally-raised 6-week-old C57BL/6J mice were fed a
control diet or modified diets containing GOS or hGOS for 14
days to evaluate its safety and impact on fecal microbial diversity
and composition.

Frontiers in Nutrition | www.frontiersin.org 2 April 2021 | Volume 8 | Article 640100

https://www.cazypedia.org/index.php/Transglycosylases
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Arnold et al. Safety of Humanized GOS

MATERIALS AND METHODS

Generation of Dietary Carbohydrate
Structures/Prebiotics GOS and hGOS
Membrane-bound β-hexosyl transferase from Hamamotoa
(Sporobolomyces) singularis in Komagataella (Pichia) pastoris
was produced as previously described (13, 14). The standard
transgalactosylation reaction utilizing Komagataella (Pichia)
pastoris resting cells (harboring membrane-bound enzyme)
was initiated by adding standardized amounts of enzyme (1U
g−1 lactose) in 5mM sodium phosphate buffer (pH 5.0) to a
similarly buffered solution containing lactose (200 g liter−1) and
N-Acetylglucosamine (25 g liter−1) at 30◦C. Reaction products
and substrates were analyzed by high-performance liquid
chromatography (HPLC) (Shimadzu Corporation, Kyoto, Japan)
under isocratic conditions at 65◦C and a 0.5-ml min−1 flow
rate. The mobile phase was water, and separation was performed
by two columns in tandem a Supelco gel Ca++ (Supelco, PA),
and HPX-42A (Bio-Rad, CA) columns (300mm by 7.8mm)
coupled to an SPD-20MA and ELSD-LT II detectors (Shimadzu
Corporation, Kyoto, Japan). The column was calibrated using
galactosyl-lactose (Carbosynth, Berkshire, United Kingdom),
LacNAc, Lactose, N-Acetylglucosamine, Glucose, and Galactose
(Sigma-Aldrich, St. Louis, MO). Enzymatic activity was
determined using 4-nitrophenyl β-D- glucopyranoside or
oNP-Glc as substrate as per the previously described methods
(13, 14).

Human Equivalent Dose Calculation
The human equivalent dose (HED) for LacNAc was calculated
for the animal study using the methods highlighted by the
United States Food and Drug Administration and is based on the
approximate body weight of the subject (43). The equation used
is as follows:

HED

(

mg

kg

)

= Animal Dose

(

mg

kg

)

×
Animal Km

Human Km

Where the Km factor is a number based on body surface area.
For this study, we used an animal dose of 1,500mg kg−1, based
on ∼30mg LacNAc fed to a ∼20 g mouse per day. Additionally,
we used a Km factor of 3 for mice and 16 to represent a 5 kg
human infant (43). Using the formula above, the HED for this
study represent an equivalent of 281.25mg LacNAc per kg body
weight in infants. While for a 20 kg child (Km= 25), the HED
would be 180 mg kg−1.

Animal Housing, Treatment, and Sample
Collection
All animal studies were approved by the Institutional Animal
Care and Use Committee (IACUC) of the University of North
Carolina at Chapel Hill (Approved protocol number: 19-084).

A total of 50 6-week-old C57BL/6J mice were co-housed
at random in groups of 5–6 animals and fed a defined diet
(D17121301; Research Diets INC.) containing no prebiotics
to normalize the gut microbiota for 2 weeks. After a 2-
week standardization period, fresh stool samples were collected
directly from the anus of each animal into a sterile tube. To

avoid cage batch effects, animals were moved into paired housing
such that no two animals from the same standardization group
were co-housed. Each animal was considered one experimental
unit. Upon reassigning housing (Figure 2A), animal pairs were
split into three distinct groups, each of which began feeding on
either the defined control diet (D17121301) (n = 17), GOS diet
(D17121302) (n = 17) in which 71.8 g of cellulose per kilogram
diet was replaced with 71.8 g of pure GOS, or hGOS (D18121401)
(n = 16) where LacNAc represented a 1% (w/w). Composition
of each diet is detailed in Supplementary Table 1. Each diet was
offered ad libitum for 2 weeks prior to stool sample collection.
Individual animal mass and dietary consumption were measured
daily during the first 14 days of the dietary study to assess
animal growth and food consumption (total food consumed in
a cage/2 = individual animal food consumption) between diet
groups. After day-14 sample collection, half of the animals in
each treatment group were removed for a tangential study and
all remaining animals (total=24, n = 8 per diet) continued to
consume their respective diets ad libitum, with stool sample
collections occurring at three additional time points each ∼1-
week apart prior to animal sacrifice. At the conclusion of the trial
on day 38, each animal was euthanized via CO2 asphyxiation and
cervical dislocation.

Nucleic Acid Isolation
Total DNA was extracted from fecal pellets using the Qiagen
ClearMag Extraction system on KingFisher Flex Magnetic Bead
processing instrument as described (15). Briefly, stool samples
were transferred to a screwcap tube containing 10mg of sterile
acid-washed glass beads (0.1–0.5mm diameter) and 700 µl PM1
solution (Qiagen, Valencia, CA). Samples were homogenized
for 5-min at 15Hz in Qiagen Tissue Lyser II (Qiagen). Bead-
beaten samples were treated with IRS-PCR inhibitor remover
solution (Qiagen) (3:1; lysate:IRS ratio) overnight at 4◦C and
transferred to KingFisher Deep-well plate containing ClearMag
magnetic beads and binding buffer (Qiagen). Sample plates
were subsequently processed on KingFisher Flex instrument to
isolate and wash DNA. DNA was quantified with Quant-iTTM

PicoGreen R© dsDNA reagent (Molecular Probes, Thermo Fisher
Scientific, Waltham, MA) and stored at−20◦C.

16S rRNA Amplicon Sequencing
Total DNA was subject to amplification of the V4 variable region
of the 16S rRNA gene using primers 515F and 806R (44) with
Illumina adaptors. Amplicons were barcoded using Illumina
dual-index barcodes [Index 1(i7) and Index 2(i5)], purified using
Agencourt R© AMPure R© XP reagent (Beckman Coulter, Brea, CA)
and quantified with Quant-iTTM PicoGreenTM dsDNA Reagent
(Molecular Probes, Thermo Fisher Scientific). Libraries were
pooled in equimolar amounts and sequenced on HiSeq2500
instrument (Illumina, San Diego, CA).

Sequencing Data Analysis
Analysis of 16S rRNA amplicon sequencing data was carried out
using the QIIME2 pipeline as described (45). Briefly, sequences
were grouped into Operational Taxonomic Units (OTUs) using
UCLUST (46). OTU sequences were aligned, and phylogenetic
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trees were built (47). Before generating the phylogenetic tree,
the overall OTU table was collapsed using the “taxa collapse”
plugin in QIIME2. The set of representative sequences was then
trimmed to include only one representative sequence for each
collapsed OTU. The filtered set of representative sequences was
then aligned usingMAFFT, and a phylogenetic tree was generated
from the alignment using RAxML (48, 49). The phylogenetic
tree was finally annotated with presence/absence data using iToL
and PhyloToAST (50–52). Alpha and beta diversity metrics were
calculated in R 4.0.3 using the phyloseq and vegan packages
(53–55). Only data from young animals (6 weeks old) were
used in the calculation of diversity metrics. Both the Shannon
entropy and inverse Simpson indexes were calculated to ensure
an accurate estimation of the true alpha diversity of the samples.
Beta diversity was calculated using principal coordinate analysis
(PCoA) of the weighted UniFrac distances (56).

Statistical Analysis
Data were evaluated for homogeneity of variance using Levene’s
test. Statistical significance of alpha diversity was evaluated
using a repeated-measures ANOVA followed by Tukey’s Honest
Significant Difference test to separate means. The 95% confidence
ellipses for beta diversity plots were calculated in R 4.0.3 using
ggplot2 (57). Beta diversity statistical analyses were performed
using the PERMANOVA and PERMDISP functions of the vegan
package in R 4.0.3. All statistical analysis results for the alpha and
beta diversity analyses can be found in Supplementary Table 2.
The α for all statistical tests was fixed at 0.05.

Availability of Data and Materials
All sequencing data has been submitted to the NCBI
repository and can be accessed via the following accession
number: PRJNA681811.

RESULTS

rBHT Catalyzed the Repeated Addition of
Galactose From Lactose to
N-Acetylglucosamine
The reactions catalyzed by the rBHT enzyme were regio-
selective, forming the β-galactosyl linkage at the 4-position of
the GlcNAc and the 1-position of D-galactose, synthesizing
various glycoconjugates directly from soluble GlcNAc. The
obtained products, in addition to GOS, included Gal-β(1,
4)GlcNAc (LacNAc, Figure 1A, panel B) disaccharides and
Galβ-(1, 4)Galβ-(1, 4)GlcNAc (Galactosyl-LacNAc, Figure 1A,
panel C) trisaccharides, which were produced by two sequential
transgalactosylations. Figure 1B shows the kinetics of the
reaction performed during 8 days of incubation using rBHT
polypeptides (e.g., whole cells displaying membrane-bound
enzyme). The enrichment of GOS with LacNAc at a ratio
lactose/N-Acetylglucosamine of 8:1 performed for these
experiments (200 g/L lactose and 25 g/L GlcNAc) generated 25
g/L of LacNAc and 100 g/L hGOS after 48 h of incubation. At
this time point, the reaction was terminated, and the products of
the reaction (hGOS) were freeze-dried.

Animal Health and Diet Consumption
We conducted an animal experiment with conventional 6-
week-old C57BL/6J mice fed a control diet, or modified diets
containing GOS or hGOS to assess their impact on the gut
microbiome (Figure 2A). Results showed no impact of GOS or
hGOS diets on weight or daily food consumption. Each mouse
consumed ∼3 g of food per day, with no significant differences
between the diets (Supplementary Figure 1). Therefore, based
on the formulation of each prebiotic diet, we calculated that the
dose of prebiotic consumed per day by each mouse was 0 mg/day
(on control diet), and ∼190 mg/day of total prebiotic (GOS,
hGOS). This estimate translates to ∼171 mg/day of GOS (GOS
diet) and∼30 mg/day of LacNAc (hGOS diet) based on prebiotic
formulation data.

Modulation of the Gut Microbiota by hGOS
After 2 weeks of feeding on diets containing prebiotics,
animals exhibited a significant (repeated measures ANOVA
p < 0.05) reduction in alpha diversity (Figure 2B). Over
the length of the study, diversity of prebiotic-fed animals
returned to values comparable to the control diet with no
statistically significant differences between groups at day 28.
PCoA plots revealed distinct clustering of hGOS-fed animals,
which displayed a much tighter dispersion pattern compared to
control animals (PERMDISP p = 0.009), suggesting a higher
similarity between communities within hGOS-fed than control-
fed animals (Figure 2C). Spatial medians were significantly
different between groups (PERMANOVA F = 7.6463, p≤ 0.001).

Taxonomy plots of relative microbial abundance revealed
the genus-level variability between animals fed control diets,
and those consuming either GOS or hGOS diets over time
(Figure 3A). The most dramatic changes in the assembled
microbial communities were observed between timepoint 0 and
14 days after introducing prebiotic diets. Changes between the
communities within prebiotic-fed animals after 14 days were
minimal. Analysis of Composition of Microbiome (ANCOM)
used to further explore microbial abundance changes within
the communities of prebiotic-fed animals across all time
points revealed an increased relative abundance of beneficial
microorganisms including Akkermansia, Bifidobacterium, and
Bacteroides, along with Allobaculum in both GOS and hGOS
diets. The dietary interventions reduced the relative abundance
of Butyricicoccus, Clostridium, Turicibacter, and Lachnospiraceae
across all time points (Figures 3A,B, Supplementary Figure 2).

Figure 4 shows a phylogenetic tree generated using
PhyloToAST that includes 117 unique OTUs detected
in at least one of the three diets examined. Of the 117
unique OTUs detected, 76 OTUs were detected in all
conditions (Control, GOS, hGOS), and 40 were detected
in control and GOS but not in hGOS fed mice, while
none was detected in control and hGOS but not GOS
fed mice. The majority of the OTUs detected in the
control and GOS mice, but not in hGOS mice, belonged
to the Firmicutes phylum. Taxa not detected in the hGOS
group compared to control and GOS group within the
Phylum Firmicutes and Class Bacilli included Lactobacillus
reuteri, L. zeae, species of Enterococcus, Brevibacillus,
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FIGURE 1 | (A) Illustrative representation of catalysis of hGOS from carbohydrate constituents. (B) Time course evolution in g/L of dietary carbohydrate structures

generation and residual substrates in g/L over 8 days; Lactose (Lac), N-Acetylglucosamine (GlcNAc), and Glucose (Glc). The products of the reaction were

N-Acetyl-lactosamine (LacNAc), Galactosyl-β(1–4)lactose (Gal-Lac), Galactosyl-β(1–4)N-Acetyl-lactosamine (Gal-LacNAc), and

Galactosyl-β(1–4)Galactosyl-β(1–4)lactose (Gal-Gal-Lac). The reactions were performed using whole cells membrane-bound protein (1U rBHT.g−1 lactose). The initial

conditions of the reactions contained 200 g/L lactose; 25 g/L N-Acetylglucosamine (GlcNAc), in 5mM sodium phosphate buffer (pH 5.0) and incubated at 30◦C.

Samples were removed periodically and separated by HPLC and quantified with sequential ELSD and PDA detectors.

FIGURE 2 | (A) Experimental timeline of the animal study, delineating the number of animals in each experimental group, and the duration between sample collection

and analysis. (B) Box plots show changes in Shannon diversity values between groups fed control (red), GOS (green), or hGOS (blue) diets over time. Significant

differences in Shannon diversity between diets are indicated by bars and asterisks, with *indicating p < 0.05 and **indicating p < 0.01. Only statistically significant

differences are shown. (C) PCoA, PERMANOVA, and PERMDISP analyses of samples between time points show significant differences in clustering as a function of

the diet.

Paenibacillus, Anaerobacillus, Virgibacillus, Facklamia,
Unclassified Lactobacillales, Bacillales, Enterococcaceae,
and Planococcaceae. Within the Phylum Firmicutes and
Class Clostridia, the following were not detected in the
hGOS group: Veillonella dispar, Ruminococcus flavefaciens,

Faecalibacterium prausnitzi, species of Butyrivibrio,
Pseudobutyrivibrio, Lachnospira, Oxobacter, Roseburia,
Dialister, Veillonella, Phascolarctobacterium, Anaerotruncus,
Blautia and Unclassified Clostridiales, Clostridiaceae, and
Veillonellaceae. Only 3 OTUs corresponding to the Phylum
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FIGURE 3 | (A) Genus-level taxonomy plots reveal highly abundant taxa in each group at each time point in the study. Changes associated with diet were observed

immediately (day 14) and were persistent throughout the trial. (B) Bifidobacterium, Akkermansia, Bacteroides, and Allobaculum were significantly increased in

prebiotic-fed animals at 14 days compared to controls.

Bacteroidetes (Bacteroides eggerthii, B. caccae, and B. fragilis)
and 7 Proteobacteria (Burkholderia bryophila, Acinetobacter,
Bilophila, Hydrogenophaga, Pseudomonas, Halomonas, and
Unclassified Enterobacteriaceae) were not detected in the hGOS
group. Supplementary Table 1 presents the mean relative
abundance values for each observed OTU in each of the
experimental conditions.

DISCUSSION

Prebiotics, including GOS, are selectively fermented by
gut microorganisms and promote the growth of beneficial
microorganisms when consumed in adequate amounts (16, 17).
In this study, we report the biological synthesis of hGOS
enriched in LacNAc and determined its lack of adverse effects
by determining the impact of feeding on the gut microbiome of
healthy 6-week-old C57BL/6J mice in comparison with defined
control and GOS-containing diets.

Traditionally, higher values of gut microbiota diversity has
been associated with good health (58–60). In our study, feeding
of both GOS and hGOS-enriched diets initially reduced diversity,
even when constituents of the gut microbial community
considered beneficial (Bifidobacterium,Akkermansia, and species

of Bacteroides) increased. Diversity increased at 28 and 38
days, suggesting that sustained hGOS feeding would lead to a
diversity comparable to the control group. In addition, we did
not observe differences in dietary consumption or weight in
prebiotic-fed animals compared to the control group. We have
recently reported an initial decreased diversity in 6- and 60-
week old GOS-fed C57BL/6J mice after 2 weeks (15), which is
in accordance with studies of GOS-supplemented infant formula
(61) but contrast with other studies on human adults (6, 62) and
young or adult BALB/c mice that showed no changes on diversity
due to GOS feeding (63, 64). Considering the biochemical
structure of GOS and hGOS and their similarity to HMOs, it
makes sense that these prebiotics exert a restrictive selection
of microorganisms to only microbes capable of establishing a
mutualistic relationship with the host as observed in breastfed
infants (65). The restrictive colonization effect leads in babies
to the successive establishment of different bacterial groups,
from aerotolerant bacteria to progressively stricter anaerobes
(66, 67), and could provide in adults and older adults a strategy
to beneficially modulate the gut microbiome by the subsequent
introduction of microbial network units (68).

Members of the gut microbial community including strains
of Bifidobacterium and Lactobacillus encode galactosidases
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FIGURE 4 | Phylogenetic tree shows the taxa that are present or absent in animals fed each experimental or control diet. Taxa that are highlighted by phyla and

presence is designated by adding a colored dot for each diet in which the taxa were observed.

genes that hydrolyze complex carbohydrates including GOS,
as demonstrated in our previous and current studies (15–17,
19, 69) generating products which other members of the gut
microbiota can further utilize through cross-feeding (19, 70).
Due to structural similarities between the dietary carbohydrate
structures contained in GOS and hGOS, it can be expected
that their hydrolysis will result in similar molecules, including
lactate and acetate, which could subsequently be utilized to
generate other SCFAs of biological relevance, including butyrate.
We anticipated that the additional LacNAc residues in hGOS
would provide an additional substrate for bacterial enzymatic
systems, allowing for different microorganisms to utilize these
compounds compared to GOS. However, our study was not
able to detect bacterial groups that used hGOS but not
GOS. Further experiments will be required to characterize
the gut bacterial metabolism of hGOS. Among other changes

in the gut microbiota, feeding GOS and hGOS increased
the abundance of Akkermansia muciniphila, a microorganism
that predominantly utilizes mucin as its energy source. GOS
enrichment of Akkermansia is likely a consequence of increased
mucin production (15). However, hGOS (containing LacNAc)
may be utilized directly by Akkermansia due to a similar
LacNAc structure found in hGOS and mucin (71). These
findings are consistent with our previous animal studies (15,
16); however, animal models have significant limitations due to
fundamental differences between human and mouse-originated
microorganisms (72). Further studies are currently underway to
better assess the impacts of hGOS on human bacterial isolates,
with the ultimate goal of developing a prebiotic optimized for
human consumption.

Finding the proper dose of a new therapeutic compound is
vital not only to ensure safety and efficacy in clinical trials but
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is also necessary to ensure the economic feasibility of the new
product. For GOS, a low dose (below 2 g per day) may not elicit
the desired modulatory effect (6, 73), while an excessively high
dose (over 15 grams per day) may induce undesired GI effects
(6, 74). Studies have shown the importance of translating the dose
of a compound validated in animal models to the HED [reviewed
in (75)]. Here, we demonstrated the lack of adverse effects of
a HMO mimetic composition, LacNAc-enriched GOS, and its
ability to modulate the gut microbiome at a HED of 180mg
kg−1 day−1. The values tested during our experiments are in
accordance with the recommended values by the EFSA panel (76)
for 2′-O-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT).
The tested HED was six times higher than the calculated average
amount of LacNAc consumed in a day by a 5 kg infant (1,400 vs.
232mg day−1), potentially highlighting the lack of adverse effects
of LacNAc, even at a higher-than-physiological doses (77, 78).

Breast milk is undoubtedly the optimal source of nutrition for
the human infant (79) and, until recently, the HMOs present in
mother’s milk could not be replicated in enough quantities to
add to infant formulas. Five years ago, the study by Marriage
et al. (80) showed that weight, length, head circumference growth
and uptake of 2′FL, measured in the blood and urine, were
similar to those of breastfed babies and today, some infant
formulas have already incorporated this HMO. As a major
building block of HMOs, the addition of LacNAc to the existing
list of prebiotic compounds is of paramount importance for the
further development of safe, nutritionally, and immunologically
complete formulas. Hence, our study represents the first step
in evaluating the safety and efficacy of enzymatically produced
hGOS in an animal model of weaned human infants.
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