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Edible insects are proposed as a nutritious and environmentally sustainable alternative

source to animal proteins, due to their numerous advantages in terms of reduced

ecological impact and high nutritional value. However, the novelty for edible insects relies

on the content of bioactive ingredients potentially able to induce a functional effect in

the body. The present review summarizes the main findings on the antioxidant properties

of edible insects available in the literature. A total of 30 studies involving animals, cell

cultures, or in vitro experimental studies evaluating the antioxidant effect of edible insects

are presented in this work. When the antioxidant activity was investigated, using a

wide variety of in vitro tests and in cellular models, positive results were shown. Dietary

supplementation with edible insects was also able to counteract dietary oxidative stress in

animal models, restoring the balance of antioxidant enzymes and reducing the formation

of oxidation damage markers. On the basis of the reviewed evidences, edible insects

might represent a source of novel redox ingredients at low ecological impact able to

modulate oxidative stress. However, due to the fact that majority of these evidences

have been obtained in vitro and in cellular and animal models, dietary intervention trials

are needed to assess the efficacy of edible insect consumption to modulate redox status

in humans.

Keywords: entomophagy, antioxidants, edible insects, novel foods, functional foods, oxidative stress, sustainable

nutrition

INTRODUCTION

Entomophagy, the practice of eating insects and invertebrates, has been part of human history for
centuries, playing a significant role in cultural and religious practices. Recently, a new global interest
in edible insects and invertebrates arises from the impellent necessity of preserving agriculture
resources to feed the 9 billion world’s population predicted for 2050 and to obtain a drastic
reduction of the ecological impact of food production, accounting for between 20 and 30% of the
total environmental impact (1). In terms of ecological impact, edible insects are characterized by
a negligible greenhouse gas (GHG) emission as well as water and ecological footprints, meeting
the population’s need for a more sustainable protein supply. In this view, Onnincx et al. (2) have
described lower NH3 emission level, higher average daily gain, and a comparable or lower CO2

(g/kg mass gain) production of insects, which result in a higher feed conversion efficiency, with
respect to conventional livestock. Moreover, although the fossil energy needed to mealworms
rearing is comparable to or higher than conventional food sources such as milk or different meats,
these insects produce reduced GHG—one of the main factors inducing climate changes—and the
space required for their rearing is much lower than conventional livestock (3).
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Edible insects are characterized by a high nutritional value,
and they are good potential sources of proteins, amino acids,
minerals, and lipids (4). The protein content of the various
species of insects is generally very high (50–70% on dry
basis), while lipids represent the second largest fraction of the
nutritional composition, ranging from 10 to 50% on dry basis
and depending on life stage (higher in the larval stage) and
species. Interestingly, it has been reported that they have a
higher value of the essential fatty acids linoleic (18:2 n-6) and
α-linolenic (18:3 n-3) when compared to other conventional
sources (4). However, the innovative feature of edible insects
relies on the content of bioactive ingredients and on their ability
to induce a functional effect in the body and potentially able to
provide a protective effect against diseases, entomotherapy, as
previously suggested (5). In the last years, scientific evidences on
the functional properties of edible insects have been provided
in different experimental models, with majority of the studies
focused on the understanding of the antioxidant role of edible
insects and their extracts (6, 7). In order to understand if edible
insects might play a role in the dietary modulation of oxidative
stress, in this mini-review, we aim to summarize the available
evidences regarding the antioxidant role of edible insects and
invertebrates in in vitro, ex vivo, and in vivomodels.

SEARCH STRATEGY

A search for literature investigating the antioxidant effect of
edible insects was carried out by PubMed database (National
Library of Medicine, Bethesda, MD) using the following
keywords: “edible insect,” “oxidative,” and “antioxidant.” Eligible
studies for this mini-review have included randomized controlled
trials in humans, experimental animals, or cell cultures or
in vitro experimental studies published in English, leading to
the selection of 30 studies. No studies on human subjects
were available.

RESULTS

In vitro Antioxidant Activities of Edible
Insects
Table 1 (6–24) shows the studies investigating the in vitro
antioxidant activity of edible insects and invertebrate fractions.
Several methods were taken into account: the most used
was the 1,1-diphenyl-2-picrylhydrazyl (DPPH), performed in
14 papers (7–15, 18–20, 23, 24), while 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric reducing

Abbreviations: 8-OHdG, 8-hydroxy-2′-deoxyguanosine; ABTS, 2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid); CAT, catalase; DPPH, 1,1-diphenyl-2-
picrylhydrazyl; CP, compound; FRAP, ferric reducing antioxidant power; GHG,
greenhouse gas emissions; GPx, glutathione peroxidase; GST, glutathione S-
transferase; LS, lipo-soluble extract; MDA, malondialdehyde; NO, nitric oxide;
Nrf2, Nuclear factor erythroid 2-related factor; ORAC, oxygen radical absorbance
capacity; PH, protein hydrolysates; RNS, reactive nitrogen species; ROS, reactive
oxygen species; SAHR, scavenging activity on hydroxyl radicals; SOD, superoxide
dismutase; SRSC, superoxide radical scavenging capacity; TAC, total antioxidant
capacity; TEAC, Trolox equivalent antioxidant capacity; TOS, total oxidant status;
WI, whole insect; WS, water-soluble extract.

antioxidant power (FRAP) were utilized in 11 (6, 7, 10, 11,
13, 14, 16, 17, 19, 20, 22) and 8 studies (6, 10–12, 14, 15, 19,
21), respectively. Antioxidant activity was investigated also as
scavenging activity against different radicals, metal ion chelating
activity, reducing power, or, only for the paper of Sun et al.
(25), with β-carotene and linolenic acid bleaching tests. Nineteen
studies were carried out, involving 30 species of insects; of these,
the most studied was Tenebrio molitor, cited in nine papers (6–
10, 13–16), followed by Acheta domesticus (6, 8, 9) and Gryllodes
sigillatus (7, 19, 20), tested in three papers, and Bombyx mori
(6, 11), Hermetia illucens (21, 22), and Lethocerus indicus (6, 24)
in two papers. Water-soluble fractions were tested in 12 papers
(6, 9–15, 17, 18, 20, 24), protein hydrolysates were evaluated in 6
research articles (7, 8, 16, 19, 21, 22), while lipo-soluble fractions
were reported in 2 papers only (6, 23). Interestingly, all tested
fractions showed a significant antioxidant activity with the only
exception of the cricketGryllus sigillatus protein hydrolysates that
did not show any positive results using the FRAP method, while
an antioxidant capacity was recorded using ABTS, DPPH, and
metal ion chelating activity methods (19). The study conducted
by Di Mattia et al. (6) was the only one providing a comparison
between the antioxidant activity of water- and lipo-soluble
fraction edible insects and foods like fresh orange juice and olive
oil. Results showed that water-soluble extracts of grasshoppers,
silkworm, and crickets display the highest values of antioxidant
capacity, expressed as Trolox Equivalent Antioxidant Capacity
(TEAC), 5-fold higher than fresh orange juice. Furthermore,
water-soluble extracts of grasshoppers, African caterpillars, and
crickets had a reducing power (FRAP) double than that of fresh
orange juice. As regards the lipo-soluble fraction, silkworm,
evening cicada, and African caterpillars showed a TEAC twice
than that of olive oil. Differently from other studies, Dutta et al.
(18) showed that aqueous extract of Vespa affinis was able to
increase the activity of the endogenous antioxidant enzymes
catalase (CAT) and glutathione S-transferase (GST) (18).

Antioxidant Activity of Edible Insects in
Cells and Animal Models
Table 2 summarizes the results obtained on the antioxidant
activity of different insects and invertebrates; eight were tested
in cellular models (12, 13, 18, 20, 26–29) and as many in
animal models (20, 27, 30–35). For what concerns cellular
models, the effects of the water-soluble extract of dung beetles
of Onitis sp., mole crickets of Gryllotalpa sp., grasshopper of
Caelifera sp. (28), Oryctes boas, and Zonocerus variegatus (29)
on the oxidative status of human peripheral blood lymphocytes
were evaluated, showing that, at lower concentrations of
all of their WEs, they display antioxidant activities, but at
higher concentrations, their effects switched to prooxidant.
Interestingly, intermediate concentrations did not affect the
antioxidant efficiency. According to the results obtained in a
cell-free system (18), the aqueous extract of V. affinis was able
to increase the activity of both GST and CAT and to reduce
reactive oxygen species (ROS) also in THP-1 human monocytes
and human plasma. Oxidative stress induced by high glucose
treatment caused a significant decrease of both Nrf2 and GST
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TABLE 1 | In vitro antioxidant activity of edible insects and invertebrates.

Edible insects - extract Concentrations Antioxidant method Result References

Acheta domesticus, Tenebrio molitor

- PH

0.05–5 mg/ml DPPH + Messina et al. (8)

Acheta domesticus, Tenebrio molitor

- WS

10 mg/ml DPPH + Navarro del Hierro et al.

(9)

Allomyrina dichotoma, Apis mellifera,

Gryllus bimaculatus, Protaetia

brevitarsis,

Teleogryllus emma, Tenebrio molitor -

WS

500µg/ml ABTS, DPPH, FRAP + Pyo et al. (10)

200µg/ml Nitric scavenging activity +

Bombyx mori - WS 10 g/50ml DPPH, ABTS, FRAP + Anuduang et al. (11)

Brachytrupes orientalis - WS 0.25–6.25 mg/ml DPPH + Dutta et al. (12)

1.25–12.5 mg/ml FRAP, SAHR, SRSC +

Tenebrio molitor - WS – ABTS, DPPH + Son et al. (13)

Tenebrio molitor - WS 3 g/10ml ABTS, DPPH, FRAP + Mancini et al. (14)

Tenebrio molitor - WS 0.625–5.0 mg/ml DPPH, FRAP, ORAC,

SAHR, hydrogen peroxide

radical scavenging activity

+ Tang et al. (15)

Tenebrio molitor, Ulomoides

dermestoides - PH

0.1–1.0 mg/ml ABTS + Flores et al. (16)

Pachymerus nucleorum - WS 1 g/100ml ABTS + Alves et al. (17)

Vespa affinis L. - WS 0.25–6.25 µg/µl DPPH + Dutta et al. (18)

1.25–15 µg/µl SAHR, SRSC +

1.25–10 µg/µl Activities of CAT and GST

enzymes

+

Gryllodes sigillatus - PH 1 mg/ml ABTS, DPPH, metal ion

chelating activity

+ Hall et al. (19)

FRAP -

Gryllodes sigillatus, Schistocerca

gregaria, Tenebrio molitor - PH

– ABTS, DPPH, Fe2+

chelating activity

+ Zielinska et al. (7)

Gryllus bimaculatus - WS – ABTS + Hwang et al. (20)

- DPPH +

Hermetia illucens - PH 14 g/l SAHR + Mintah et al. (21)

Hermetia illucens - PH 2 mg/ml ABTS + Mintah et al. (22)

4 mg/ml FRAP, SRSC +

Clanis bilineata - LS 10–200µg/ml DPPH + Sun et al. (23)

0.1–4 mg/ml β-carotene and linolenic

acid bleaching test

+

Various (Acheta domesticus,

Alphitobius diaperinus, Bombyx mori,

Calliptamus italicus, Imbrasia

oyemensis, Lasius niger, Lethocerus

indicus, Rhynchophorus ferrugineus,

Scolopendra, Tanna japonensis,

Tenebrio molitor, Haplopelma

albostriatum, Pandinus imperator -

WS and LS)

– ABTS hydro, ABTS lipo,

FRAP

+ Di Mattia et al. (6)

Various (Crocothemis servilia,

Cybister tripunctatus, Hydrophilus

olivaceous, Laccotrephes maculatus,

Lethocerus indicus - WS)

1–500 mg/ml DPPH + Shantibala et al. (24)

ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid); CAT, catalase; DPPH, 2,2-diphenyl-1-picrylhydrazyl; FRAP, ferric reducing antioxidant power; GST, glutathione S-

transferase; LS, lipo-soluble extracts; ORAC, Oxygen radical absorbance capacity; PH, protein hydrolysates; SAHR, scavenging activity on hydroxyl radicals; SRSC, superoxide radical

scavenging capacity; WS, water-soluble extract.
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TABLE 2 | Antioxidant activity of edible insects and invertebrates in cellular and animal models.

Edible insects - extract Cell type Dose Antioxidant/Oxidant markers References

Cellular studies

Bombyx mori - PH RAW264.7 0.1, 0.3, 0.5 mg/ml NO Yoon et al. (26)

Gryllus bimaculatus - PH NO ↔

Tenebrio molitor - PH NO ↔

Brachytrupes orientalis - WS C2C12 7.5, 10*, 12.5* mg/ml Lipid peroxidation: MDA ↓*; ROS

↓*; GST ↑*

Dutta et al. (12)

Gryllus bimaculatus - CP D-HMVECs 5, 10 mg/ml NO ↓ Ahn et al. (27)

Gryllus bimaculatus - WS RAW264.7 20–100µg/ml NO ↓ Hwang et al. (20)

Onitis sp. - WS hPBL 5–2,000 ppm TOS ↔ (↑ 2,000 ppm) TAC ↔

↑15 ppm, ↓1,000, 2,000 ppm

Koc et al. (28)

Gryllotalpa sp. - WS TOS ↔ (↑ 2,000 ppm); TAC ↔

(↑10 ppm, ↓1,000, 2,000 ppm)

Caelifera sp. - WS TOS ↔ (↑ 2,000 ppm); TAC ↔

(↓ 2,000 ppm)

Oryctes boas - WS hPBL 5–2,000 ppm TAC ↑ (10–40 ppm), ↓ (2,000

ppm) TOS ↑ (1,000, 2,000 ppm)

Memis et al. (29)

Zonocerus variegatus - WS TAC ↑ (10–25 ppm), ↓

(500–2,000 ppm) TOS ↑

(200–2,000 ppm)

Tenebrio molitor - WS, LS RAW264.7 WS: 25–500µg/ml LS:

0.05–5µg/ml

NO ↓ Son et al. (13)

Vespa affinis - WS THP-1 0.4, 0.8*, 1.2* µg/µl GST, CAT ↑ Dutta et al. (18)

THP-1 0.8 µg/µl ROS ↓

hPlasma 1.25–10.00 µg/µl GST ↑ (except for 1.25 and 2.50

µg/µl) CAT ↑ (except for 1.25

µg/µl)

Animal studies

Edible insects - extract Animal/Disease Dose Treatment duration Antioxidant/Oxidant markers References

Bombyx mori - LS Wistar rats,

hypercholesterolemia

1, 2*, 4** ml/kg/day 6 weeks Serum: TAC*, SOD *,**, GPx *,**

↑; MDA ↓ Liver: TAC, SOD ↑;

GPx ↔; MDA ↓

Zou et al. (30)

Green cocoon shell of

Bombyx mori - WS

ICR mice, type 2

diabetes

150, 250*, 350* mg/kg 7 weeks Liver: GPx, SOD ↑; MDA,

8-OHdG ↓*

Zhao et al. (31)

Gryllus bimaculatus - WS Wistar rats, obesity 100, 200* mg/kg 2 months Blood protein carbonyl content

↓*(2m) CAT ↔ Liver: MDA↓

Serum: uric acid ↔↓(1m), ↑(2m)

Ahn et al. (32)

Gryllus bimaculatus - CPs BKS.Cg-m+/+Leprdb

mice, diabetes

5 mg/kg 1 month Carbonyl content: blood ↓, liver

↔. GST ↔; CAT, GPx ↑

Ahn et al. (27)

Gryllus bimaculatus - WI Sprague–Dawley rats,

varicocele

1.63, 6.5 mg/kg 42 days Testicular tissues:

MDA, ROS/RNS ↓

SOD, GPx, CAT ↑

Karna et al. (33)

Gryllus bimaculatus - WS C57BL/6J mice,

alcoholic liver damage

200 mg/kg 2 weeks Liver: 8-OHdG, MDA ↓ Small

intestine: 8-OHdG ↓

Hwang et al. (20)

Protaetia brevitarsis - WS C57BL/6 mice, obesity 100, 200* mg/kg/day 7 weeks Liver: GPx ↑; CAT ↑* Ahn et al. (34)

Tenebrio molitor - WS

(fermented)

Sprague–Dawley rats,

alcoholic liver disease

50, 100, 200

mg/kg/day

8 weeks Liver: β-oxidation ↑ Choi et al. (35)

8-OHdG, 8-hydroxy-2′ deoxyguanosine; CAT, catalase; CP, compound; Gpx, glutathione peroxidase; GST, glutathione S-transferase; LS, lipo-soluble extracts; MDA, malondialdehyde;

NO, nitric oxide; PH, protein hydrolysates; RNS: reactive nitrogen species; ROS, reactive oxygen species; SOD, superoxide dismutase; TAC, total antioxidant capacity; TOS, total oxidant

status; WI, whole insect; WS, water-soluble extract.

protein expression in C2C12, a murine myotubes cell line,
and that the supplementation with the hydro-alcoholic extract
of Brachytrupes orientalis re-established the normal levels of

both proteins and prevented the high glucose-induced oxidative
impairment in terms of ROS and malondialdehyde (MDA) levels
(12). Three different studies have underlined the capacity of
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aqueous extracts of Gryllus bimaculatus (20), the methanolic
extract of defatted powder and usaponifiable lipids, obtained
by T. molitor (13), and B. mori protein hydrolysates to reduce
nitric oxide (NO) production in lipopolysaccharide-induced
RAW 264.7, a murine macrophage cell line. NO production was
reduced also in D-HMVECs, i.e., diabetic type 2 microvascular
endothelial cells, by glycosaminoglycan fromG. bimaculatus (27).
In agreement with the paper of Yoon and coworkers (26), protein
hydrolysates of T. molitor and G. bimaculatus did not exert any
effect on NO release.

A total of eight intervention studies on animal models
characterized by hypercholesterolemia, diabetes, obesity, and
alcoholic liver damage have been published. In more detail, Zou
et al. (30) reported that in Wistar rats with hypercholesterolemia,
B. mori pupae oil supplementation was able to restore superoxide
dismutase (SOD) levels, increasing total antioxidant capacity
(TAC) levels, reducing MDA in liver and serum, and restoring
the activity of glutathione peroxidase (GPx) in rats’ liver, stressed
by a high-cholesterol diet. Moreover, the supplementation with
ethanol extract of the sericin layer from the green cocoon shell
of B. mori increased liver GPx and SOD in obese mice with type
2 diabetes, and the treatment also reduced the liver content of
MDA and 8-hydroxy-2′-deoxyguanosine (8-OHdG), as markers
of lipid and DNA oxidative damage (31). Ethanolic extract of
G. bimaculatus, added to a high-fat diet, did not affect serum
CAT in obese rats (32). However, the prolonged treatment with
ethanolic extract of G. bimaculatus repaired the protein and lipid
oxidative damage caused by high-fat diet in both liver and blood,
where serum uric acid—the final oxidation product of purine
metabolism—and carbonyl—a marker of protein oxidation—
concentrations were reduced (32). In a study carried out in
2019 by Hwang et al. (20), they reported the positive action
of the aqueous extract of G. bimaculatus in restoring the
normal physiological levels of 8-OHdG levels and MDA content
in liver and small intestine of C57BL/6J mice liver damage
caused by acute alcohol exposure. Moreover, treatment with G.
bimaculatus significantly restored the increased levels of MDA,
ROS, and reactive nitrogen species (RNS) and the reduced levels
of SOD, GPx, and CAT in testicular tissue of Sprague–Dawley
rats affected by varicocele (33). Glycosaminoglycan extracted
from G. bimaculatus and administered for 1 month to BKS.Cg-
m+/+Leprdb diabetic mice reduced blood carbonyl content, but
not that of liver. It also did not affect GST, but improved CAT
and GPx levels (27). The ethanolic extracts of Protaetia brevitaris
larvae, administered with a high-fat diet for 7 weeks, increased
GPx and CAT in liver of obese C57BL/6J mice (34). Finally,
the treatment fermented defatted T. molitor powder of Sprague–
Dawley rats fed with a chronic alcohol diet dose-dependently
increased hepatic β-oxidation (35).

DISCUSSION

In this review, we showed that different species of edible insects
display an antioxidant activity in in vitro models and are able to
modulate induced oxidative stress in cellular and animal models.
All the insects tested in vitro and in different cellular models,

except one, display radical scavenging or metal ion chelation
properties, as well as modulation of antioxidant enzymes. Results
in animal models have clearly shown, in all the studies, that
the increased content of markers of oxidative damage markers,
induced by the dietary stress, was reversed following the
treatment with edible insects, restoring the impaired activity of
antioxidant enzymes, and by reducing oxidation products. Redox
status was evaluated through the ability of the insect extracts to
reduce ROS (three studies) or to increase total antioxidant status
(two studies) in cellular models. Moreover, specific oxidation
markers were chosen: the urinary excretion of 8-OHdG, a
predictive risk factor for cancer, atherosclerosis, and diabetes
(36), and MDA that plays a critical role in atherosclerosis by its
capacity to drive inflammatory processes (37). These oxidation
products were studied respectively in four in vivo interventions,
one in cells for MDA and in two in vivo interventions for 8-
OhdG, also in those cases with positive results. One intervention
(32) has also evaluated the content of serum uric acid—the final
oxidation product of purine metabolism—and two interventions
(27, 32) have evaluated that of carbonyl—a marker of protein
oxidation. In this context, we should recall that protein carbonyl
levels are elevated in several pathological conditions, including
neurodegenerative diseases, obesity, or diabetes (38); on the other
hand, serum uric acid levels can be a marker of renal and
cardiovascular risk, in particular as a consequence of diabetes
(39). The antioxidant enzymes that were taken into account
in these studies were CAT, which was studied in six different
interventions (four in vivo, one in a cellular model, and one in
a cell-free system); GPx, which was investigated in five in vivo
studies; SOD, which was analyzed in three in vivo studies; and
GSTs, which were evaluated in one in vivo intervention, two
interventions in cellular models, and one in vitro. Moreover, Nrf-
2—a transcription factor that acts as a master regulator of the
antioxidant response system and whose activity declines with
age as well as with degenerative disorders (38)—was reported
to increase only in one study carried out in a myotube cell line.
Conflicting results arose from human studies that evaluated the
relationship between diseases or aging and antioxidant enzymes:
indeed, an increase in antioxidant enzymes can also be related to
a high response to oxidation (38). However, in all the examined
studies, the oxidative stress induced a reduction of these enzyme
levels that was prevented by insect supplementation. Based on
these evidences, it can be stated that, in the applied conditions,
edible insects exert mostly a positive effect on the modulation of
antioxidant enzymes.

On the basis of the positive results of the three studies
focused on NO production in macrophages, radical involved in
the modulation of inflammation and immune regulation (40), it
might be speculated that edible insect extracts might also have a
potential anti-inflammatory activity due to their ability to reduce
the release of NO.

As regards the insects, 35 different species were investigated;
the ones that arouse major interest in researchers were T. molitor
and those belonging to the Gryllydae family, respectively studied
in 13 and 10 different researches. However, it is interesting to
note that the experimental studies carried out in vivo are mainly
focused on G. bimaculatus, P. brevitaris, and B. mori, while
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curiously, all the studies performed using T. molitor are in vitro,
with only one exception (35).

CONCLUSIONS

On the basis of the reviewed evidences, edible insects might
represent a source of novel redox ingredients at low ecological
impact able to modulate oxidative stress. However, due to
the fact that majority of these evidences have been obtained

in vitro and in animal models, dietary intervention trials are
needed to confirm the antioxidant efficacy of edible insects
in humans.
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