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Cancer as a disease continues to ravage the world population without regard to sex, age,

and race. Due to the growing number of cases worldwide, cancer exerts a significant

negative impact on global health and the economy. Interestingly, chemotherapy has

been used over the years as a therapeutic intervention against cancer. However,

high cost, resistance, and toxic by-effects to treatment have overshadowed some of

its benefits. In recent times, efforts have been ongoing in searching for anticancer

therapeutics of plant origin, focusing on polyphenols. Urolithins are secondary polyphenol

metabolites derived from the gut microbial action on ellagitannins and ellagic acid-rich

foods such as pomegranate, berries, and nuts. Urolithins are emerging as a new

class of anticancer compounds that can mediate their cancer-preventive activities

through cell cycle arrest, aromatase inhibition, induction of apoptosis, tumor suppression,

promotion of autophagy, and senescence, transcriptional regulation of oncogenes, and

growth factor receptors. In this review, we discussed the growing shreds of evidence

supporting these secondary phenolic metabolites’ anticancer properties. Furthermore,

we have pointed out some of the future directions needed to establish urolithins as

anticancer agents.
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INTRODUCTION

Cancer is a disease that is one of the most challenging public health concerns of all time and has
become a threat to the well-being of the individual population as its morbidity and mortality rates
continue to increase (1, 2). Sitting at the edge of being a leading cause of non-communicable deaths
globally (just next to cardiovascular disease), the number of new cases and deaths due to cancer
has been projected to rise due to increased population, age, and lifestyle changes that serve as risk
factors for cancer (3). In 2018, it was estimated that 18.1 million people were living with cancer, and
the number of deaths arising from it was put at 9.6 million (4, 5).

Despite the increasing public awareness and advances in diagnosis and treatment regimens,
there have been drawbacks arisen from drug resistance and increment in overall treatment cost
in addition to unwanted side effects from anticancer drugs (2). Hence, efforts have been ongoing
to look for a safer, cheaper, and more responsive chemoprevention strategy for cancer treatment.
Such strategy involves the use of phytochemicals of natural origin to delay the onset of cancer,
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prevent or cure it (6, 7); culminating in the increased interest in
research involving the search for anticancer agents in medicinal
herbs and other plant materials (1). These phytochemicals have
been shown to possess anticancer activities in animal models.
They exert their biological effects through apoptosis induction,
suppression of inflammatory reactions, and mitotic inhibition at
different cancer development stages (8).

POLYPHENOLS AS ANTICANCER AGENTS

Polyphenols are phytochemicals in foods, and they are present
in abundant levels in fruits and vegetables. They exist in simple
forms, such as in flavonoids or conjugated with sugars or organic
acid. However, only a small fraction of the polyphenols are
absorbed in the small intestine, where they are later metabolized
by the gut microbiota. Thus, their biological function depends
on the amount eaten in the form of food and by the tissue-
derived metabolites or those obtained through the gut-derived
microbial action (9). An increasing body of knowledge has
supported the fact that polyphenols’ consumption from time
to time reduces the susceptibility to colorectal cancer (10),
prostate cancer (11), cervical cancer (12), and breast cancer
(13, 14). The anticarcinogenic effect of polyphenols involves
several mechanisms. It includes but not limited to regulation
of cellular signaling involving cancer cells, cell proliferation
inhibition, induction of apoptosis, modulation of metastasis and
angiogenesis, autophagy, epigenetic modification, and influence
on the rate of change in the progression of the cell cycle (2, 12,
15–19).

ELLAGITANNINS AND ELLAGIC ACID AS
SOURCES OF UROLITHINS

The search for efficient, cost-effective, and harmless anticancer
agents of natural origin is currently ongoing. One of such
compounds that offer a promising prospect is ellagitannins
(20). Ellagitannins (ETs) are hexahydroxydiphenoic (HHDP)
acid esters having a complex chemical structure with a D-
glucose carbohydrate moiety (21). They are either monomeric,
i.e., having one glucose core with a different attachment of
HHDP groups such as the punicalagin or polymeric ellagitannins,
formed as a result of the polymerization of two or more
monomeric ET units such as sanguiin H-6. As hydrolyzable
tannins, they undergo hydrolysis producing HHDP, which is then
spontaneously converted into ellagic acid (21). Furthermore, the
ellagitannins form complexes with proteins and polysaccharides,
and this forms part of the defense system used by plants
for the protection against animal and bacterial attacks (22).
They are found in many fruits, beverages, and nuts such as
blackberries, strawberries, pomegranates, black teas, almonds,
walnuts, and pecans. However, their chemical and biological
reactivity depends on their chemical structure (23). This
structural complexity and the ellagitannins’ susceptibility to
hydrolysis are critical for their potential health benefit (24).
The ellagitannins possess various biological activities, including

anti-inflammatory, antioxidant, antimicrobial, and anticancer
activities (21, 25, 26).

Ellagic acid is a natural phenolic, double lactone ring
compound of hexahydroxydiphenic acid (27). It is found in
plants as a glucoside or as part of ellagitannins (15). A large
amount of ellagic acid can be found in raspberries, strawberries,
pomegranate, pecans, cranberries, and walnuts (15, 27, 28).
Ellagic acid has been reported as having chemopreventive, radical
scavenging, and antiviral properties (29). Other activities include
anti-atherosclerosis, anti-hypertensive, anti-bacterial, and anti-
inflammatory activities (25, 30). Its antitumor mechanism of
action has been linked to its pro-apoptotic and antiproliferative
properties (31, 32). For example, ellagic acid can act as an
inhibitor of angiogenesis, extracellular matrix (ECM) invasion,
and inhibitor of cell migration (32).

UROLITHINS AS ANTICANCER AGENTS

Urolithins are the dibenzopyran-6-one secondary metabolites
obtained from ellagic acid (EA) or ellagitannin (ET) rich
foods such as pomegranate, berries, nuts, and oaks following
gut microbial action (33). Following the ingestion of ET-rich
foods, ET undergoes hydrolysis in the gut to EA. This is then
subsequently metabolized through decarboxylation followed by
dehydroxylation reactions by the gut microbiota to form different
urolithin intermediates (Figure 1) such as urolithin D (Uro-
D), urolithin C (Uro-C), urolithin A (Uro-A), and urolithin B
(Uro-B) (34, 35); with Uro-A and Uro-B serving as the major
metabolites present in the gut (36) and Uro-A as the most
biologically active as compared to the rest of the metabolites (37).
The produced urolithins are more lipophilic than the EA, and
this has been suggested as a factor responsible for the greater
urolithins absorption rate as compared to EA (38).

Themetabolic breakdown of ellagitannins and ellagic acid into
urolithins depends on the person’s gut microbiota composition.
Individuals metabolizing ET and EA into urolithins are
categorized into three groups or phenotypes called metabotypes.
While those that produce Uro-A are classified as metabotype
A, the producers of Uro-A, IsoUro-A, and Uro-B are classified
under metabotype B. Individuals who do not produce any of the
urolithins or produce it at a none detectable level are grouped
under metabotype 0 (35, 38–40).

Urolithins have been reported to exhibit good bioavailability
compared to ET and EA, and they are detected in concentrations
at a micromolar range in plasma and urine samples (41).
In humans, urolithins have been detected at a significant
concentration in different tissues such as breast (42), colon
(41) and prostate (43). The bioavailability of urolithins has
been recently reviewed here (44). Following their absorption,
urolithins can reach different parts of the body where they
mediate various biological functions such as anti-obesity (45),
antimicrobial, anti-inflammatory, anticancer (36, 46). Their
anticancer effects (Table 1) are thought to be achieved through
the regulation of expression of oncogenes, genes that mediate
cell cycle, tumor suppressors, and growth factor receptors
(72–74) (Figure 2).
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FIGURE 1 | A summarized pathway for the formation of urolithins from ellagitannin and ellagic acid in the gut. Following the ingestion of food containing ellagitannins,

they are hydrolyzed in the stomach to yield ellagic acid. The ellagic acid then undergoes series of transformations by the gut microbiota forming different urolithin

molecules. Created with ChemSketch and BioRender.com.

This review presents recent evidence of urolithins
acting as anticancer agents at the preclinical stages
in different cancer types. We started by providing

background on these cancer types, followed by
urolithins acting as anti-cancer agents in these
cancer types.
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TABLE 1 | In vitro mechanism of action of urolithins.

Metabolite Cell line Mechanism of action References

Uro-A HepG2.2.15 Inhibition of cell proliferation and invasion (47)

Uro-A and Uro-B HT-29 and Caco-2 Cycle arrest at the G2/M and induction of apoptosis (48)

Uro A and Uro-B Caco-2 Modulation of phase I and phase II enzymes activities (49)

Uro-A PC-3 and C4-2B AR/pAKT signaling inhibition (50)

IsoUro-A and Uro-A Caco-2 and

CCD18-Co

Cell cycle arrest at S, G2/M phase, and apoptosis induction (37)

Uro-A, Uro-B, Uro-C,

Uro-D, and IsoUro-A

Caco-2, HT-29, and

SW480, CCD18

Cell cycle arrest at the S phase in addition to G2/M for Uro-A and IsoUro-A. CDKN1A

induction.

(51)

Uro-A, Uro-B, Uro-C, and

Uro-D

Caco-2, SW480, and

HT-29

Cell cycle arrest at the S and G2/M phases (52)

Uro-A RAW264 Suppressed NF-κB, AP-1, and inhibited pAKT and pJNK (53)

Uro-A, Uro-B, M-Uro-A,

M-Uro-B, and Uro-B sulfate

MCF-7aro Inhibit aromatase activity (54)

Uro-A and Uro-B MCF-7 Estrogenic and antiestrogenic (55)

Uro-A, Uro-B, and Uro-C UMUC3 Cell cycle arrest at S phase by Uro B and G2/M for Uro-A in addition to inhibition of

apoptosis, pAkt, and pERK

(20)

Uro-A HEK 293T Inhibition of the wnt signaling pathway (56)

Uro-A LNCaP64 Increase in Cell at G1 phase, apoptosis induction, caspase 3, and 7 activations, p21

upregulation

(18)

Uro-A, Uro-B, and Uro-C LNCaP and DU-145 Apoptosis induction and PSA secretion modulation (57)

Uro-A HCT116 Inhibition of cell growth, cell cycle arrest at the G2/M phase, induction of p53

stabilization and upregulation of p21 and TIGAR gene expressions

(58)

Uro-A Caco-2, SW-480, and

HT-29

Inhibition of cell proliferation, cell cycle arrest at G2/M phase in Caco-2 and SW480

cells, in addition to S phase arrest in all cell lines when co-treated with 5-FU and

5′DFUR, apoptosis induction, caspase 8 and 9 activation

(59)

Uro-A, Uro-B, and Uro-C LNCaP Inhibit cell proliferation, inhibit arginase activity, and reduced PSA secretion except for

Uro B

(60)

Uro-A and Uro-B LNCaP Decreased AR expression, reduced PSA levels, and induced apoptosis (17)

Uro-A HepG2 Suppression of β-catenin signaling, upregulation of p53, p38-MAPK, and caspase-3

expression, reduced intracellular ROS level, elevated intracellular SOD, and GSH-Px

activity.

(61)

Uro-A HEC1A and Ishikawa Cell cycle arrest at the G2/M phase modulates the expression of GRIP1 and ERα. (62)

Uro-A sw620 Cell cycle arrest at G2/M phase, autophagy and apoptosis induction (63)

mUA DU145 Induction of apoptosis and mitochondrial depolarization decreased the expression of

miR-21, pAkt, and elevated PTEN expression

(64)

Uro-A HSFs Cell cycle arrest at G2/M phase, reduced intracellular ROS level, increased expression

of type I collagen, and a decrease in the expression of MMP-1.

(65)

Uro-A, Uro-B, and

8-OMeUro-A

T24 Increase expression of p38 MAPK, decrease expression of MEKK1 and P-c-Jun,

induced apoptosis, decreased levels of intracellular ROS, MDA, and increased

intracellular SOD

(66)

Uro-D PC3 Inhibition of EphA2 phosphorylation (67)

Uro-A, UM-A, UM-B, and

IsoUro-A

HCT-116, Caco-2,

HT-29, and

CCD18-Co (normal

cell)

Inhibition of colony formation in HCT-116, Caco-2 cells, and HT-29 by only Uro-A. cell

cycle arrest at G2/M phase in HCT-116, Caco-2 cells, induction of cellular

senescence by Uro-A and UM-A in HCT-116

(68)

Uro-A, Uro-B, IsoUro-A,

Uro-A 3-glur, IsoUro-A

3-glur, Uro-A 3-sulf, Uro-B

3-glur, and Uro-B 3-sulf

MCF-7 and

MDA-MB-231

Antiproliferative, estrogenic activity, and antiestrogenic activity (69)

Uro-A, Uro-B, Uro-C, and

Uro-D

HT-29 cells Dose- and time-dependent decrease in cell proliferation, decrease clonogenic size

and number, cycle arrest at the G0/G1 and G2/M (Uro-A and Uro-B), induction of

apoptosis.

(70)

MPhA and MPhB Caco-2 Inhibition of the number and size of colonospheres and inhibition of ALDH activity

(MPhA)

(71)

AP, Androgen Receptor; CDKN1A, Cyclin-Dependent Kinase Inhibitor 1A; NF-κB, Nuclear Factor-κB; AP-1, Activator Protein-1; ERα, Estrogen Receptor-α; mUA, Methylated Urolithin A;

MMP-1, Matrix Metalloproteinase-1; HSFs, Human Skin Fibroblasts, ROS, Reactive Oxygen Species; SOD, Superoxide Dismutase; GSH-Px, Glutathione Peroxidase; PTEN, Phosphatase

and Tensin Homolog, GREB1, Growth Regulation By Estrogen in Breast Cancer 1; MDA, Malondialdehyde; 5′DFUR, 5-deoxy-5-fluorouridine; 5-FU, 5-fluorouracil; UM-A, urolithin

metabotype A; MPhA, mixed metabolites mimicking metabotype A; MPhB, mixed metabolites mimicking metabotype B.
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FIGURE 2 | A summary of pathways targeted by urolithins in mediating their anticancer activity. The urolithins mechanism of action involves decreased oxidative

stress, cell cycle arrest, inhibition of survival pathways, induction of apoptosis, tumor suppression, promotion of autophagy and senescence, transcriptional regulation

of oncogenes, inhibition of growth factor receptors, and upregulation of tumor suppressor genes.

UROLITHINS ON PROSTATE CANCER

Prostate cancer is one of the most common forms of cancer
affecting men and responsible for 20% of all new cancer cases
(75). Its incidence rate is increasing and occurs majorly in
western countries due to environmental factors and lifestyle
changes (76). The serum value of Prostate-Specific Antigen
(PSA) is used as a biomarker to screen and diagnose prostate
cancer. However, this method often poses a serious concern
as prostate cancer is often over-diagnosed and leads to over-
treatment (75). Besides, PSA is involved in the invasion,
metastasis, and promotion of tumors. Its expression is under
androgen regulation through the androgen receptor (17). One
of the approaches employed in treating prostate cancer is
androgen deprivation therapy, which involves either decreasing
the circulating androgen level or inhibiting its interaction with
its receptor (17, 57).

Urolithins mediate their chemopreventive potentials in
prostate cancer in a dose-dependent manner, which is associated
with the induction of apoptosis, upregulation of p21, and cell
cycle arrest (17, 18, 57, 60, 77). In LNCap prostate cancer cell
lines, treatment of these cell lines with Uro-A (40µM) and B
(40µM) induced apoptosis and significantly inhibited prostate
cancer cells’ growth as evidenced from the cell cycle arrest at
S and G2/M phases. The growth inhibition is associated with a
time-dependent decrease in PSA and androgen receptors’ mRNA
level and protein expression. This decrease also resulted in the
reduced interaction between the AR and its response element

(RE), leading to PSA transcription inhibition (17, 18). Urolithin
C at a lower concentration (IC50 = 35.2 ± 3.7µM) showed a
similar effect in LNCap prostate cancer cells (60).

The antiproliferative potential of the methylated form of Uro-
A (mUA) has also been investigated in a prostate cancer cell line.
Treatment of DU145 prostate cancer cell line with mUA (IC50

44.3 ± 2.9µM, 48 h) resulted in a dose-dependent inhibition
of cell proliferation, induction of apoptosis with the activation
of caspase pathway, decrease expression in Bcl-2/Bax ratio, and
the depolarization of the mitochondria. Besides, the apoptotic
induction, which is dependent on the expression levels of PTEN
and Pdcd4, has been found to involve the downregulation
in the expression of miR-21 and PI3K/Akt/β-catenin pathway
inhibition (64). This chemopreventive property of mUA appears
to be of significant importance since miR-21 is implicated in
prostate cancer and other cancer types, and its overexpression is
often associated with cancer cell invasion and metastasis (78, 79).
In vivo, intraperitoneal injection of mUA (80 mg/kg) for 4 weeks
significantly decreased tumor volume in DU145 xenograft mice.
The decreased tumor volume was associated with decreased miR-
21 expression and increased protein expression of PTEN (64),
confirming the observed in vitro effect.

Urolithin A’s chemopreventive effects have been tested on
androgen receptor-negative prostate cancer cell lines such as
PC-3 and androgen receptor-positive prostate cancer cell lines
such as C4-2B. Dahiya et al. (50) reported that the Uro-A
(35µM) treatment of prostate cancer cell lines, PC-3 and C4-
2B, resulted in cell growth arrest and induction of apoptosis
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with the activation of caspase-3 and PARP. This effect involves
the inhibition of androgen receptor signaling. They reported
that Uro-A at this concentration exerted this apoptotic effect in
about 40% and 11% of C4-2B and PC-3 cell lines, respectively.
In vivo, non-toxic oral administration of Uro-A (50 mg/kg) to
mice inhibited C4-2B xenograft growth, which was associated
with the downregulation of the androgen receptor, and pAKT
signaling pathways. This Uro-A inhibitory activity is very much
relevant within the context of castration-resistant prostate cancer
(CRPC) since it has been shown that between 15 and 20% of
patients developed resistance to androgen ablation therapy (a
standard treatment option for prostate cancer) and progressed
into CRPC due to the activation of other prosurvival pathways
such as PI3K/AKT signaling (80).

A similar study explored the use of urolithins in combination
therapy for cancer treatment. The authors studied the
interactions between urolithins and bicalutamide (a clinically
used non-steroidal antiandrogen) on LNCaP (androgen-
dependent) and DU-145 (androgen-independent) cell lines. At
an increasing concentration of (10–40µM), urolithins A, B,
and C individually inhibited prostate cancer cell proliferation.
Uro-C’s antiproliferation effect was more effective on DU-145
cell lines than Uro A and B, which were more effective on LNCaP
cells. In combination with bicalutamide (10µM), both Uro-A
and B had similar addictive effects on LNCaP cells’ inhibition.
Uro-C antagonized the effect of bicalutamide (57). This result
showed the potential use of Uro-A and Uro-B in combination
therapy to improve prostate cancer treatment.

The Eph-ephrin system consists of a network of proteins that
take part in many pathophysiological processes (81). This system
is essential in controlling various developmental processes as well
as in maintaining adult tissue homeostasis. Its abnormal function
has been implicated in various diseases, including cancer. Hence,
the Eph receptors are potential treatment targets for cancer
(82). In mammals, including humans, nine EphA and five EphB
receptors are present (83). Previous studies on the activation of
EphA2 in prostate cancer cell showed the involvement of this
receptor in cell adhesion, metastasis, and invasion (84). Uro-D’s
potential to interfere with the Eph signaling pathway has been
tested on PC3 human prostate cell line. Using an ELISA binding
assay, the authors showed that UroD (50µM) exerted a selective
EphA ephrin-A inhibition with an IC50 range of 0.14–4µM
and exhibited a competitive and reversible inhibition on EphA
receptors with an inhibition constant, Ki of 312 nM on EphA2
receptor. Uro-D (IC50 0.7µM) also dose-dependently blocked
the ephrin-A1-induced phosphorylation of EphA2 but without
any cytotoxic and antiproliferative activity on PC3 cells, showing
that UroD is an inhibitor of protein-protein interaction of the
EphA system (67).

BREAST CANCER

Breast cancer is the leading cause of death in women <60 years
of age and ranked second to all deaths arising from cancer
(85). The real cause of breast cancer is still largely unknown
(86). About 1 in 8 women have breast cancer, and this rate is

rising globally despite concerted efforts to prevent it. The current
treatment options include chemotherapy, hormone therapy,
radiotherapy, and breast tissue removal (85, 87). Some breast
cancer cells depend on estrogen for proliferation, which is a
hormone that stimulates the increase in the rate of breast cancer
cell proliferation. However, estrogen depends on the enzyme
aromatase for its formation from androgen. Hence, a potential
strategy to prevent breast cancer cells’ growth would be through
the targeting of this enzyme for inhibition of its activity so that
the synthesis of estrogen can be halted.

Uro-A and Uro-B have been shown to possess
antiproliferative, dose-dependent estrogenic, antiestrogenic,
and anti-aromatase activities in breast cancer cell lines (54, 55).
The urolithins’ cancer-preventive potentials on hormone-
dependent cancer cell proliferation have been investigated in
MCF-7aro cells (cells overexpressing the enzyme aromatase). In
addition to their aromatase inhibitory activities, Uro-A, Uro-B,
methylated Uro-B, and Uro-B sulfate at a concentration of
(47µM) inhibited both the testosterone-induced proliferation
and estrogen-induced proliferation of MCF-7aro cells (54),
thus suggesting an ER signaling antagonist potentials for the
metabolites. As noted by Larrosa et al. (55), both Uro-A and
Uro-B showed improved antiestrogenic activity (quantified by
their potentials to inhibit the proliferation of MCF-7 in the
presence of 1 pM 17β-estradiol) in MCF-7 breast cancer cell
line than most phytoestrogens with 0.4 and 0.75µM IC50 values
for urolithin A binding assays with ERα and ERβ and 20 and
11µM IC50 values for Uro-B binding assays with ERα and
ERβ, respectively.

The anticancer activity, the estrogenic and the antiestrogenic
activities of urolithins aglycones (Uro-A, Uro-B, IsoUro-A) and
their phase II metabolites (Uro-A 3-glur, IsoUro-A 3-glur, Uro-A
3-sulf, Uro-B 3-glur, Uro-B 3-sulf) have been compared in breast
cancer cell lines. Using MDA-MB (estrogen negative cell; cells
not expressing the estrogen receptor) and MCF-7 cells (estrogen-
positive cells, cells expressing the estrogen receptor), the authors
showed that at a metabolite concentration of 50µM; IsoUro-
A, Uro-A, and Uro-B exerted a decreasing antiproliferative
potential (60, 35, and 25%, respectively), in MDA-MB cells.
These antiproliferative activities were also confirmed for Uro-
A (50µM) and IsoUro-A (50µM) on MCF-7 cell lines. The
phase II metabolites had no growth-inhibitory potentials on
MCF-7 cells. However, Uro-A 3-glur, IsoUro-A 3-glur, and
Uro-B 3-glurs revealed a significant growth inhibition against
MDA-MB cells (69). Furthermore, using a sensitive E-screen
cell proliferation assay, the author also studied the estrogenic
(defined as the capacity to induce proliferation of human ER-
positive breast MCF-7) and antiestrogenic activities (defined
as the capacity to prevent or diminish their proliferation in
the presence of 17β-estradiol) of the metabolites. According
to the data, all the aglycones (50 or 10µM) tested exerted
both estrogenic and antiestrogenic activity to a significant
level. No estrogenic activity was recorded for the phase II
metabolites at the concentration tested (50 or 10µM). However,
only the glucuronides of Uro-A and IsoUro-A (Uro-A 3-
glur, Uro-A 8-glur, and IsoUro 3-glur) at the highest assay
concentration (50µM) exerted a weak preventive potential
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against 17β-estradiol-induced cell proliferation (69). These data
signify that phase-II metabolism lowers the antiproliferative,
estrogenic, and antiestrogenic activities of urolithin aglycones
on breast cancer cells and agrees with a similar study on colon
cancer reporting lower antiproliferative activities of the phase II
metabolite (52).

UTERINE CANCER

Endometrial cancer ranked fourth in all cancer cases affecting
women and in the United States, accounting for about 7% of
all newly diagnosed cancers (88). With the increase in obesity
cases globally, endometrial cancer incidence is also rising both in
developed and lower economic countries, with a doubling rate
seen in the last two decades (89). Indeed, most patients who
have endometrial cancer are also obese (62). The increase in the
adipocyte number and size in obese individuals contributes to
increased circulating estrogen levels and thereby responsible for
stimulating endometrial cancer proliferation (62). The treatment
for endometrial cancer involves hysterectomy, bilateral salpingo-
oophorectomy, and pelvic node dissection (90).

Apart from acting as an agonist for the estrogen receptor
and mediating the estrogen receptor expression, Uro-A (10µM)
inhibited the proliferation of endometrial cancer cells at the
G2/M phase in a time and dose-dependent manner. Besides, it
upregulated the expression of key regulators of the G2/M phase
such as cyclin-B1, cyclin-E2, p21, phospho (p)-CDC2 (on Tyr15),
Myt1, and CDC25B proteins. Uro-A chemopreventive activity in
endometrial cancer is through its action as an estrogen agonist,
mediated through an ERα-dependent mechanism. Moreover,
Uro-A modulated ER-mediated gene expression such as PGR,
pS2, and GREB through its binding to the ERE. Uro B (10µM)
also inhibited endometrial cancer proliferation (62). The ability
of cancer cells to migrate to other cells and invade other tissues
requires actin cytoskeleton reorganization, which is controlled by
the duo of ras-related C3 botulinum toxin substrate 1 (Rac1) and
p21 protein-activated kinase 1 (PAK1) (91). Rac1 is a member of
the RhoGTPases family and functions as a central regulator of the
actin cell cytoskeleton (92). It is overexpressed in many cancers,
and a loss of its activity has been found to lead to tumor growth
suppression (93, 94). PAK1, on the other hand, is a member of
the serine/threonine family of protein kinases, which plays an
essential role in cell proliferation, cell survival, and cytoskeletal
dynamics, and it is highly overexpressed in human tumors (95).
Treatment of endometrial cancer (Ishikawa cells) with Uro-A
(20µM) significantly decreased the activity and mRNA levels
of Rac1 and PAK1, and this resulted in actin depolymerization,
which is associated with a decreased cancer cell proliferation and
migration (91). This study points to the potential preventive role
of Uro-A in cancer metastasis.

HEPATOCELLULAR CARCINOMA

Hepatocellular carcinoma (HCC) ranked sixth amongst all
cancer types and second amongst cancer-causing death. In 2012,
about 780,000 hepatocellular carcinoma cases were reportedly

diagnosed, accounting for about 750,000 deaths. HCC arises from
damage to the liver cells due to inflammation leading to liver
cell necrosis and fibrosis (96, 97). Certain conditions predispose
one to HCC, including chronic infections from hepatitis B
and C viruses, non-alcoholic steatohepatitis, liver cirrhosis, and
metabolic diseases such as diabetes and obesity (97, 98).

In HCC caused by infection arising from HBV, let-7a (lethal-
7), a member of the let family of miRNA, is an essential regulator
of differentiation and functions as a tumor suppressor. It is often
deleted in HCC and most cancer, and its aberrant expression
and regulation are linked to cancer progression and poor patient
prognosis (99). Let-7a is negatively regulated by Lin28a, an RNA
binding protein that functions by recruiting Zcchc11 and caused
the degradation of pre-let-7, thereby preventing its processing
into functional let-7a miRNA (47). According to Qiu et al.
(47), Uro- A (1–120µM) exerts its cancer-preventive effect
in HCC in a dose-dependent manner with the induction of
cytotoxicity in HepG2.2.15 cell lines and suppression of tumor
cell invasion, which was associated with the inhibition of K-
ras/HMGA2 signaling. Furthermore, Uro-A treatment resulted
in the upregulation of let-7a and repression in the protein
expression of Lin28a, Zcchc11, and Sp-1, a transcriptional factor
overexpressed in most cancer and a target for Lin28a activity.

The cancer-preventive potentials of Uro-A and Uro-B on
hepatocellular carcinoma have been reported. In vitro, Uro-A
in a dose and time-dependent manner inhibited the growth of
HepG2 cells. This inhibitory effect was associated with increased
cell cycle protein expression and apoptosis regulators such as
the p53 and p38-MAPK and decreased c-Jun phosphorylation
(61). Although the authors of this study reported an IC50 =

137 ± 8.2µM for Uro-A growth inhibition on HepG2 cells,
this seems to be the highest concentration ever to be reported
for Uro-A anticancer activity in vitro and even more than
the previously reported plasma concentration (0.024–35µM) of
Uro-A glucuronide (38). Extra caution must, therefore, be taken
in extrapolating in vitro effect into what happens in vivo. Uro-
B (15µM), on the other hand, inhibited the proliferation of
HCC and induced a significant cell cycle arrest at the G0/G1

phase in HepG2 cell and at the S phase in Bel7402 cells. Uro-
B treatment also induced apoptosis, which is evident from the
decreased protein expression of Bcl-2. In vivo, Uro-B (40 mg/kg)
suppressed tumor growth in a xenograft mice model (100).
Uro-B’s antiproliferative potential in both in vivo and in vitro
is associated with an increase in phosphorylation of β-catenin,
blocking its translocation from the nucleus to the cytoplasm and
resulted in the inactivation of Wnt/β-catenin signaling (61, 100).

COLON CANCER

Colorectal cancer is a leading cause of death globally, affecting
both genders in equal proportion. It is ranked third and fourth
in terms of cancer’s commonality and cause of death, respectively
(101, 102). It slowly begins as a polyp in the interior lining of the
rectal area of the colon. If left untreated, it metamorphoses into a
cancer cell with the ability to be metastasized to other locations in
the body. The consumption of high-calorie food, such as animal
fat, can predispose one to colon cancer (103).
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In colorectal cancer cell lines, urolithins exert their anticancer
activity mostly through the promotion of apoptosis and cell cycle
arrest (37, 48, 51, 52). In HT-29 colon cancer cell line, Uro-A
(30 µg ml−1) and Uro-B (30 µg ml−1) mediate their antitumor
potentials through apoptosis induction by activating caspase 3.
These metabolites caused the upregulation in the expression of
p21 protein and G2/M phase arrest of the cell cycle (48). In Caco-
2 colon cancer cell lines, Uro-A in addition to Iso Uro-A, and
in a time and dose-dependent manner (50–100µM, 24–48 h)
caused cell cycle arrest at both the S and G2/M phases (37, 52)
and the S phase by Uro-B, Uro-C, and Uro-D (52). Uro-A, Uro-
C, and Uro-D also arrested cell cycle progression at the S-phase
in SW480 and HT29 colon cancer cells (52). The anticancer
potentials of urolithins might be due to the number of functional
groups in their chemical structure, the effects of ionization on
their stability, and the ionic charges in their microenvironment
(51). These results indicate that the anticancer effects of the
urolithins are cell-dependent.

Autophagy is one of the hallmarks of cancer. It is also a
physiological response of the cell in which cellular organelles
like the ribosomes and mitochondria are broken down in
the lysosomes. The catabolite obtained from the breakdown
product is recycled and used for other metabolic processes
and as a source of energy for the cell (104). Autophagy plays
a critical role in colon cancer progression (105). At an early
stage, autophagy inhibits tumor invasion and metastasis while
promoting metastasis and survival at a later stage (63). Uro-A
(15µM) and (30µM) concentrations resulted in the induction
of autophagy in SW620 colorectal cancer cell lines as well as
apoptosis, respectively. Treatment of these cells with Uro-A
dose-dependently led to a decrease in cell proliferation and
delayed cell migration, which was associated with the reduction
in the activity of matrix metalloproteinase-9 (MMP-9) (an
endopeptidase involved in metastasis and invasion). Uro-A
exposure decreased DNA synthesis and inhibited movement
through the cell cycle (63).

The urolithins have the potentials to inhibit the glycosylation
of proteins. Glycosylation is a post-translation modification that
involves an enzyme-assisted addition of carbohydrate chain
or glycans to proteins and lipids. Aberrant glycosylation is
seen in major diseases, including cancer (106). One common
type of glycosylation is the mucin-type O-glycosylation, such
as those involving the glycosylation of the glycoprotein
podoplanin (PDPN). Moreover, such glycosylation is initiated
by one of the 20 members of the polypeptide N-acetyl-α-
galactosaminyltransferases (107). Abnormal expression of the
PDPN is associated with tumor cell migration and invasion
(108). Therefore, inhibition of glycosylation or the expression
of PDPN will serve as a potential strategy to prevent tumor
cell progression. Uro-D (40µM) inhibited mucin-type O-
glycosylation in HCT116, SW480, and RKO colon cancer cells.
The inhibited O-glycosylation is associated with decreased PDPN
expression and resulted in colon tumor cell migration and
invasion inhibition (109).

The urolithins’ potentials in modulating the expression of
phase I and phase II detoxifying enzymes have also been studied
in both colon cancer cell lines and in-situ rat model (49).

The Phase I and II enzymes are enzymes with critical roles
in the metabolism of chemical carcinogens such as polycyclic
aromatic hydrocarbons (PAHs) (110). The phase I enzymes such
as the cytochrome P450 (CYP), are involved mainly in oxidation,
reduction, and hydroxylation reactions (111). The phase II
enzymes such as the UDP-glucuronosyltransferases, glutathione
transferases, and sulfotransferase are involved in conjugation
reactions: conjugation of phase I metabolite (112). Interestingly,
the phase I and phase II enzymes function to ultimately convert
the PAHs and other environmental toxicants into a more polar
and water-soluble metabolite that is finally excreted in bile or
urine (112). According to González-Sarrías et al. (49), both
Uro-A and Uro-B at concentration achievable in vivo (40µM)
induced the expression and activity of CYP1A1 and UGT1A10.
Urolithin B also significantly induced CYP1B1 and CYP27B1
expressions in Caco-2 cells (49). The CYP27B1 enzymes take part
in the synthesis of 1,25-diOH vitamin D3, an active metabolite of
vitamin D that has been previously reported to protect against
colon tumors’ growth (113, 114). Paradoxically, the CYP1B1
enzymes have been reported to be involved in the activation
of procarcinogens, and high expression of these enzymes have
been observed in different human cancers (115, 116). Therefore,
induction of the expression CYP1B1 by Uro-B is not a desirable
effect required in cancer therapy. Although the induction of
CYP1A1 has been shown to offer more protections against oral
carcinogens, the induction of the expression CYP1B1 by Uro-
B would be critical in CYP1A1 deficient individuals exposed to
the toxic environmental substance. For the in situ rat model,
Uro-A and Uro-B were dissolved in either PBS or sunflower oil.
The authors noted an induction of CYP1A1 only in the colon
of rats incubated with Uro-A and Uro-B dissolved in PBS and
not in sunflower oil (49). The in situ results points to a critical
effect of the dissolving media in the activities of the urolithins.
Another study also confirmed the potential inhibitory effects of
several urolithins metabolites on CYP1. According to Kasimsetty
et al. (70). Uro-A (IC50, 56.7 ± 2.6µM), Uro-B (IC50, 58.6
± 4.2µM), and Uro-C (IC50, 74.8 ± 2.29µM) exerted dose-
dependent inhibition of TCDD-induced CYP1 enzymes on HT-
29 cells. These metabolites, including Uro-D, induced a dose
and time-dependent antiproliferative action on HT-29 cells with
IC50 values in the range of 316–378µM. These weak albeit
antiproliferative potentials are specific to cancer cells only and
are associated with apoptosis induction (70).

Urolithin A has been showed to exert a synergistic action
with oxaliplatin on colon cancer cells. Oxaliplatin is a standard
chemotherapeutic drug used for therapy against colon cancer.
Urolithin A in a time and dose-dependent manner (39.2µM,
48 h, and 19.6µM, 72 h) inhibited the growth of HCT116 cells
and halted cell cycle progression at the G2/M phase. The Uro-
A growth inhibitory effect on HCT 116 cells is p53-dependent
at a low dose and p53 independent at a high dose. Uro- A
also showed p53-dependent synergistic action with oxaliplatin as
evidenced from the reported combinatorial indices (CI) of <1
(58). A CI value <1 denotes synergism, values > 1 indicates
antagonism and values = 1 denotes an addictive effect (117).
These study data imply that urolithin could aid oxaliplatin
chemotherapy against colon cancer. Furthermore, cancer cells
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rely on aerobic glycolysis for glucose metabolism. This metabolic
reprogramming from oxidative phosphorylation to glycolysis has
been suggested to promote tumor cell growth and malignancy
(118) and recognized as an emerging hallmark of cancer (104).
An increased aerobic lactic acid production via glycolysis
is associated with drug resistance in LoVo colon carcinoma
cells (119). Thus, an interruption of cellular bioenergetics in
tumor cells can sensitize the cell to chemotherapy and inhibit
tumor growth through energy depletion. Using extracellular
flux analysis, Norden and Heiss (58), showed that Uro- A
influenced cellular bioenergetics in HCT 116 cells in a p53-
dependent manner through a reduction in glycolytic potential.
This reduced glycolytic potential is associated with the induction
of TP53-induced glycolytic regulatory phosphatase (TIGAR) in
WT HCT116 cells. TIGAR is a negative regulator of glycolysis.
Its overexpression leads to a decrease in cellular fructose-2,6-
bisphosphate levels, resulting in the inhibition of glycolysis
(120). Thus, this study points to another Uro-A antiploriferative
potentials against cancer cells.

Uro-A’s combinational therapy with 5-Fluorouracil (5-FU)
and 5-deoxy-5-fluorouridine (5′DFUR) has been examined on
colon cancer cell lines. The 5′DFUR is a pro-drug and also an
intermediate of 5-FU. The co-treatment of 5-FU with Uro-A
increased the sensitivity of 5-FU in Caco-2 (1.2 and 2.4-fold),
SW480 (1.6 and 2.4-fold), and in HT-29 cells (1.3 and 1.7-fold)
in the presence of 10 and 20µM, 72 h of Uro-A, respectively. The
same increased sensitivity was observed when Uro-A at a non-
toxic concentration of 10 or 20µM was cotreated with 5′DFUR
in Caco-2 (1.3 and 1.6-fold) in SW480 (1.8 and 2.3-fold), and
in HT-29 cells (1.1 and 1.7-fold). This increased sensitivity from
the co-treatment with Uro-A resulted in the decrease in the IC50

values of 5-FU and 5′DFUR against the cancer cell lines (59). A
previous study also reported an increased sensitivity from the
co-treatment of Uro-A with oxaliplatin. However, in contrast
to Uro-A synergistic effects with oxaliplatin (58), here, Uro-A
showed additive effect with 5-FU and 5′DFUR. This addictive
effect resulted in a greater cell cycle arrest at the S and G2/M
phases, increased cyclin A and B1 levels, induction of apoptosis,
and caspase 8 and 9 activation (59). These data suggest a potential
combinational therapy of Uro-A with 5-FU or its metabolic
intermediate; 5′DFUR as a new treatment option to enhance the
antitumor effect of 5-FU.

Cellular senescence is the permanent/irreversible inhibition
of cell proliferation which is ensured when cells are exposed
to stress conditions. It has been suggested as an antitumor
mechanism through which cancer cell growth can be inhibited
since the cancer cells’ ability to proceed through the cell cycle
is halted (121). The molecular signatures of cells undergoing
senescence include the increased activity of β-galactosidase
and the upregulation of p21, p16 gene expressions (122). The
urolithins’ ability to promote senescence has previously been
investigated in colon cancer cell lines. For example, long term
exposure of Uro-A (10µM) and urolithin metabotype A (UM-
A) (10µM), [a representavive mixture of urolithins that mimics
in vivo UM-A] for 5 days induced senescences in HCT-116
cells, which was associated with the upregulation of p53 and

induction of p21 expressions (68). These data demonstrated
Uro-A and UM-A’s potentials at a non-toxic dose to prevent
cancer cell proliferation through senescence induction. Apart
from senescence induction, these two metabolites and other
relevant urolithin metabolites also exhibited various biological
activities in different colon cancer cell lines. For example, Uro-
A (10µM), UM-A (10µM), and urolithin metabotype B (UM-B)
(10µM), [a representavive mixture of urolithins that mimics in
vivo UM-B] decreased colony formation, with the inhibition of
cell cycle progression at the G2/M phase by Uro-A and UM-A
and at the S phase by IsoUro-A, Uro-C, and UM-B in HCT-
116 cells. Uro-A (1, 10µM), Uro-C (1, 10µM), UM-A (10µM),
IsoUro-A (10µM), Uro-B (10µM), and UM-B (10µM) on the
other hand showed significant anticlonogenic activities against
Caco-2 cells and also significantly inhibited movement through
the cell cycle at the G2/M phase with the exception for Uro-C
which showed a non-significantly cell cycle arrest at the S and
G2/M phases in Caco-2 cells (68).

Cancer stem cells (CSCs) are a subgroup of cancer cells
with unique features synonymous to other stem cells, such as
unending cell division, self-renewal, and ability to differentiate
into other cell types. The CSCs are essential in colon cancer
relapse and metastasis. They possess specific markers located
on the cell surfaces such as CD44, CD133, and aldehyde
dehydrogenase (ALDH) activity, among others (123). An
elevated ALDH activity has been linked with chemoresistance
in colon cancer cells (124). The potential inhibitory effects
of mixed metabolites MPhA comprising 85% Uro-A, 10%
Uro-C, and 5% of EA and MPhB comprising 30% Uro-A,
50% IsoUro-A, 10% Uro-B, 5% Uro-C, and 5% EA on CSCs
colony formation and size have been examined. According
to the authors, MPhA at a mixed concentration of 17µM
Uro-A + 2µM Uro-C + 1µM EA and MPhB at a mixed
concentration of 6 µMUro- A + 10µM IsoUro-A + 2µM Uro-
B + 1µM Uro-C + 1µM EA inhibited colonsphere formation
by 30.5 ± 12.1% and 38.9 ± 4.4% on non-adherent Caco-2
cells, respectively. These mixtures also decreased the spheroid
size by 8.5 ± 5.9% for MPhA and 15.0 ± 2.8% for MPhB
in Caco-2 cells with concomitant decrease in ALDH activity
seen only for MPhA (71). These data agreed with previous
studies on Resveratrol (125) and Epigallocatechin gallate (126)
inhibition of CSCs and thus showed the potential modulatory
effect of MPhA mixtures on CSC associated-chemoresistance of
cancer cells.

BLADDER CANCER

Bladder cancer sits at the 9th position in cancer types’
commonality and is one of the common cancer in humans
(127). It is a multifaceted disease linked to increased morbidity
and mortality when left untreated (128). Diagnosis is usually
conducted in individuals above 50 years of age and involves a
medical history, medical test and imaging, tissue cytology, and
cystoscopic examination (127). Cisplatin is often the first choice
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drug to treat bladder cancer, but it is usually associated with
adverse side effects and drug resistance (129).

The UMUC3 bladder cancer cell lines are model cell lines
associated with an abnormality in cell cycle checkpoint, a
hallmark of cancer that results in increased genetic instability and
uncontrollable cell division (130). The antiproliferative effects of
Uro-A, B, andC have been tested on these cells. Thesemetabolites
have a reducing effect on cell viability, with Uro-A being the
most active metabolites. Uro-A inhibits cell cycle arrest at the
G2/M phase in a time-dependent manner (20). This checkpoint
arrest could be due to Uro-A’s ability to inactivate the cyclin
B1/cdc2 kinase complex, known for its regulatory function on the
G2/M transition (131). Bladder cancer, in addition to its reliance
on ERK pathway activation, is also associated with a defect in
the PI3K/Akt signaling pathway, which ensures that cancer cells
continue to proliferate and escape apoptosis (132–134). Hence,
inhibition of these pathways could serve as a treatment strategy
for bladder cancer. Intriguingly, Uro-A (23.92µM) decreased the
phosphorylation state of p-Akt and ERK 1/2 in the UMUC3 cell
line, suggesting that Uro-A could serve as a potential therapeutic
agent for bladder cancer (20).

FUTURE PROSPECTIVE

In recent years, different researches have been accelerated to
explore the therapeutic intervention of diet in managing many
diseases, including cancer. Pomegranates and nuts are rich
in polyphenolic compounds and have been reported well as
a safe and emerging molecule for preventing and managing
various cancer types. Urolithins have been found as a critical
anticancer component of ellagitannin-rich food sources. The
in vitro cardiovascular, anticancer, anti-inflammatory, and anti-
diabetics therapeutic potentials of urolithins, are well-reported
with just a few in vivo studies. Therefore, further studies are
needed regarding the anticancer activities of urolithin using
in vivo models. The bioavailability of urolithins in different
cancer types should be further explored. This is important
to establish the concentration of urolithins which can reach
different target tissues. The knowledge of this bioavailability
will be essential in developing realistic in vitro studies with
physiological concentration.

Furthermore, urolithins’ solubility is also a challenge for drug
delivery, and novel drug delivery systems need to be developed

TABLE 2 | Urolithins targeted genes and their pathways.

Metabolite Gene Targeted pathway References

Uro-A let-7a, Lin28a, Zcchc11, and Sp-1 K-ras and HMGA2 (47)

Uro-A and Uro-B p21 and PARP Extrinsic and intrinsic apoptotic

pathways

(48)

Uro-A AR, AKT, PSA an dGSK 3α-β AR signaling and AKT signaling (50)

Uro-A and Uro-B CYP1A1, CYP1B1, CYP27B1, CYP3A5, UGT1A10, UGT1A6, UGT2B15,

UGT2B28, SULT1A1, SULT1A2, SULT1A3, SULT2A1, and SULT1C1

Glucuronidation, sulfonation (49)

Uro-A and Uro-B FGFR2, EGFR, K-Ras, c-Myc, DUSP6, Fos, CCNB1, CCNB1IP1, MAP4K4,

and CD44

MAPK, K-Ras signaling (72)

Uro-A iNOS, IκB-α, NF-κB (p65), c-Jun, Akt and JNK, p38 PI3-K/Akt, NF-κB and JNK/AP-1

signaling

(53)

Uro-A, Uro-B,

and Uro-C

Akt, ERK, SAPK/JNK, and p38 PI3K/Akt and MAPK (20)

Uro-A, Uro-B,

and

8-OMe-Uro-A

p38-MAPK, MEKK1, and c-Jun MAPK and MEKK1 (66)

Uro-A CDKN1A Cell cycle and apoptosis (18)

Uro-A and Uro-B AR and KLK3 (PSA) Androgen metabolism (17)

Uro-A β-catenin, c-Myc, and Cyclin D1, IL6, IL1β, NF-κB, COX-2, iNOS, p53, Bax,

PUMA, NOXA, and p38 MAPK

Apoptosis, inflammatory, MARK,

JNK, and Wnt signaling

(61)

Uro-A ERα, ERβ, PGR, pS2, GREB1, and GRIP1 Estrogen receptor signaling (62)

mUA Bcl-2, Mcl-1, Bax, Bad, miR-21, PTEN, Pdcd4, MMP-7, c-Myc and Cyclin

D1, FOXO3a and Akt

Wnt signaling, apoptosis, and Akt (64)

Uro-A MMP-1, collagen-1, SOD1, NQO1, GCLC, and HMOX1 Nrf2/ARE pathway (65)

Uro-A p53, p21, and TIGAR Cell cycle, p53 signaling, glycolysis (58)

Uro-D EphA2 and EGFR Eph signaling (67)

Uro-A and UM-A p53, p21Cip1/Waf1 Cellular senescence (68)

iNO, inducible NO synthase; NFκB, Nuclear factor-kappa B; AKT, Protein kinase B; COX-2, Cyclooxygenase 2; CYP, Cytochrome P450; ERα, estrogen receptor-α; Mcl-1, Myeloid cell

leukemia 1; SOD1, superoxide dismutase 1; NQO1, quinone 1; GCLC, glutamate-cysteine ligase catalytic subunit; HMOX1, heme oxygenase 1; mUA, Methylated urolithin A; GREB1,

Growth regulation by estrogen in breast cancer 1; GRIP1, Glutamate receptor-interacting protein 1; PTEN, Phosphatase and tensin homolog; MMP-1, Matrix metalloproteinase-1;

MMP-7, Matrix metalloproteinase-7; PUMA, p53 upregulated modulator of apoptosis; NOXA, NADPH oxidase activator 1; FOXO3, Forkhead Box O3; PGR, Progesterone receptor;

KLK3, Kallikrein Related Peptidase 3; AR, Androgen Receptor; TIGAR, TP53-induced glycolytic regulatory phosphatase; EphA2, Erythropoietin-producing hepatocellular A2; EGFR,

Epidermal growth factor receptor.

Frontiers in Nutrition | www.frontiersin.org 10 June 2021 | Volume 8 | Article 647582

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Al-Harbi et al. Urolithins in Cancer Prevention

using nanotechnology. It would be beneficial in absorption and
distribution within the cell and to potentiate the therapeutic
effects. The sensitivity of cancer cells to the phase II metabolites
of urolithins at the molecular level is also not explored fully.
Moreover, more in vivo studies and more synergistic efficacy
of urolithins with other anticancer drugs also need to be
further explored. Additionally, the anticancer potentiality of
these therapeutic molecules must be evaluated through best-
designed human clinical trials. Thus, more research is needed
to overcome the above challenges and establish urolithins as an
alternative new broad-spectrum anticancer molecule.

CONCLUSION

The anticancer activities of the polyphenolic metabolites
urolithins are evolving topics in cancer biology and one
that will open doors to the development of new therapy
for the management and treatment of various cancer types.
As summarized in this review, the ellagitannin and ellagic
acid anticancer properties are mainly due to their gut-derived
metabolites, the urolithins. Many of the anticancer activities
attributed to urolithins involve cell cycle arrest and apoptosis
induction. Other mechanisms include modulation of pathways
associated with cell proliferation, cell survival, oxidative stress,
detoxification, and the modulation of pathways involving
hormonal actions (Figure 2 and Table 2). It is noteworthy that
oral administration of chemically synthesized urolithin A has
been recently found to be safe in humans (135). Also, the US Food
and Drug Administration has previously given Uro A a favorable
review in its generally safe (GRAS) notification program, and
1,000 mg/serving of urolithin A can be used as a functional food
ingredient (136).

The urolithins anticancer activities are comparable to other
established polyphenols with anticancer potentials such as
curcumin and resveratrol. For example, curcumin, one of the
numerous phenolic pigments found in nature, is obtained from
the plant Curcuma longa L. Its anticancer activities in numerous
cancer types have been attributed to its potential to modulate cell

differentiation, cell cycle arrest, and apoptosis (137). Curcumin
causes the suppression of NF-κB (a transcription factor whose
constitutive expression is implicated in many cancers), leading
to a decrease in its target genes such as COX-2 and cyclin D1
and ultimately leading to apoptosis (4). Furthermore, curcumin
inhibits cell growth and invasion through the downregulation of
EGFR and MMP-2 genes’ expression, respectively (6).

Similarly, resveratrol is a dietary polyphenol obtained from
plants. Its ability to cause cell cycle arrest and induce apoptosis
has been demonstrated in both in vivo and in vitro cancer models
(138). Resveratrol inhibits metastasis in colon cancer cells by
decreasing the expression of hypoxia-inducible factor-1α (HIF-
1α) and MMP-9 (139). In prostate cancer, resveratrol has been
found to attenuate cell proliferation and upregulate the induction
of apoptosis by either decreasing the activation of MAPK or
NF-κB induced inactivation (140). The mechanisms of action of
curcumin and resveratrol are similar to what has been reported
so far for the urolithins (Table 2).

However, as most of the urolithins’ reported anticancer
activities were conducted through in vitro studies, caution must
be made to translate it into what happens in vivo. Nevertheless,
the research on urolithins will be an interesting one in the coming
days ahead.
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