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Broccoli sprouts are a convenient and rich source of the glucosinolate glucoraphanin,

which can generate the chemopreventive agent sulforaphane through the catalytic

actions of plant myrosinase or β-thioglucosidases in the gut microflora. Sulforaphane,

in turn, is an inducer of cytoprotective enzymes through activation of Nrf2 signaling,

and a potent inhibitor of carcinogenesis in multiple murine models. Sulforaphane is also

protective in models of diabetes, neurodegenerative disease, and other inflammatory

processes, likely reflecting additional actions of Nrf2 and interactions with other

signaling pathways. Translating this efficacy into the design and implementation of

clinical chemoprevention trials, especially food-based trials, faces numerous challenges

including the selection of the source, placebo, and dose as well as standardization of the

formulation of the intervention material. Unlike in animals, purified sulforaphane has had

very limited use in clinical studies. We have conducted a series of clinical studies and

randomized clinical trials to evaluate the effects of composition (glucoraphanin-rich [±

myrosinase] vs. sulforaphane-rich or mixture beverages), formulation (beverage vs. tablet)

and dose, on the efficacy of these broccoli sprout-based preparations to evaluate safety,

pharmacokinetics, pharmacodynamic action, and clinical benefit. While the challenges

for the evaluation of broccoli sprouts in clinical trials are themselves formidable, further

hurdles must be overcome to bring this science to public health action.

Keywords: sulforaphane, glucoraphanin, myrosinase, pharmacokinetics, biomarkers, safety, efficacy, dietary

supplement

INTRODUCTION

Why Broccoli Sprouts?
Simply put, broccoli sprouts, and sprouts in general—less frequently called microgreens or
even seedlings—are an excellent source of protein, vitamins, minerals, fiber, and especially
phytochemicals. Phytochemicals are the compounds that are present in plants at very low levels
compared to the proteins, carbohydrates, fats, and fiber that make up the bulk of most living
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SCHEME 1 |

organisms. Phytochemicals are by-and-large made by the plants
for their own protection or to give them an advantage in the
environment in which they live. These 50,000 or so compounds
have recently been called “the dark matter of nutrition” and
are described as being “largely invisible to both epidemiological
studies, as well as to the public at large” (1). They include
colors (pigments), scents, and various compounds with antibiotic
or other defensive activities. Thus, sprouts are in essence a
microcosm of the larger plants which they will grow up to
become, but they are fresh, extremely inexpensive and incredibly
fast to grow (2). Anybody can grow them indoors, anywhere
there’s a square foot or so of free space, and commercially grown
sprouts are widely available, though sprout sources, availability,
or sprouting methods will not be part of this review.

…But Really…
These considerations did not guide our development of broccoli
sprouts as a novel protective and perhaps even therapeutic food.

Rather, development was guided by epidemiology suggesting
a protective effect of cruciferous vegetables including broccoli

against a variety of cancers. In 1992, guided by bioassays, Paul
Talalay and Yuesheng Zhang at The Johns Hopkins University
School of Medicine identified sulforaphane in broccoli and
determined its very potent cancer preventative action (3, 4).

In 1993 one of us (JWF) joined Talalay’s team to run a new
lab called the Brassica Chemoprotection Laboratory. The initial
mission of this lab was to identify “better broccoli”—a plant with

more sulforaphane. We started on the eastern shore of Maryland
growing broccoli in the field and bringing it back to the lab
in Baltimore for analyses. Early discoveries were that there was
a wide range of “potencies”—defined as the capacity of these
extracts to induce carcinogen detoxication or “chemoprotective
enzymes” (e.g., Nqo1) in a rapid, cell culture-based bioassay.
This potency was almost entirely derived from the glucosinolates
(predominantly glucoraphanin, the precursor of sulforaphane) in
the plant tissue (5). Furthermore, we concluded that that there
is actually almost no sulforaphane in healthy broccoli, but it
is all present as its inert precursor glucoraphanin and (as was
previously known) an enzyme called myrosinase that converted
precursor to product upon wounding of the plant (e.g., chewing
by predators that include people) (Scheme 1). Although other
products can accompany the production of sulforaphane, it is

generally sulforaphane, the isothiocyanate, which predominates
[reviewed in (6)].

Genetics of the broccoli as well as the environment in which it
was grown played major roles in determining the glucoraphanin
levels of the plants (7–9). When the winter came we of course
were unable to harvest broccoli from the farms, or even from
the greenhouse at which we had been growing young plants
so we started surface-sterilizing seeds, actually “disinfesting”
them, and putting them on agar and growing small seedlings
or sprouts in an incubator, on the 13th floor of Johns Hopkins
Hospital’s main building in Baltimore. We rapidly discovered
that the seeds of broccoli had the highest concentrations of
glucoraphanin (∼100-fold higher than florets), and that one
could reproducibly grow high-glucoraphanin sprouts from high-
glucoraphanin seeds (Figure 1). Germination and the growth of
the sprout merely diluted the glucoraphanin, up to a certain
point somewhere in the range of 10–14 days old. We published
our first paper on broccoli sprouts in 1997 (5). Subsequent
to that, there was an explosion of work dealing with broccoli
sprouts, glucoraphanin, myrosinase, sulforaphane, and animal
and clinical studies utilizing this potent phytochemical system
which had been aptly dubbed “the mustard oil bomb” (10), since
this is a potent defensive system for the plant, against attack by
pathogens such as fungi and insects. We humans have co-opted
the plants’ system for our defense.

To the Clinic
With clinical pharmacologist Theresa Shapiro, we began
investigating our ability to monitor broccoli (glucosinolate and
sulforaphane) consumption and its metabolic fate in research
subjects (11). We then performed our first interventions
with broccoli sprouts, evaluating pharmacokinetics, acceptance,
safety, and frankly, the reasonableness of using this new food
source in clinical protocols (12, 13). These studies brought into
sharp focus the issues that we would face developing robust “test
articles” and acceptable placebos for such trials and this theme
has persisted throughout all of our subsequent work.

While this plant-centric preventive research was going on
at the JHU School of Medicine, one of us (TWK) was
already evaluating clinical approaches to chemoprevention at
the Bloomberg School of Public Health. Similar desires [to
prevent cancer(s) and/or to intercept their further development
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FIGURE 1 | Glucoraphanin (GR) content of broccoli over the life course of the

plant expressed on the basis of fresh weight. Inserts indicate the heterogeneity

of glucoraphanin content in different cultivars of seeds (2–124 µmol GR/g),

3-day old sprouts (0.3–17 µmol GR/g), and market stage florets (<0.1–1.6

µmol GR/g) obtained commercially and measured in the laboratory of JWF.

Note the differing scales for each of the insert histograms.

once initiated and even before they become clinically evident]
with a more pharmacologic approach, were also guided by
epidemiology. The epidemiology in this case was that of
contaminated foods and exposures (e.g., aflatoxins) that can
lead to liver cancer, particularly in West Africa and in China.
In 2001, following initial trials using an anti-schistosomal
pharmaceutical in a particularly affected region of rural China,
TWK decided to pivot to the newly emerging work with the
phytochemical sulforaphane and attempt using broccoli sprouts
as the intervention. We (TWK and JWF) together with a large
team from Hopkins, the Qidong Liver Cancer Institute, and
the Shanghai Cancer Institute, began a series of clinical studies
to evaluate whether broccoli sprouts, or beverages or powders
derived from them and rich in glucoraphanin, sulforaphane,
or both, had demonstrable efficacy against biomarkers of
unavoidable aflatoxin exposure (14). Over two decades, as liver
cancer rates in our study region began to decline and air
pollution exposures became a more prominent and widespread
hazard throughout China (15, 16), we added biomarkers of
lung toxicity and carcinogenesis to our outcomes of interest. In
addition to evaluating safety, acceptability, bioavailability, and
other pharmacokinetic parameters, we were able to successfully
show favorable changes in biomarkers of both internal exposures
to aflatoxin and air pollutants over multiple clinical trials, with
multiple dose modalities, over many years, and most recently to
demonstrate dose dependence (14, 17–20). Most of these trials
have been reviewed elsewhere (21–23) and we will not dwell upon
their outcomes herein.

We and many others around the world, have developed
an enormous body of laboratory and pre-clinical data,
and a burgeoning body of clinical evidence addressing the
potential that sulforaphane has, not only in the prevention
of environmental carcinogenesis, but in the prevention or
amelioration of a very large, diverse, and seemingly unrelated
series of conditions. These conditions include autism spectrum

disorder (ASD), schizophrenia, bacterial and viral infections,
prostate, lung, breast, skin, and head and neck cancers,
osteoarthritis, type 2 diabetes, sickle cell disease, fatty liver,
and asthma. Presented in Figure 2 is the timeline of the
conduct (publication) of clinical trials using broccoli sprout
preparations (sulforaphane generating and/or glucoraphanin
containing), which began in the late 1990s. This graph reflects the
changing formulations used across time as well as a switch from
predominantly healthy volunteer studies to those engaging with
“at-risk” cohorts for multiple indications. Details of the clinical
studies presented in this timeline are found in the following
publications (11–15, 17–20, 24–69).

IS IT JUST SULFORAPHANE?

Although almost all clinical studies have relied on broccoli
sprout preparations or market stage broccoli, most of the
data regarding possible mechanisms of action and efficacy
were derived from cell culture and animal studies performed
with pure sulforaphane. At the turn of the millennium, “pure
sulforaphane” was clearly recognized as a drug by IRBs and
the FDA, which precluded its entry into clinical trials in the
absence of considerable (and expensive) safety data together
with limited availability and difficulties in formulation. Food-
based interventions were reviewed with much greater laxity in
the “early days,” reliant upon notions of the intrinsic “safety”
of commonly consumed foodstuffs. This perspective has now
changed and all trials involving broccoli sprouts that seek
endpoints reflecting efficacy rather than just pharmacokinetics,
will likely require IND determinations from the FDA prior to
conduct. A few sulforaphane-based pharmaceuticals are now
under study (70).

It is pertinent to ask nonetheless whether there is
bioequivalence in clinical experiments using broccoli sprouts,
extracts of broccoli sprouts or seeds, or commercial dietary
supplements containing same and neat sulforaphane itself. Thus,
the contributions of any of a very large range of additional
phytochemicals (e.g., flavonoids, anthocyanins, carotenoids)
found in sprouts cannot be ruled out completely, and could prove
beneficial. These potential phytochemical interactions have not
been studied in a comprehensive fashion, although: (a) some
studies of synergies and additive effects of other phytochemicals
with sulforaphane have been undertaken (71); (b) drug-
sulforaphane interactions have been studied (50, 72); and (c)
a pilot study has been undertaken to assess the feasibility of a
fully-powered study to examine the effects of a phytotherapeutic
intervention (containing turmeric, resveratrol, green tea and
broccoli sprouts) on PSA doubling time in men with biochemical
recurrence with a moderate PSA rise rate (73). Much more
needs to be learned regarding the extent to which phytochemical
reductionism mimics or impedes clinical bioequivalence.

THE NEED FOR STANDARDIZATION AND
VALIDATION OF BROCCOLI SPROUTS

This was a problem that we first highlighted a decade ago,
and its need for resolution has changed very little since then
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FIGURE 2 | Timeline for the use of formulations of broccoli sprouts in clinical trials. (Top) Glucoraphanin (GR)-rich preparations included dried broccoli sprouts, hot

water broccoli sprout extracts (BSE), and supplements formulated with freeze-dried broccoli sprouts or finely milled broccoli seeds to provide GR. Formulations

enclosed with a red border included myrosinase (from either broccoli sprouts or daikon sprouts). Sulforaphane (SF)-rich formulations included fresh homogenates of

broccoli sprouts, BSE treated with myrosinase or supplements including freeze-dried broccoli sprouts and finely milled broccoli seeds to provide myrosinase and GR.

A few studies included blended formulations that included both GR-rich and SF-rich preparations. (Bottom) Mirrored against the study formulations are the study

cohorts used with each formulation. Hlthy, healthy volunteers; H pyl, Helicobacter pylori infected participants; Hyp Tn, hypertensive participants; T2D, type 2 diabetes

patients; ASD, autism spectrum disorder patients; PCa, prostate cancer patients; BrBiop, patients undergoing breast biospsy; Asthm, patients with asthma; FatLiv,

patients with fatty liver; Schizo, schizophrenia patients; Colon, colon cancer patients; SCD, sickle cell disease patients; Influ V, influenza virus infected participants;

COPD, chronic obstructive pulmonary disease; Melan, melanoma patients with multiple atypical nevi; Panc, patients with pancreatic cancer.

(74). Investigators must provide chemical analyses of at the very
least, the glucoraphanin, sulforaphane, and myrosinase content
of the materials that they employ in clinical trials. Those studies
that do not, may be basing any results which they report, on
a faulty premise related to “dose” given. When using fresh
broccoli sprouts, it is an absolute requirement that these values
be measured and reported. The plants sourced and used for these
trials will vary by pedigree (genotype), growth environment, and
production characteristics (e.g., time-to-harvest, temperature,
lighting) and this in turn has an effect on phytochemical content.
The potential presence of food-borne pathogens, the sprout-
associated microflora if one is administering fresh sprouts or
a non-cooked preparation, is a huge concern. And, of course,
screening for the presence of pesticides, heavy metals, and other
unintended contaminants is associated with good manufacturing
practices in both the pharmaceutical, food, and supplement
industries, but this can easily escape the attention of investigators
eager to use foods as a clinical intervention. Many clinical
investigations that use dietary supplements take what is perceived
to be an easy way out and merely report the contents as
given by the manufacturer. This is fraught with problems in
part because there are few commercial labs that can properly
perform the analyses for glucoraphanin, myrosinase, and/or
sulforaphane, nor do many of the manufacturers or “assemblers
of supplement components” (i.e., vendors, encapsulators, and
purveyors) understand the subtleties of stability and storage
issues unique to these phytochemicals. Thus, clinical studies
done with those non-analyzed materials have the potential to
waste enormous amounts of money by invalidating or lessening

the scientific value of studies using well-characterized broccoli
sprout preparations.

TRANSITIONS IN FORMULATIONS—A
NATURAL EVOLUTION

For reasons, some of which we have itemized herein, there
has been a transition from fresh broccoli sprouts to broccoli
sprout extracts, to powders, capsules, and dietary supplements
made from them. This is natural and logical and it stems from
a variety of causes. First, it represents the evolution from a
discovery of potent activity in a plant, to identification of the
best part and stage of the plant in which to find that activity,
to frustration at the difficulty of sourcing proper seeds of that
plant, and reproducibly growing the proper sprouts at large
scale in order to ensure delivery of a reproducible dose of the
desired phytochemical.

Sulforaphane (the principal broccoli sprout phytochemical
that is biologically active in human beings) is very unstable
in combination with other organic materials, though relatively
stable in pure (neat) form when refrigerated or frozen. Thus,
initial “dosing” attempts utilized glucoraphanin, the biogenic
precursor of sulforaphane, and the phytochemical which the
plant too, maintains in storage vacuoles, at the ready to be
activated by reaction with myrosinase. Glucoraphanin is easily
extracted into aqueous solutions, and dried. Subsequent attempts
to deliver an extract rich in sulforaphane utilized the myrosinase
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reaction to convert glucoraphanin-rich extracts to sulforaphane-
rich extracts. For delivery of those products in the clinic it
was necessary to maintain the lyophyilized extracts at −20◦C
for short periods of time, and even more ideal, at −80◦C,
a temperature at which they can be kept for many years.
Alternatively, glucoraphanin was delivered along with active
myrosinase, thus eliminating some of the issues of storage
temperature as long as the product to be delivered to people was
kept dry prior to use (ingestion).

Supplement manufacturers quickly adopted both
glucoraphanin and glucoraphanin plus active myrosinase
as delivery modalities, and as has already been apparent
to clinical trialists, manufacturers have had far less success
delivering stable sulforaphane in dietary supplements. Many
such supplements that advertise to unwitting consumers their
ability to do this, are making fraudulent claims because their
products have very little or no sulforaphane left in them by the
time they reach customers. Some clinical trialists assume that if
using dietary supplements as their source of glucoraphanin or
sulforaphane, manufacturer representations as to titer result in
a certified product that requires no further testing or validation.
These improperly tested products clearly don’t deliver value to
well-intentioned consumers, but lasting damage can be done to
our understanding of the benefits of these compounds if clinical
trials are written off as “negative,” based on faulty assumptions
about dose. Providing sulforaphane or other phytochemicals to
be tested in the form of a dietary supplement is probably an ideal
solution for clinical trialists studying the actions of a specific
phytochemical, but there is a very strong argument that it is
too reductionist an approach to maintaining the human body
in optimum healthspan. It ignores food matrix effects, cultural,
sensory, satietal, social, and indeed optimum nutritional benefits
of eating whole or even lightly processed foods.

SELECTING A PLACEBO

Development of an appropriate placebo for the unfolding series
of broccoli (“sulforaphane”) trials that we and others have
conducted has been a challenge. We opined on this challenge in
the context of chemoprotection trials in some detail, a decade ago
(74). Only limited progress has been made since then. To wit:

Initial trials utilized either fresh broccoli sprouts (33, 36),
boiling water extracts of fresh broccoli sprouts (14), or freeze-
dried extracts of broccoli sprouts that were either glucoraphanin-
rich or sulforaphane-rich. These powders were placed in gel
caps or given in minimal volumes of water, directly to subjects.
Identifying placebos for fresh sprouts is exceedingly difficult
and nobody has developed appropriate placebos, though alfalfa
sprouts have been used in the clinic (36) in an attempt to
provide a non-sulforaphane-containing vegetable placebo with
similar organoleptic properties. Boiling water extracts of fresh
broccoli sprouts presented a problem of balancing taste/flavor
with the need to remove all traces of glucoraphanin. Fortunately,
glucoraphanin is highly soluble and easily diluted away from
the sprout mass on the first extraction with boiling water. By
performing multiple boiling water extractions were we able to

obtain a mildly colored, flavored, yet “vegetable” smelling extract
that was essentially free of glucoraphanin (or sulforaphane) (14).

Powdered lyophilized extracts of sprouts were initially used
in non-placebo controlled, small studies after re-dissolving in
minimal volumes of water [e.g., (12, 26, 28, 47, 75)]. In other
trials, the lyophilized powders were placed in gel caps, and
controls were prepared using only microcrystalline cellulose, also
placed in gel caps, and in some cases colored gel caps (e.g., blue,
purple, green) were utilized to mask color differences (28, 54,
55, 60, 64). Masking was adequate, however, the odor of broccoli
extracts that emanated from gel capsmade discrimination of dose
from placebo clear to anyone who was able to compare capsules.

Juice-based delivery approaches have enabled the
development of better flavor misattribution strategies for
broccoli sprout and seed extracts. They have enabled vehicle-
alone placebos to be used more effectively (76). We have been
able to move from a simple taste masking strategy for which
we and others used dilute mango juice (17, 18, 52, 56), to one
in which we used dilute pineapple and lime juice (19, 20) in
an applied sensory evaluation technique that was scientifically
developed to align subject expectations with sensory properties.
Thus, the identification of pineapple and lime juice was based
on the development of a complementary flavor profile, following
extensive descriptive analysis of the taste profile of broccoli
sprout extracts and a search for more “favorable” flavor notes
that would lead to misattribution (rather than masking) of the
broccoli flavor to other beverage components (76, 77). With this
strategy there were no concerns on the part of the investigators
that either there would be large-scale rejection of the doses and
placebos, or that there would be discovery by the participants of
which were dose and which were placebo beverages.

In the last decade, the development of reliable and well-
standardized, tested, and vetted dietary supplements by private
industry, has advanced our ability to effectively utilize these gel
caps and tablets in clinical trials. Initial efforts to create placebos,
however, have still been met with frustration.

The earliest supplement-based, placebo-controlled trials now
published utilized a commercial product, a tablet containing
both glucoraphanin and myrosinase along with maltodextrin
and other typical tablet excipients. Used in a placebo-controlled
trial with children with ASD who typically are extremely fussy
and particular eaters, and who were projected not to be able
to swallow these tablets, we anticipated that whatever placebos
were prepared would need to be ground up using an inexpensive
hand-held pill grinding device that we gave to all parents, and co-
administered with the “food of choice” for that child. Preparation
of a custom placebo was ultimately performed under contract
by researchers at a school of pharmacy, and wound up being a
research project in and of itself. Matching texture, formulation,
visual appearance (speckled), and consistency was a costly and
lengthy process even employing the assistance of an academic
research pharmacy. However, masking for this long-term study
was ultimately successful (67, 78). The supplement manufacturer
eventually provided placebos for their tablets’ use in other trials
that have not yet been published (21).

Due to the odor of broccoli emanating from gel caps
containing powdered extracts, masking remains an issue, and
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some supplement manufacturers are now exploring the use
of odor-absorbing package inserts. Some investigators have
used directly dried and milled broccoli sprouts. In these cases,
development of a placebo has been confounded by issues of
color. Thus, cornstarch colored with chlorophyll has been used
for trials in which powder was the mode of dose delivery (79).
The most imaginative solution to this problem was the use
of chlorophyllin (a semi-synthetic chlorophyll derivative used
widely for odor control in ostomy patients), which was spray-
dried with maltodextrin to create a placebo (61). This too,
however, presents certain problems and concerns that were not
recognized and likely not problematic in the trial cited, but are
potentially a problem in other disease prevention trials since
chlorophyllin is an effective inducer of cytoprotective enzymes
(80) and, in a randomized clinical trial in Qidong, China,
modulated aflatoxin disposition (81).

STUDY COHORTS: PHARMACOKINETICS,
BIOMARKERS OF PHARMACODYNAMIC
ACTION, AND OTHER OUTCOMES IN
CLINICAL TRIALS

Nearly 70 clinical studies, ranging from small Phase 0 or 1
trials examining pharmacokinetics or early pharmacodynamic
action to larger placebo-controlled Phase II trials examining
endpoints reflecting clinical efficacy, have been conducted
and published using broccoli sprout-derived preparations and
formulations. While the majority of these studies have been
conducted with healthy volunteers, a substantial number of trials
have been conducted in at-risk participants with hypertension,
type 2 diabetes, fatty liver, sickle cell disease, asthma, COPD,
schizophrenia, ASD, influenza virus infections, Helicobacter
pylori infections, as well as patients with precancerous lesions
or cancers including melanoma, prostate, or pancreas (see
Figure 2). The design and outcomes of most of these trials have
been summarized by us in 2020 and earlier reviews (21–23).
Clinical signatures of efficacy have been reported in settings of
treatment of H. pylori infections (33, 36, 51), improved clinical
scales of ASD (43, 54) or schizophrenia (30), serum glucose and
insulin resistance measures in type 2 diabetic patients (48, 61,
79), reduced airway resistance in asthmatics (56), and declining
PSA trajectories in prostate cancer patients (58). Of course, not
all broccoli sprout-based trials in these and the other settings
have reported positive clinical outcomes. While none of these
studies provide a clear guidepost for unrestrained enthusiasm,
continuing refinement of the science for optimizing admixture
of proper formulations, doses, study cohorts, and endpoints
are likely to define clear directions for the use of broccoli
sprouts in health maintenance and disease prevention. Stronger
clinical signatures of efficacy in carefully designed, conducted,
and analyzed clinical trials, should they emerge, are likely to
provide the scientific backbone necessary for enhanced consumer
acceptance. There is an opportunity here for science rather than
hype to add value to the conversation.

Pharmacokinetics
Studies on the pharmacokinetics of sulforaphane in healthy
volunteers were fostered by the development of rigorous
analytical methods to measure the levels of sulforaphane
and its metabolites in blood, plasma, urine, and tissues
following administration of broccoli and broccoli sprout
based preparations. The initial studies by Shapiro, Talalay
and colleagues quantified these analytes (dithiocarbamates)
collectively by cyclocondensation with 1,2-benzenedithiol,
with sensitivity in the picomolar range (82). This highly
sensitive, simple, and convenient method continues to be
used to assess the bioavailability of sulforaphane across a
spectrum of formulations. In addition, methods have been
developed to analyze the individual metabolites following
their separation by liquid chromatography coupled with
tandem mass spectrometry (66, 83–85). Furthermore, the
use of mass spectrometry coupled with stable isotope-labeled
internal standards of sulforaphane [1-isothiocyanato-4-methyl-
sulfinyl(1,1,2,2,3,3,4,4-2H8)butane] and its corresponding
mercapturic acid pathway conjugates allows for quantitative,
precise, sensitive, and specific analysis of sulforaphane and its
metabolites in biospecimens (85).

With these analytical tools in hand, a number of
pharmacokinetic studies have been conducted in humans (and
rodents). Following oral administration of 200 µmol broccoli
sprout isothiocyanates to four healthy human volunteers, the
peak plasma dithiocarbamate concentration (Cmax) was 1.91
± 0.24µM 1h after dosing, with half-life of 1.77 ± 0.13 h, and
clearance of 369 ± 53 ml/min (82). A study in 20 participants
administered 200 µmol sulforaphane as sulforaphane-rich
powder in capsules reported a Cmax of 0.7 ± 0.2µM at 3 h,
with a half-life of 1.9 ± 0.4 h for elimination of sulforaphane
equivalents measured by mass spectrometry (27). Another
study reported plasma dithiocarbamate levels of 0.92 ±

0.72µM and mean epithelial-/stromal-enriched breast tissue
dithiocarbamate concentration of 1.45 ± 1.12 and 2.00 ± 1.95
pmol/mg tissue for the right and the left breast, respectively,
in eight healthy women undergoing reduction mammoplasty
who had received a single dose of a broccoli sprout preparation
delivering 200 µmol sulforaphane 1 h prior to surgery (47).
In a double-blind randomized placebo-controlled trial in
men presenting for prostate biopsy, plasma levels of 0.12µM
of sulforaphane, and its metabolites were detected after an
intervention period of 4–8 weeks with two daily doses of 100
µmol sulforaphane administered 12 h apart (65). Collectively,
these studies rather consistently indicate that sulforaphane
reaches only low micromolar peak plasma concentrations and
exhibits a short biological half-life in clinical trial settings.
These pharmacokinetic parameters should invoke a modicum
of caution for those interpreting cell culture-based studies of
the myriad of potential mechanisms of action of sulforaphane,
wherein log-higher concentrations are often used.

Administration of the precursor glucoraphanin vs. the
bioactive sulforaphane in broccoli sprout preparations
profoundly affects bioavailability as determined by measures
of the urinary excretion of sulforaphane and its metabolites.
Regardless of starting material, little sulforaphane per se
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is excreted in urine, rather glutathione conjugate derived
metabolites (predominantly sulforaphane N-acetyl cysteine)
dominate (85). A study in healthy subjects who received single
oral doses of broccoli sprout extracts containing the equivalent
of 111 µmol of glucosinolates or isothiocyanates showed
cumulative urinary dithiocarbamate excretion of 88.9 ± 5.5 and
13.1 ± 1.9 µmol for the isothiocyanate and the glucosinolate
preparation, respectively (12). This study further revealed that
for the isothiocyanate preparation, excretion was consistent,
and linear over a 25–200 µmol dose range, whereas for the
glucosinolate preparation, excretion was highly variable among
individuals. These observations are in close agreement with
results from a randomized, placebo-controlled, double-blind
Phase I clinical trial, in which isothiocyanate (25 µmol)- or
glucosinolate (25 µmol or 100 µmol)-rich preparations were
orally administered to three cohorts of three healthy human
subjects at 8-h intervals for 7 days (13).

The finding that compared to isothiocyanates, oral
administration of glucosinolates results in slower elimination,
lower bioavailability, and greater inter-individual variation in
excretion was further strengthened by a larger (50 participants)
crossover clinical trial that involved 5-day baseline period
followed by daily administration of broccoli sprout beverages
delivering either glucoraphanin or sulforaphane for 7 days,
followed by a 5-day washout period, and then a 7-day
administration of the opposite intervention (18). With both
formulations, essentially all ingested sulforaphane equivalents
were excreted within 24 h of dosing. However, elimination was
much more rapid with sulforaphane as the starting material
than with glucoraphanin. In this study the whole-body half-
lives of sulforaphane and glucoraphanin from beverages were
2.4 and 7.3 h, respectively. Bioavailability was judged to be
about 70% with sulforaphane-rich beverage and only 5% with
glucoraphanin-rich beverage (but ranging from 1 to 45% across
individuals). Using fecal sample collections from five subjects
with high 24-h urinary excretion profiles (“high converters”)
and five subjects with low excretion profiles (“low converters”),
it was found that ex vivo, the degradation of glucoraphanin
was greater in cultures of fecal bacteria derived from the “high
converters” in comparison to the “low converters” (86). These
observations were consistent with earlier work showing that
mechanical cleansing or antibiotic treatment greatly reduced
the glucosinolate conversion in healthy human subjects (11)
and indicated that the gastrointestinal microflora represents
a critical factor in determining the extent of glucosinolate
hydrolysis. In addition to the inter-individual variations, there
are also diurnal variations in the conversion of glucosinolates
to dithiocarbamates, whereby conversion is greater during
the day (75). By contrast, the conversion of isothiocyanates to
dithiocarbamates is higher during the night.

Formulation, which in turn reflects how broccoli sprout
extracts are prepared (e.g., with or without exogenous
myrosinase-catalyzed hydrolysis of glucoraphanin), strongly
affects bioavailability, both in terms of inter- and intra-individual
consistency with repeated doses. Using a dietary supplement
formulation of glucoraphanin (from boiled water extracts of
broccoli seeds) plus myrosinase (from freeze-dried sprouts)

in tablet form, we observed a median 20% bioavailability with
greatly dampened inter-individual variability (21). Fahey et al.
(46) have observed approximately 35% bioavailability with
this supplement in a different population. While consistency
in bioavailability (and product stability) is improved with
supplements relative to some other formulations, insufficient
studies have been published to date to infer improved efficacy.

Biomarkers of Pharmacodynamic Action
Unlike many drugs discovered or initially developed in
academic laboratories, the clinical development of broccoli-
derived sulforaphane continues to be sustained by an increasing
number of academic laboratories. Studies are funded principally
through investigator-initiated grants from national funding
agencies. As such, there is no concerted clinical development
plan for sprout-based interventions, as would be seen with new
chemical entities in the pharmaceutical industry. While this
scientific approach has impeded the focused clinical evaluation
of sulforaphane, it has conversely led to a rich variety of studies
attempting to determine pharmacodynamic action. Inasmuch as
sulforaphane was first isolated and characterized from broccoli
through a bioassay directed screen of the induction of Nqo1
activity in murine Hepa 1c1c7 cells—an action mediated through
Nrf2—this transcription factor has become a major focus of
interest in the clinical setting (23). Induction of NQO1—
transcripts or activity—have been measured in surrogate cells
such as peripheral blood mononuclear cells and in target
tissues following short-term broccoli sprout-based interventions.
Indeed, NQO1 induction has been the most consistently
observed response (22). Induction levels in vivo have been
modest typically (∼2-fold). Recent efforts have examined broader
ranges of genes, using either targeted (e.g., other candidate
genes) or untargeted (e.g., metabolomic) methods, to develop
induction “signatures” (67). This approach, while nascent, looks
promising. Additional biomarker candidates, probably reflecting
engagement with NRF2 signaling, have also been explored.
Oxidative stress biomarkers such as oxidative products of lipids,
proteins, and DNA, as well as inflammatory mediators have been
measured. We have relied on urinary biomarkers monitoring
detoxication metabolites of environmental carcinogens in
settings of unavoidable exposures to air pollutants (e.g.,
aldehydes, polycyclic aromatic hydrocarbons, and benzene) and
dietary contaminants (e.g., aflatoxins) in our China trials. These
biomarkers are consistently elevated with broccoli sprout-based
interventions, although extrapolation of biomarker change to
extent of cancer risk reduction has not been realized. Lastly, it
is well-recognized that sulforaphane may interact with multiple
cell signaling pathways and other targets independent of NRF2
(87–89). Multiple studies have focused on pathways affecting
cancer development and progression. Additional promising
outcomes in trials with sulforaphane-rich preparations have
centered on modulation of epigenetic regulators such as histone
deacetylase and histone acetyltransferase activities (90). Figure 3
presents an overview of possible targets and modes of action
for sulforaphane, largely observed in preclinical studies, but
recapitulated with some degree of consistency in clinical trials.
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FIGURE 3 | Identified preventive and protective molecular mechanisms of sulforaphane are manifold. Unfilled boxes show some of the more robustly documented

mechanisms, whereas orange-filled boxes indicate some of the more well-documented diseases, syndromes, and conditions against which sulforaphane’s efficacy

has been assessed in clinical, animal, and in-vitro studies. Mechanisms involved in inhibition of tumor initiation, promotion, progression and metastasis (second box

from bottom of figure) are too numerous to fully itemize on a simplistic diagram such as this, but in addition to those indicated by arrows directed toward the box, they

include: inhibition of NFκB, HDACs, Pgp, MRP-1, BCRP, STAT3, MEKK1 activity, AP-1 DNA binding, and tubulin polymerization; degradation of α and β-tubulin;

down-regulation of cyclin B1, cdk1, cdc25B, cdc25C, HIF, VEGF, VEGF receptor, MMP-2, and MMP-9; modulation of Bcl-2 family proteins; and activation of

caspases (87).

Dose-Limiting Toxicities
Few clinical trials have provided a clear accounting of adverse
events (AEs), likely signifying a general absence. The range
of AEs we have observed in our trials included issues with
taste (bitterness), gastrointestinal irritation, gas and flatulence,
diarrhea, and vomiting. These outcomes were strongly influenced
by formulation, with sulforaphane-containing sprout beverage
preparations less well-tolerated than ones with glucoraphanin.
Masking or “misattribution” of the taste as well as administering
sprout powders within capsules or tablets, as done in more recent
trials, has served to ameliorate the reporting of AEs. Dose, of
course, was also an important determinant. However, in our
experiences only a few grade I toxicities have been observed:
2 out of 50 participants receiving 150 µmol sulforaphane-rich
beverage daily for 14 days and 6 out of 142 participants receiving
a blended beverage containing 40 µmol of sulforaphane and
600 µmol of glucoraphanin for 84 days (14, 18–20). Participants
receiving up to 800 µmol glucoraphanin reported no AEs (14,
18). Collectively, in just these four reported trials, close to
15,000 doses of broccoli sprout beverages were consumed by
study participants. There were no alterations in standard clinical
chemistry tests (i.e., liver and kidney function) amongst pre- and
post-intervention measures in any of these studies. Based upon
other reports in the literature, we estimate that 450 µmol of
sulforaphane as a beverage or soup exceeds a tolerable level for

healthy individuals and that a maximum tolerated dose may be
200 µmol or lower (21, 50).

An early study by Shapiro et al. (13) examined 32 types
of hematology and chemistry tests, including thyroid function
(TSH, T3, and T4) tests. Altered thyroid function is a potential
concern that is occasionally raised in association with crucifer-
based interventions, given the presence of low levels of
goitrogens. There were no significant or consistent thyroidal
toxicities when broccoli sprout derived isothiocyanate (25 µmol)
or glucosinolate-rich (25 or 100 µmol) preparations were
administered orally at 8-h intervals for 7 days in a small study.We
followed up on this potential concern by analyzing biochemical
measures of thyroid function and thyroid autoimmunity in 45
female participants in a randomized, placebo controlled clinical
trial at baseline and after 84 days of beverage administration
(40 µmol sulforaphane and 600 µmol of glucoraphanin) (91).
Serum levels of thyroid-stimulating hormone, free thyroxine, and
thyroglobulin were not affected by the treatment, nor was the
thyroid autoimmunity status of the participants.

Selecting a Dose: Importance of Internal
Dose
The selection of dose is complicated by the very different
bioavailability of sulforaphane when administered in the
precursor form of glucoraphanin and when given as sulforaphane

Frontiers in Nutrition | www.frontiersin.org 8 April 2021 | Volume 8 | Article 648788

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Fahey and Kensler Clinical Studies With Broccoli Sprouts

itself, as discussed earlier. Thus, simple reporting of administered
dose of glucoraphanin and/or sulforaphane can be a poor
measure of the bioavailable/bioactive dose of sulforaphane
achieved internally. As a consequence, we propose that the
excreted amount of sulforaphane metabolites (sulforaphane
+ sulforaphane cysteine-glycine + sulforaphane cysteine +

sulforaphane N-acetylcysteine) in urine over 24 h (2–3 half-lives),
which is a measure of “internal dose,” provides a more revealing
and likely consistent view of the delivery of sulforaphane to study
participants. In turn, use of “internal dose” metrics will facilitate
optimization of the linkage between formulation, dose, and
schedule with determinants of efficacy and, importantly, allow
more facile comparisons of results between different clinical
trials. As an example, we find the 24-h recovery of sulforaphane
metabolites in urine following dosing to be highest (∼110 µmol)
following administration of 150 µmol of sulforaphane-rich
beverage;∼60 µmol following administration of a sulforaphane-
glucoraphanin blend (40 and 600 µmol, respectively);∼25 µmol
following administration of 800 µmol of glucoraphanin-rich
beverage and ∼25 µmol following administration of a dietary
supplement tablet containing 150 µmol glucoraphanin plus
myrosinase (21). In this series of trials, formulations that
provided a 24-h internal dose of >∼25 µmol sulforaphane
metabolites evoked significant enhancements of carcinogen
detoxication in study participants; lower internal doses did
not. Figure 4 details the administered doses, normalized to
µmol/kg/day used in published clinical trials of sulforaphane-
rich, glucoraphanin-rich and glucoraphanin plus myrosinase
preparations. Author-reported significant modulations of
pharmacodynamic biomarkers or clinical endpoints were
observed for all formulations, for the most part at external
doses >1 µmol/kg/day or about 70 µmol per person. From this
baseline, efficacy clusters largely between 1 and 3 µmol/kg/day
with sulforaphane. Highlighting the poorer and more variable
bioavailability seen with glucoraphanin, effective doses range
from 1 to 10 µmol/kg/day for glucoraphanin plus myrosinase
and neat glucoraphanin. Not all clinical trials have independently
confirmed the external doses administered nor have they
provided measures of internal dose. Adopting protocols to
more rigorously assess internal dose across trials (together
with accurate assessments of administered doses) will facilitate
comparisons of test articles as well as study outcomes.

MAKING THE SCIENCE PRACTICAL: CAN
WE EXPAND FROM BROCCOLI SPROUT
CLINICAL TRIALS TO
POPULATION-BASED STRATEGIES?

Moving beyond the here and now is always a challenge. With
novel foods about which an exciting marketing story can be
spun, stakeholder companies stand to profit after investing in
the development of packaging, advertising, logistics, sourcing,
and perhaps even [plant or animal] growing. Sometimes mass-
market food-, science-, or health reporting helps by calling a new
food a “superfood” or giving it some other attractive and timely
cachet (92). With new drugs, the potential to cure, mitigate, or

prevent a disease, syndrome, or condition, in many cases requires
tremendous investment to develop the safety and efficacy profiles
of that drug and then the exploiting of an existing and well-
established marketing stratagem to get it into use.

Although a “new” food since 1997, broccoli sprouts are not
intrinsically sensual. There are enough taste, shelf-life, and food-
borne illness complications with them that they will likely never
take off as a dominant part of the grocery shelf in the USA
(see Figure 5). Home-sprouting, will likewise also never reach
the masses. Broccoli seed and sprout extracts are not magic.
They are still very clearly a work in progress, but that progress
is presently driven by companies large and small, which are
restricted in the claims they can make. Patenting phytochemicals
from non-genetically engineered plants is prohibited, as well it
should be; those companies do not have the profit incentive
that drug companies clearly have. Thus, supplement companies
operate in the unfiltered mass market (e.g., via Amazon,
supermarkets, and drug stores), as well as through the alternative
health practitioner space (e.g., by prescription from nutritionists,
dieticians, naturopaths, and other alternative or complementary
practitioners, but typically not from allopathic physicians). This
leaves responsible companies who are marketing and producing
similar products with identical active ingredients, to compete
for market share by shaving cost of goods (inputs), performing
minimal or no research, and making claims that come as close to
the legal line as possible... and of course imaginative advertising
andmarketing. Irresponsible companies and fly-by night internet
vendors can make huge profits with outlandish claims, get shut
down or forced from the market by regulators, and pop up in
unfettered fashion with another site/claim/product.

Where does this landscape leave the responsible use of a
phytochemical that has an outstanding safety profile and a rosy
future in at least some domains of prevention and therapy, as
we hope we have illustrated herein? We see little suggestion that
consumers’ appetite for dietary (a.k.a. nutritional) supplements
will abate, and every indication that it is increasing by single
to even double-digit percentages annually, having grown into a
$52 billion dollar industry by 2020 (Figure 5). We know that
only a small fraction of that market encompasses botanicals (e.g.,
broccoli and its phytochemical components) (93). We see little
evidence that sprouts will command an increased percentage
of the typical household’s food budget, nor are we advocating
that. And we are likewise not advocating that every promising
phytochemical—products of nature and lengthy plant evolution
as they are—be cast as a drug, patented, and confronted with
all of the sorts of trials and regulation that their synthetic and
semi-synthetic cousins in pharma are subjected. Even with the
lay press attention to broccoli as a “superfood,” as well as the
abundance of scientific evidence that one might think would
bolster its position on the dinner plate, the statistics over the past
two decades support the narrative that per capita consumption
of broccoli itself (florets of the horticultural commodity that have
long been a popular or not-so-popular green vegetable) has barely
changed at all (ca. 6 lb/person/year) (Figure 5).

Conversations about increasing the proportion of fresh
vegetables in the average person’s diet are not extremely
controversial, nor is the statement that cruciferous vegetables or

Frontiers in Nutrition | www.frontiersin.org 9 April 2021 | Volume 8 | Article 648788

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Fahey and Kensler Clinical Studies With Broccoli Sprouts

FIGURE 4 | Doses of glucoraphanin (GR)-rich, GR+myrosinase, or sulforaphane (SF)-rich broccoli sprout preparations used in clinical trials. Pharmacodynamic

biomarkers included measures of NRF2 target genes, gene expression/function, inflammation, oxidative stress, carcinogenesis, and/or metabolomics. Doses were

calculated as listed in Yagishita et al. (21) and outcome measures from classifications in Yagishita et al. (22).

FIGURE 5 | USA consumption per capita between 1990 and 2020. Broccoli per-capita consumption figures reported by USDA Economic Research Service in

pounds (blue line; right axis) (103). Blue vertical arrows align with time of first discovery of sulforaphane and description of some of its benefits (3) and of broccoli

sprouts (5). The red vertical arrow aligns with the 1994 enactment of DSHEA (the Dietary Supplement and Education Act) which provided a huge stimulus to the

supplement industry. Broccoli sprout consumption is imputed, based on our best estimates since no reliable market data exists (dashed blue line; right axis). Since

weight-or mass-based metrics would be a meaningless comparison for dietary supplements, total sales (dollar value), and botanical (herbal) supplement sales, are

normalized to the US population over the time periods for which data was available (red lines; left axis) (104), and the botanical supplement data break-out came from

the American Botanical Council (105, 106). Sales of glucoraphanin, sulforaphane, and broccoli seed- and sprout-rich extracts are a fraction of this magnitude, but no

reliable market data exists. All dotted lines for times beyond 2020 are editorial “best guesses”.

even broccoli or broccoli sprouts should be a part of that mix.
It is a question for public health experts and policy-makers as
to how to more effectively execute that increased presence of
vegetables as a strategy for enhancing healthspan. However, the
jury is very much still out about the wisdom of recommending
dietary or nutritional supplements to otherwise healthy adults
(or children). A very good case can be made that as we age out
of our reproductive years, evolution has not taken very good

care of us. Our needs for supplementary vitamins, minerals, and
phytochemicals of various sorts increases if we want to maintain
healthspan well into our personal second half-centuries. Clearly,
many of us would not even be alive to worry about that if it were
not for antibiotics, anti-arrhythmics, thyroid hormones, statins,
and a list of other pharmaceuticals. Healthy diets such as the
Mediterranean or Blue Zones diets likely enhance the quality of
our trajectory to its inevitable end-point. Stepping back from
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the food and drug precipice, it should be noted that more than
three quarters of all Americans now take supplements, and 10%
of us take four or more such supplements (94–96). It is thus
not heretical to assume that supplements might- and could-be
part of the solution, should the science support such a strategy.
It is important to note, however, that despite encouragement
from epidemiological studies targeting phytochemicals, evidence
to date from randomized clinical trials with mineral or vitamin
supplements does not support efficacy for reduction of cancer
risk (97). Perhaps more mechanism-based interventions with
bioactive phytochemical supplements will show merit.

Much as we ourselves have been immersed in this research, we
maintain that the potential of sulforaphane and phytochemicals
like it have not been properly explored. The approach has, by
definition, been all over the map: Researchers gratefully get
funding wherever they can, but it is hardly ever sufficient to see
the job through. More critically, it comes without the widespread
policy focus that is needed to evaluate promising phytochemicals
in isolation, and in their respective food matrices, and to bring
them, and combinations of them, through well-funded and
rationally designed clinical trials.

This therefore brings us to three very different, but
complementary suggestions for the future of phytochemicals like
glucoraphanin and sulforaphane and the plants in which they
are found:

(a) Spend more money imaginatively promoting and marketing
healthy diets rich in fresh fruits and vegetables of all sorts.
This applies both to the category in general, as well as
to those specific foods with epidemiologic and mechanistic
evidence behind them. This approach should first, however,
be augmented by an accurate mapping of our “foodome”—
our full chemical exposure via our diets—using advances in
machine learning and chemical identification, as so presciently
articulated by Barabási et al. (1). This is a societal fix that can be
driven by schools of public health and state and federal health
agencies, and need not exclude industry. It is not novel, and
it has already stumped many of the best minds in that space
although there of course have been small victories.

(b) Enhance the regulation and oversight of the supplement
industry. This presents a major opportunity to improve the
quality and safety of the products of that industry (98), but
even more importantly, the claims which they make and the
evidence upon which those claims are based. This is in large
part a regulatory fix, which means it is highly political. We are
not particularly sanguine about the chances for a sea change
here, but it must be considered.

(c) Increase by at least an order of magnitude, funding for
prevention research, and for science-based interventions. This
increase in funding must include healthspan (healthy aging)
and nutrition, and should include both the prevention and
treatment of chronic illness. It is a mammoth undertaking
and it will take political will and societal commitment.
Funding could and should come from a variety of sources
including the NIH, and the industries that have a stake
in the outcome... which means the following sectors of
society at aminimum: insurance, supplement, pharmaceutical,

food, agriculture/farming, healthcare... in fact no sector
of society is untouched or not affected and most sectors
should or could conceivably become involved. Philanthropic
foundations should certainly play a part, and to their credit
many have already pitched in, but the job is still too mammoth
and will require vision and leadership on a scale that we
have not yet been able to muster. The mobilization of
these communities into partnerships amidst the COVID-19
pandemic exemplifies what can be accomplished in response to
an acute health crisis. More intense and sustained partnerships
will be required to enhance healthy aging on a global scale.

The drug or pharmaceutical industry (“Pharma”) is not
motivated to fund research into phytochemicals, except, and
perhaps, as it pertains to small molecule delivery systems.
Intellectual property (patents) are the bedrock of this industry,
and natural products are by their very nature not patentable.
However, Pharma does have tremendous incentive to modify
existing molecular scaffolds to “improve upon” products of
nature. They have historically done that extensively, and very well
(99). A propos the thesis of this commentary, Pharma is working
very hard to target the Nrf2 pathway, which is a primary target
of sulforaphane (22, 70), and the cross-category utility of this
research and even the results of some clinical studies done with
these small molecule drugs may be great. Thus, there is potential
that money from Pharmamay benefit the science of sulforaphane
in general. But prescribing drugs in order for large swaths of the
population to remain healthy is not what we are advocating and
care must be observed not to let the conversation move too far in
that direction.

“Farma”—agricultural, farming, and food enterprises
collectively—serve to profit when value-added food products
are developed. If these are whole fresh foods (e.g., new and
improved vegetable varieties with enhanced and standardized
phytochemical content such as higher glucoraphanin broccoli
for seeds or sprouts or florets), it is clear that not only the farmers
who grow those varieties, but supermarkets, seed companies,
agricultural chemical companies, processors, farm equipment
vendors, and other middlemen could all benefit. If these added
value products span the range between minimally- and highly
processed foods—an inescapable part of modern existence—
large multinational food companies and fast food operators
would additionally stand to reap financial benefits, as would
freeze-drying, flavoring, and other food-associated businesses.
It is thus hard to imagine an industrial sector that would not
profit from increased sale of healthy foods, yet historically these
industries have not been supporters of the research required to
develop such healthy foods. Excellent arguments have been made
that various manifestations of Farma (as defined above) will have
to be part of the solution even though they are clearly also part of
the problem.

In the USA, federal funding of the research underpinning
phytochemicals such as sulforaphane has been out of proportion
with their influence on maintenance of long term health. Thus,
their value as preventive dietary agents gets very little attention,
until and unless a specific disease indication is identified, at
which point they become potential therapeutics and are suddenly
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perceived as being more deserving of research funding. The
burden of funding plant breeding and horticultural research
has largely been left to the USDA, which has a mission that is
perceived by some to be at odds with the goal of developing
healthy foods due to the obeisance of this agency to the
meat and dairy industries. Some NIH funding has gone to
sulforaphane, resveratrol, curcumin, and a small number of
other phytochemicals, but funding for the basic biology related
using phytochemicals to support healthspan or prevention,
has been woefully inadequate. This may reflect the fact that
mainstream nutrition hardly even acknowledges phytochemicals,
and of course physician training includes almost no nutrition! As
example of this lack of attention, in over 100 pages of the National
Academy of Science’s “Advancing Nutrition and Food Science:
80th Anniversary of the Food and Nutrition Board,” there is not
a single acknowledgment of phytochemicals or any permutations
of that word and topic (100); nor is there, in the 64-page white
paper entitled “The Lancet Commission on diabetes: Using data
to transform diabetes care and patient lives” (101).

The dietary supplement industry as it is presently construed
appears to have the greatest incentive to fund such research. By
and large they have not done so, because they are still growing
at 6–7% per year, and they don’t yet have the urgency to do so.
That said, they are keenly aware that successful clinical studies
conducted with supplements (phytochemical-based, as well as
vitamins, minerals, botanicals, nutritional supplements such as
creatine, pea protein, and the entire spectrum of products of
that industry) advance the cause of their specific products, and
advance the profile of the industry in general. With little or no
intellectual property on the compounds themselves, and only
some on the delivery systems, their opportunities for exclusivity
with any specific phytochemical is very limited, and thus they
do not invest in the kind of mechanistic work that is so critical,
though they do invest in methodologies for phytochemical
delivery systems.

And lastly, economists are very much needed to focus on
prevention and healthspan. This is already being done across

the globe by schools of public health, funded by a variety of
philanthropies as well as the NIH. The levels of support are
trivial, though, compared to what is required to stem the growing
and inevitable assault on our economy due to a more and more
unhealthy, aging population. Two of the ten largest industries
in the US (health and medical insurance) are logical targets
for not only financial support, but for imaginative and creative
thinking about solutions. That they are already thinking in this
direction is clear and obvious (102); however, the phytochemical
and biomedical research community is not well-connected to
these potential sources of both funding and ideas. It is quite
clear that with our aging population, poor diets, and expensive
drugs and healthcare, our healthspan cannot tolerate business
as usual. Phytochemicals such as sulforaphane from broccoli
sprouts should be part of a re-invention of our healthcare.
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