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Background/Objectives: Characterizing compensatory and adaptive responses to

exercise assists in understanding changes in energy balance and health outcomes

with exercise interventions. This study investigated the effects of a short-term exercise

intervention (combining high intensity interval (HII) and continuous exercise) on (1) gastric

emptying, appetite and energy intake; and (2) other adaptive responses including

cardiorespiratory fitness, in inactive men with overweight/obesity.

Methods: Fifteen men (BMI: 29.7± 3.3 kg/m−2) completed a 4-wk supervised exercise

intervention, consisting of 5 exercise sessions per week alternating between HII (30 s at

100% VO2max followed by 30 s recovery) and continuous (at 50% VO2max) training on

a cycle ergometer, progressing from 30 to 45min session duration. Gastric emptying

(13C-octanoic acid breath test), appetite (visual analog scale), energy intake (ad libitum

lunch meal), body composition (air displacement plethysmography), non-exercise activity

(accelerometery) VO2max, blood pressure, and fasting concentrations of glucose, insulin,

and ghrelin were measured before and after (≥48 h) the intervention.

Results: Gastric emptying, glucose, insulin and ghrelin were unchanged, but energy

intake at the ad libitum lunch test meal significantly increased at post-intervention (+171

± 116 kcal, p < 0.01). Body weight (−0.9 ± 1.1 kg), waist circumference (−2.3 ±

3.5 cm) and percent body fat (−0.9± 1.1%) were modestly reduced (P < 0.05). VO2max

increased (+4.4 ± 2.1ml.kg.min−1) by 13% and systolic (−6.2 ± 8.4 mmHg) and

diastolic (−5.8 ± 2.2 mmHg) blood pressure were significantly reduced (P ≤ 0.01 for all).

Conclusions: Four weeks of exercise training did not alter gastric emptying, indicating

gastric emptying may only adapt to a higher volume/longer duration of exercise or

changes in other characteristics associated with regular exercise. The combination

of HII and continuous exercise training had beneficial effects on body composition,

cardiorespiratory fitness, and blood pressure and warrants further investigation in larger

randomized controlled trials.
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INTRODUCTION

Exercise hasmany health benefits, including weightmaintenance,
and should be an effective weight loss strategy by increasing
energy expenditure. However, the efficacy of exercise for weight
loss is modest (1) and will depend on changes in other
components of energy balance including energy intake and non-
exercise activity (2). Although it is intuitive that exercise drives an
increase in appetite and energy intake, the relationship between
exercise and appetite is more complex. Evidence indicates that
exercise improves the sensitivity of appetite control (3–8) and
that exercise influences at least two processes of appetite control:
both the drive to eat and the satiating efficiency of a meal
(5). As the strength of these processes may determine whether
individuals lose weight with exercise, understanding the effects of
exercise on energy intake and the underlying mechanisms is vital.

Gastrointestinal peptides and gastric emptying (the rate at
which food empties from the stomach) have an important
integrative role in the short-term control of food intake. For
example, a slower gastric emptying is associated with increased
gastric distension, postprandial fullness and reduced energy
intake at a subsequent test meal (9, 10). However, a slower
gastric emptying also delays the interaction of nutrients with the
intestine, blunting the release of satiety related gut peptides in
individuals with obesity (11). The relative influence of intestinal
and gastric signals on appetite may be influenced by factors
such as the time interval between meals, characteristics of
the individual or of the meal. Cross-sectional studies have
shown gastric emptying is faster in active compared to inactive
individuals (12–14), and is associated with activity energy
expenditure (14). Faster gastric emptying has been proposed
as a mechanism which may increase desire for food intake
with chronic physical activity (12). We have also previously
hypothesized that faster gastric emptying with chronic exercise
could be one mechanism contributing to an overall increase in
meal frequency and energy intake by reducing gastric distension
and fullness, but improved ability to match daily energy intake
to expenditure in active individuals through enhanced intestinal
satiety signaling (15). However, such relationships have yet to
be investigated. In addition, while cross-sectional studies can
provide important information, they do not allow for a causal
relationship between changes in gastric emptying with repeated
exercise training to be determined.

Potential mechanisms contributing to changes in gastric
emptying and energy intake include alterations in fasting ghrelin
(16), blood glucose (17) and insulin sensitivity (18), which have
been shown to change in response to exercise training (3, 19–
23). Therefore, examining changes in these blood markers may
provide further mechanistic insight into changes in appetite
with exercise.

Compensatory responses in other components of energy
balance, including activity outside of the prescribed exercise
program are also important factors when considering exercise
prescription for individuals with overweight and obesity (24–
26). In addition to changes in energy intake, non-exercise activity
may be influenced by exercise intensity and reduced to a greater
extent as a compensatory response to high intensity exercise

(27, 28). Thus, changes in non-exercise activity could potentially
undermine beneficial effects of higher intensity exercise on total
daily activity levels.

Combining high intensity interval (HII) exercise sessions with
continuous lower intensity exercise sessions may serve to provide
benefits for increasing both cardiorespiratory fitness, along with
increasing the total amount of exercise–an important factor
contributing to body weight and fat loss (29). Exercise programs
(aimed at improving total daily activity, cardiorespiratory fitness,
body composition, and adherence) should include a combination
of low- and high-intensity exercise (30), and have been shown
to result in substantial improvements in VO2max in trained and
untrained individuals (31). However, to the best of our knowledge
the effects of combining HII and moderate intensity continuous
exercise on compensatory responses and other health-related
outcomes have not been widely examined in individuals with
overweight and obesity.

The present study was undertaken to investigate the effects of
a 4-week exercise intervention (combining HII and continuous
exercise) on (1) gastric emptying, appetite and energy intake; and
(2) body composition, non-exercise activity, cardiorespiratory
fitness and related health markers in inactive men with
overweight and obesity.

MATERIALS AND METHODS

Participants
Based on our previous work examining the reproducibility of
gastric emptying in individuals with overweight and obesity
without any intervention (32), a minimum of 15 participants
was required to detect a mean difference of at least 10% for
all gastric emptying parameters, with a power of 80% and α

= 0.05. Participants were recruited in the university and local
area. Inclusion criteria were: male, aged 18–60 years, BMI 25–
40 kg.m−2, weight stable (± 4 kg over last 6 months), non-
diabetic, no history of GI surgery or disorder, no medical
conditions, and not taking any medication known to influence
the outcome measures, willing to consume study test meals,
not a heavy smoker (<10 per day) and inactive (participating
in one structured exercise session or less per week and not
engaged in strenuous work). All participants completed the
Sports Medicine Australia pre-exercise screening questionnaire
and those with any risk factors were required to present approval
by their medical doctor prior to participation. Ethical approval
was granted by Queensland University of Technology Research
Ethics Committee, the study was conducted in accordance
with the Declaration of Helsinki and all participants provided
written informed consent prior to taking part. No incentive
was provided.

Design
Participants attended the laboratory on 2 separate test days
(at least 48 h apart) in the week prior to the 4-week exercise
intervention (baseline) and on 2 separate test days in the week
following the exercise intervention (post-intervention) (at least
48 h after the last exercise session to avoid any acute effects of
exercise). At one testing session, fasting blood samples, body
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composition and VO2max were measured. At the second test
session, gastric emptying, subjective appetite sensations and ad
libitum lunch energy intake were assessed. The order of testing
sessions was the same for all participants. On both occasions,
participants attended the laboratory after a 12 h overnight fast,
and having avoided alcohol and strenuous exercise for 24 h.
One glass of water was allowed upon waking. Participants were
instructed to repeat these procedures prior to the post-test. There
was no dietary intervention, similar to others assessing the impact
of exercise without dietary intervention (23, 33–35).

Exercise Intervention
The exercise intervention consisted of five exercise sessions per
week for 4 weeks. All sessions were supervised and involved
indoor cycling on a cycle ergometer (Monark 884E Ergomedic
Sprint Bike, Monark Exercise AB, Vansbro, Sweden). Exercise
sessions alternated between continuous cycling and HII exercise,
with participants prescribed ten of each type over the course of
the 4 weeks. The continuous exercise sessions involved cycling at
a constant workload equivalent to 50% VO2max for the duration
of the session. HII sessions consisted of 30 s cycling at 100%
VO2max followed by 30 s recovery (unloaded cycling or static
recovery) each minute for the duration of the session. Thus, an
identical relative workload and time duration was prescribed.

Exercise duration progressed by 5 min/week from 30min
in week 1 to 45min in week 4. Each session started with a
5min warm up of unloaded cycling and finished with a cool
down. Participants wore a heart rate monitor (Polar Electro Oy,
Kempele, Finland) during each exercise session. HR and RPE
using the Borg Scale (36) were recorded every 5min. In HII
sessions, recordings were taken immediately at the end of a HII
bout. Workloads were prescribed based on each participant’s
baseline VO2max test using individual regression equations for
each subject. Percent VO2max data calculated during the last 30 s
of each stage of the test was plotted against stage workload and
50% and 100%VO2max were used to calculate the corresponding
prescribed workloads.

Anthropometry and Body Composition
Height was measured without shoes to the nearest 0.5 cm and
weight to the nearest 0.01 kg. Waist and hip circumferences
were taken and body composition was measured using air
displacement plethysmography (Bodpod, Concord, CA).

Maximal Oxygen Consumption (VO2 Max)
VO2 max was assessed using a TrueMax 2400 Metabolic Cart
(ParvoMedics Inc, USA). All tests were conducted on the same
cycle ergometer (Monark Bike 839E, Monark Exercise AB,
Sweden) and consisted of 2 phases [similar to Wood et al.
(37)]. Phase 1 consisted of a graded exercise test performed
to volitional exhaustion and phase 2 consisted of a verification
test. Participants were instructed to maintain cycling cadence at
70 rpm. Participants performed a 2-min warm up at the start
of the graded test. Subsequently, workload was increased each
minute by either 21 or 28W (determined prior to the test based
on the participant’s predicted VO2max). Following phase 1, the
participant was given a 5-min rest and a small glass of water.

Participants then resumed cycling at the workload of the third last
1-min stage of the preceding maximal continuous incremental
test for phase 2 (the verification test) (37). The workload was
increased each minute until volitional exhaustion. This two-
phase test was used as it has been suggested that a verification
or “booster” test may provide a time-efficient means of verifying
whether a VO2peak is indicative of a true maximal VO2 (38).

The continuous incremental exercise test (phase 1) was
deemed to be a valid maximal test on the basis of achievement of
at least three of the following criteria during the final 30 s of the
last completed stage (37): Increase in VO2 < 50% of that expected
for the change in mechanical work, heart rate (HR) within +/–
11 bpm of age-predicted maximum, calculated as 220 –age,
respiratory exchange ratio (RER) ≥ 1.15, RPE ≥ 18. Ventilatory
threshold was calculated using the combined approach (39).

Blood Pressure
Systolic and diastolic blood pressure were assessed using an
Omron IA1B blood pressure monitor (Omron Healthcare
Singapore PTE Ltd, Singapore) in a seated position.
Measurements were taken in duplicate following 10min of
sitting to ensure the participant was rested and relaxed.

Blood Samples
Fasting samples were collected by venepuncture into potassium
oxylate, serum and EDTA tubes containing aprotinin and
DPP-IV inhibitors. Potassium oxylate and EDTA tubes were
immediately centrifuged (refrigerated at 2,000 g for 10min)
and the serum tube was allowed to stand for 30min
before centrifugation. Samples were immediately aliquoted,
placed in liquid nitrogen and stored at −80 degrees until
analysis. Plasma glucose was measured colourimetrically using
standard laboratory techniques, insulin by chemiluminescent
immunoassay and total ghrelin using an established RIA. All
analyses were conducted in duplicate, and mean values are
reported. Intra-sample CV’s were 0.7 ± 1.1% for glucose,
2.1 ± 1.3% for insulin and 6.5 ± 5.2% for ghrelin. Insulin
resistance by homeostasis model (HOMA-IR) was calculated
according to Matthews et al. (40): HOMA-IR = fasting glucose
× fasting insulin/22.5.

Non-exercise Activity
Non-exercise activity (i.e., activity outside of the prescribed
exercise) was monitored using a tri-axial GT3X accelerometer
(Actigraph, Fort Walton Beach, FL, USA). Participants were
provided with the accelerometer to wear for 7 days prior to the
intervention and again in week 4 of the intervention, a duration
estimated to result in 90% reliability (41). The accelerometer
was attached to an elastic belt and worn on the waist, in line
with the right hip. Data were processed using ActiLife software
(version 6.4.5). VM3 counts were summed over 60 s epochs
and levels of activity were defined as counts per minute using
cut point values according to validated recommendations (42).
Data were checked for spurious values (counts per minute of
>15,000). A non-wear period was defined as at least 90min
of consecutive zero counts without interruption (43). Wear
time exceeding 600min was considered a valid day (44) and
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a valid dataset was considered a combination of at least 3
week days and 1 weekend day (45). Data during prescribed
exercise times were excluded from analysis. Mean minutes per
day of time spent in moderate and vigorous (combining vigorous
and very vigorous) activity were calculated. Activity count data
were converted to activity energy expenditure (AEE) using the
“Freedson VM3 combination (11)” option in Actilife software
(version 6.4.5). Accelerometery data were compared between
pre- and post- exercise intervention. Data were also compared
in participants who had a complete 24 h dataset following a
single continuous and HII exercise session in week 4 to examine
whether subsequent 24 h AEE was impacted by the type of
training session.

Energy Compensation
To estimate energy expenditure from the prescribed exercise,
individual energy expenditure regression equations were
developed for each participant using the heart rate and energy
expenditure values recorded during the last 30 s of each stage
of the VO2max test, similar to previous work (46–48). Heart
rates recorded during the prescribed exercise sessions were
then inserted into the individual regression equations to predict
energy expenditure. Net energy cost of exercise was calculated by
subtracting resting energy expenditure from energy expenditure
during prescribed exercise. Resting energy expenditure was
measured over 30min at baseline by indirect calorimetry using
an identical procedure to previous work (14).

Energy compensation was calculated following Riou et al.
(46, 49) based on the total estimated energy expended during
prescribed exercise (EE), and changes in fat (FM) and fat free
mass (FFM) observed using energy equivalents for fat mass and
fat free mass previously described (50) as follows:

Energy Compensation (%) =
100

EE (kcal)

×
[(

FM
(

kg
)

× 9, 500 kcal
)

+
(

1FFM
(

kg
)

× 1, 020 kcal
)]

+ 100

Using this method compensation of 0% indicates changes in
body composition following the intervention matched expected
changes based on exercise EE. A positive value indicates changes
in body energy stores are less than expected, with a value of 100%
indicating body composition remained the same. In contrast, a
negative value indicates body energy stores are reduced beyond
what would be expected based on exercise EE (46, 49).

Gastric Emptying Test Day Measurements

Gastric Emptying
Gastric emptying parameters were calculated using the 13C-
octanoic acid breath test (51), using an identical procedure
to that described in detail previously (32). In brief, the egg
yolk of a standardized pancake breakfast meal [400 kcal; 15 g
(15%) PRO, 17 g (37%) Fat, 48 g (48%) CHO)] was labeled
with 100mg 13C-octanoic acid (Cambridge Isotope Laboratories,
Andover, USA). Participants consumed the meal together with
250ml of water within 10min. Breath samples were collected
in 10ml glass Exetainer tubes (Labco, Buckinghamshire, UK)

prior to the breakfast, immediately after, and subsequently at
15min intervals for 5 h after breakfast. Participants remained
in sedentary activities throughout. No food or drinks were
provided to participants during this time. 13C enrichment of
breath samples was measured by isotope ratio mass spectrometry
(Hydra 20–20) and compared to a reference gas (5% CO2,
75% N2, 20% O2 calibrated with a standard of 13CO2). Data
were analyzed according to Ghoos et al. (51). The conventional
uncorrected time based parameters (tlag and t1/2) proposed
by Ghoos et al. (51) and the parameters latency time (tlat)
and ascension time (tasc) proposed by Schommartz et al. (52)
were calculated.

Subjective Appetite Sensations
Subjective appetite sensations were measured throughout the
test day using an electronic appetite rating system. Participants
were asked to rate feelings of hunger, fullness and desire to eat
on 100mm visual analog scales, using an identical protocol to
previous work (53). The satiety quotient (SQ) (54) was calculated
for each sensation at breakfast and palatability ratings of both
breakfast and lunch meals were assessed immediately post-meal
using 100mm visual analog scales.

Ad Libitum Energy Intake
At the end of the gastric emptying test, participants were
provided with an ad libitum pasta lunch meal identical to that
described previously (53) (47% CHO, 35% FAT, and 18% PRO,
and an energy content of 1.8 kcal/g) and water and instructed
to consume as much as they wished until comfortably full. The
amount (g) of food consumed was determined by weighing
the meal before and after consumption and energy intake
(kcal) calculated.

Statistical and Data Analysis
Data are presented as mean values and standard deviations (SD).
Changes from pre- to post- exercise intervention were assessed
using paired sample t-tests. Unless otherwise stated Pearson
correlations were used to determine relationships between
changes in key variables. Spearman correlations were used for
non-parametric data. Area under the curve for appetite ratings
was calculated using the trapezoidal rule. Following a similar
approach to King et al. (55), in order to provide insight into
individual variability in responses that may be attributed to
the exercise intervention, normal day-to-day variability in the
key outcome measures is considered by graphically presenting
the findings in relation to our previous work examining the
reproducibility of gastric emptying (32) and energy intake (53)
in a similar population of men with overweight/obesity without
intervention. Statistical analysis was carried out using PASW
Statistics 18.0 (SPSS Inc., Chicago, IL) and statistical significance
accepted at p < 0.05.

RESULTS

Eighteen men met the inclusion criteria and three withdrew
during the intervention, resulting in fifteen males completing
the study. Three participants did not complete the 4 week
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exercise intervention–two due to time commitments and
personal circumstances and one participant was excluded due to
insufficient attendance at exercise sessions. Results are presented
for 15 men (BMI: 29.7 ± 3.3, Age: 31.1 ± 8.4 yr) who completed
all parts of the study.

Exercise Intervention Characteristics and
Energy Compensation
Participants completed 96 (3.9)% of the prescribed number of
exercise sessions, with all participants completing a minimum of
90% (18 of 20) of the exercise sessions. Mean RPE decreased by
1.7 units during continuous and 2.2 units during HII exercise
respectively, when compared over the first 30min from week
1 to week 4 (p < 0.001). Mean total time spent in prescribed
exercise was 705 ± 43min. Mean total energy expended in
prescribed exercise calculated over the 4 week intervention was
7,803 ± 1,587 kcal. Mean energy compensation was −41 ±

136%, indicating that on average participant’s energy stores were
reduced to a greater extent than would have been expected
based on exercise energy expenditure. However, individual
values ranged from −315 to 214% indicating inter-individual
differences in responses were highly variable. In total, five had
positive values (range 5–214%) indicating energy compensation
occurred and ten negative values (range −20 to −315%)
indicating greater reductions in energy stores than expected.

Anthropometry, Body Composition, Blood
Pressure, and Fitness
The small reductions in weight, BMI, body fat, and waist
circumference at the end of the intervention were statistically
significant (Table 1). Weight change ranged from −2.4 kg loss to
+ 0.8 kg gain, and as a percentage of initial body weight from
−3.0% loss to 0.9% gain. Systolic and diastolic blood pressure
were significantly reduced and there was a significant increase
in VO2max (mean 12.8% increase in ml.kg.min−1; mean 11.6%
increase in L.min−1) (Table 1). Four participants did not meet
the criteria for VO2max at pre- and post- test, however the
verification test indicated that they could not complete any
additional stages. Mean RER (Pre: 1.15± 0.04, Post: 1.13± 0.06)
and HRmax (Table 1) during the final 30 s of the last completed
stage did not differ significantly between pre- and post-test.

Gastric Emptying and Blood Parameters
Gastric emptying, fasting ghrelin, glucose, insulin and HOMA-
IR did not significantly differ between pre- and post-exercise
intervention (Table 2).

Despite no mean changes, there was variability in changes
in these outcome measures. Six individuals had a faster t1/2 at
post-test, ranging from 0.1 to 17.8% (0.2 to 32.0min) faster, and
nine individuals had a slower t1/2 at post-test, ranging from
3.5 to 13.9% (5.5 to 25.0) min slower. However, most changes
were within the intra-individual CV of 8% identified in our
previous work (32) (Figure 1). Comparing the results to the
natural variation previously documented, the changes in GE t1/2
of 66% (n= 10) of participants fell within this normal range.

TABLE 1 | Participant anthropometric, body composition, cardiorespiratory

fitness, and blood pressure characteristics pre- and post- 4-week exercise

intervention (n = 15).

Pre Post P-value

Weight (kg) 95.6 ± 13.0 94.7 ± 13.0 <0.01

BMI (kg.m−2 ) 29.7 ± 3.3 29.3 ± 3.2 <0.001

Body composition

Body fat (%) 30.0 ± 6.8 29.0 ± 6.7 0.01

FFM (kg) 66.4 ± 7.1 66.7 ± 6.8 0.50

Waist (cm) 97.1 ± 9.6 94.9 ± 8.7 0.03

Hip (cm) 107.8 ± 7.3 107.2 ± 7.2 0.15

Fitness

VO2max (ml.kg.min−1 ) 34.3 ± 5.9 38.7 ± 5.9 <0.001

VO2max (L.min−1 ) 3.25 ± 0.57 3.63 ± 0.52 <0.001

HR max (bpm) 183 ± 13 182 ± 8 0.51

Workload max (Watts) 270 ± 51 308 ± 48 <0.001

Ventilatory threshold (Watts)a 136 ± 35 187 ± 33 <0.001

Ventilatory threshold (%VO2max)a 53 ± 11 61 ± 5 0.001

Blood pressure

Systolic (mmHg) 122 ± 8 116 ± 9 0.01

Diastolic (mmHg) 79 ± 7 74 ± 9 <0.01

Data are means ± SD.

BMI, body mass index; FFM, fat free mass; VO2max, maximum oxygen uptake; HR,

heart rate.
aCombined VT calculations are reported for n = 14 as the time of VT for one participant

occured at<4min, therefore the data was rejected as per (39). Bold highlights statistically

significant values.

TABLE 2 | Gastric emptying time based parameters, fasting ghrelin, glucose,

insulin, and HOMA-IR Pre and Post 4 week exercise intervention (n = 15).

Pre Post P-value

GE tlag (min) 111 ± 17 110 ± 18 0.71

GE t1/2 (min) 175 ± 22 179 ± 25 0.25

GE tlat (min) 37 ± 9 35 ± 8 0.09

GE tasc (min) 137 ± 17 144 ± 21 0.10

Fasting ghrelin (ng/L) 805.4 ± 337.6 760.8 ± 331.0 0.12

Fasting glucose (mmol/L) 5.49 ± 0.30 5.44 ± 0.22 0.39

Fasting insulin (mIU/L) 9.40 ± 4.66 8.70 ± 4.18 0.19

HOMA-IR 2.30 ± 1.16 2.11 ± 1.05 0.20

Data are means ± SD.

GE, gastric emptying; t1/2, half time; tlag, lag time; tasc, ascension time; tlat, latency time.

Appetite Ratings and ad libitum Test Meal
EI
Subjective appetite ratings are shown in Supplementary Figure 1

and did not differ significantly between pre- and post- exercise
intervention for fasting, mean 5 h, 5 h AUC and breakfast satiety
quotient (p > 0.14 for all). In addition, there were no significant
differences between pre- and post-intervention for palatability
ratings of the breakfast and lunch meals (p > 0.09 for all).

EI at the ad libitum lunch test meal was significantly higher
following the exercise intervention (Pre: 712± 173 kcal, Post: 883
± 159 kcal, p < 0.001), with a mean 27% increase from baseline.
Variability in individual changes in energy intake are shown in
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FIGURE 1 | Individual changes in gastric emptying half time (GE t1/2 )

expressed as percentage change from baseline after the 4-week exercise

intervention. Each bar represents an individual participant (n = 15). Values

above zero indicate a longer (i.e., slower), values below zero indicate a shorter

(i.e., faster) GE t1/2 after the intervention. Dashed horizontal lines represent

zones of natural variation in GE t1/2 (± 8%) based on our previous work (32).

TABLE 3 | Mean physical activity characteristics at baseline and during week 4

(excluding prescribed exercise) of the 4 week exercise intervention (n = 13).

Pre Week 4 P-value

Physical activity

Steps per day 6,714 ± 2,082 6,718 ± 2,399 0.99

AEE (kcal/day) 568 ± 196 579 ± 227 0.16

Time in activity

Vigorous (min/day) 5 ± 4 5 ± 5 0.97

Moderate (min/day) 42 ± 18 42 ± 22 0.97

Data are means ± SD.

AEE, activity energy expenditure estimated from accelerometery.

Supplementary Figure 2, illustrating most changes were outside
the intra-individual CV of 12% identified in our previous work
(53). Comparing the results to the natural variation previously
documented, the changes in energy intake of 73% (n = 11) of
participants fell outside the normal range.

Non-exercise Activity
Due to two invalid accelerometery data sets, physical activity data
is reported for n = 13. Wear duration was significantly less at
post-intervention (pre: 893 ± 73min and post 826 ± 72min, p
= 0.03), due to the time in prescribed exercise being excluded
from calculations. Non-exercise activity did not significantly
differ between pre-intervention and week 4 (Table 3). When
controlling for the difference in wear time, there was a significant
interaction effect for AEE (p= 0.04) and steps per day (p= 0.01)
but not for time spent in moderate or vigorous activity. Including
EE from the prescribed exercise sessions, there was a significant
increase in average daily AEE of +303 ± 162 kcal over week 4 of
the intervention compared to pre-intervention (p= 0.007).

Data was available for a complete 24 h period for n = 11
participants after both a HII and continuous exercise session in
week 4. Non-exercise activity did not differ in the 24 h after a
single continuous exercise session compared to after a HII session

in week 4 (Supplementary Table 1; Supplementary Figure 3).
Wear duration did not differ between conditions (p= 0.14).

Relationships Among Energy
Compensation, Anthropometric, Body
Composition, Gastric Emptying, Blood
Markers, Physical Activity, Appetite, and ad

libitum Energy Intake Changes
Energy compensation was inversely associated with change in
AEE (including prescribed exercise) (r = −0.61, p = 0.03),
indicating a greater increase in AEE in week 4 was associated
with less energy compensation. Energy compensation was also
associated with change in body fat [percent (r = 0.84, p <

0.001) and kg (r = 0.97, p < 0.001)], change in fasting insulin
(r = 0.56, p = 0.03) and change in HOMA-IR (r = 0.51, p =

0.05), indicating lower energy compensation was associated with
a greater reduction in body fat, insulin and HOMA-IR. However,
energy compensation was not associated with changes in FFM
(kg, r=−0.43, p= 0.11), gastric emptying or any other variables.

There was a trend toward a negative correlation between
change in gastric emptying tasc with average daily AEE (including
AEE in the prescribed exercise sessions) (r = −0.53, p = 0.06).
Change in tasc was also negatively correlated with change in
AEE outside of the prescribed exercise (r = −0.67, p = 0.01)
and similar negative correlations were found between change
in tasc and changes in steps per day (r = −0.65, p = 0.02)
and mean time in vigorous activity per day (r = −0.64, p =

0.02) outside of prescribed exercise. These findings indicate a
greater increase in activity was associated with shorter (i.e., faster)
gastric emptying time following the intervention. However,
changes in gastric emptying were not correlated with changes
in anthropometric, body composition, blood markers, VO2max,
appetite (5 h mean or AUC) or ad libitum test meal energy
intake variables. Change in AEE (including prescribed exercise)
was also inversely associated with change in body fat (kg) (r
= −0.58, p = 0.04), indicating a greater increase in AEE in
week 4 was associated with less energy compensation and a
greater reduction in body fat at post-intervention. Change in
AEE (excluding prescribed exercise) was not correlated with time
spent in prescribed exercise (Spearman rho = 0.02, p = 0.95),
indicating overall exercise participation was not associated with
change in AEE outside of the intervention.

A decrease in fasting insulin and HOMA-IR from pre-to post-
intervention was associated with a decrease in body fat (insulin:
r = 0.69, p = 0.004; HOMA-IR: r = 0.67, p = 0.006). Fasting
ghrelin was not associated with changes in other variables.
Change in ad libitum test meal energy intake was associated
with change in percentage body fat (r = 0.52, p = 0.048) but
not with other variables, indicating an increase in energy intake
was associated with a lesser reduction in body fat following
the intervention.

DISCUSSION

The present findings demonstrate that in response to a 4-wk
exercise intervention combining HII and continuous exercise
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(1) gastric emptying, glucose, insulin, ghrelin, appetite ratings
and non-exercise activity are unaltered despite an increase in
ad libitum test meal energy intake; and (2) body composition,
cardiorespiratory fitness and blood pressure are improved, in
men with overweight and obesity. Compliance was high (≥90%
completion of all sessions), the intensity and frequency of
sessions were high, each session was supervised in the laboratory
and the intervention resulted in a significant improvement
in cardiorespiratory fitness. It can therefore be reasonably
concluded from the present findings that in the short to medium
term (4 weeks), in the absence of acute exercise effects gastric
emptying is unaltered in response to exercise training in men
with overweight and obesity.

In contrast, cross sectional studies have shown faster gastric
emptying in active compared to inactive men (13). In a previous
study demonstrating faster gastric emptying in marathon
runners, the runners were training for a mean 4.9 years (13)
and in our previous work, habitual exercisers were defined as
individuals engaged in 4 or more exercise sessions per week
for a minimum of 6 months (14). Therefore, gut adaptations
(i.e., faster gastric emptying) in response to regular exercise
may only occur after a much longer period of time than the 4-
week intervention in the present study. Interestingly, the only
significant correlates of changes in gastric emptying parameters
over time were changes in activity assessed by accelerometer
outside of the prescribed exercise sessions. A greater increase
in activity between baseline and week 4 was associated with
a faster gastric emptying time. In addition, there was a trend
toward a greater increase in average daily AEE including time
in prescribed exercise being associated with a shorter (i.e.,
faster) gastric emptying time. These findings are consistent
with our previous cross-sectional evidence showing significant
associations between greater activity, AEE and faster gastric
emptying (14). In the present study, activity was restricted in the
48 h prior to gastric emptying testing, which could be one factor
explaining why gastric emptying and appetite were unchanged
overall. Further studies are warranted to investigate this and the
temporal pattern of changes in gastric emptying and associations
with appetite and daily EI with longer term interventions and
more substantial weight loss.

The rationale for the 4 week duration of intervention
was to investigate the effects of the exercise intervention on
gastric emptying and compensatory responses before substantial
changes in body composition were likely to occur and
impact responses. Some evidence shows change in VO2max
is associated with energy compensation (47, 48). In contrast,
the exercise intervention in the present study demonstrated
on average a significant improvement in VO2max without
energy compensation or changes in gastric emptying. Week 4
exercise intervention responsesmay also be useful in determining
longer term effects of exercise on weight loss and compensatory
responses in individuals with overweight or obesity (56).
However, a limitation of the current study is that the sample size
limited further understanding of individual responses. Only 5
participants had positive energy compensation values indicating
a degree of compensation for exercise energy expenditure.
Further studies with a larger numbers of participants would assist

to better understand whether alterations in gastric emptying
may be a compensatory mechanism occurring in individuals
identified as “compensators” compared to “non-compensators”
with exercise intervention.

The 4-week exercise intervention also had no significant effect
on fasting glucose, insulin, HOMA-IR or total ghrelin, and could
provide further explanation behind why no changes in gastric
emptying were observed. Excluding the effects of acute exercise
may similarly be one explanation for the lack of changes in fasting
insulin and HOMA-IR. Although, it has long been established
that a single bout of exercise improves glucose metabolism
acutely (57), the benefits of exercise appear to diminish within
48 to 72 h of the last exercise session (23, 58). The timing of
the post-testing (≥ 48 h after last exercise) in the present study
was selected to allow the effects of short-term exercise training
in the absence of acute exercise effects to be established, and to
allow comparison with previous studies examining the effects of
exercise training on gut peptides (3, 20, 21, 59).

In addition, although changes in body composition were
significant, the reductions in body fat were modest (mean ∼1%
change) and it is likely that more substantial changes in body
fat may be required to improve insulin sensitivity in response to
chronic exercise. Indeed, we observed that changes in insulin and
HOMA-IR were strongly associated with reductions in body fat.
These findings support the contention that the chronic impact
of exercise training on insulin may be mediated by reduced
adiposity (57). The present findings are also consistent with
evidence that fasting ghrelin levels appear to be unaffected by
exercise training in the absence of significant concurrent weight
loss (60).

Subjective appetite sensations were similarly unchanged
after the 4-week intervention, consistent with some previous
studies showing no change in appetite ratings following
both 7 and 14 days of exercise in lean men and women
(61, 62). However, in response to longer-term interventions,
changes in subjective appetite ratings have been documented
(5, 63) suggesting appetite ratings may only respond to longer
duration interventions.

Despite no significant changes in appetite ratings, ad libitum
energy intake at the lunch test meal increased (mean 171
kcal higher (27% increase), which equated to ∼32% of the
average energy expended in a prescribed exercise session in
week 4). Although AEE was not associated with lunch test meal
energy intake in the present study, AEE has been previously
identified as an independent predictor of mean daily energy
intake and to have a small contribution to the drive to eat
(64, 65). Others have shown partial compensation in energy
intake of ∼30% for exercise induced EE following 14 days
of high exercise levels in lean men (62). Although, in the
latter study daily food intake was measured, the findings
of a significant increase in energy intake at the ad libitum
lunch in the present study could be indicative of a partial
compensation in energy intake. Indeed, an increase in test
meal energy intake was associated with a lesser reduction in
body fat in response to the intervention. As gastric emptying
was unchanged, other factors such as changes in leptin (66),
cognitive factors such as attitudes and beliefs (e.g., exercise
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makes you hungry), a desire for self-reward after exercise and
misjudgements about the amount of energy expended relative to
energy intake (67, 68) could have contributed to the change in
ad libitum energy intake at the lunch test meal. It is therefore
important to address a range of factors which may contribute
to compensatory increases in energy intake and thus impede
weight/fat loss when individuals commence an exercise program
for weight management.

A second major aim of the present study was to examine
the effects of the intervention on cardiorespiratory fitness
and other adaptations to exercise. We observed a mean 13%
increase in VO2max [(+4.4ml.kg.min−1); 12% in L.min−1

(+0.38 L.min−1)]. Previous studies in men with overweight
and obesity involving HII only interventions have reported
a mean 8% (+0.25 L.min−1) increase in VO2peak following
2 weeks (23), 7% (+1.9ml.kg.min−1) increase following 4
weeks (34) and 2.8% (+0.84ml.kg.min−1) increase following
6 weeks (69) of HII training 3 days per week. Others (70)
have reported a 13% (+0.4 L.min−1) increase in VO2max
in overweight males following 12 weeks of HII training
three times per week. Interestingly, the total prescribed
exercise time in that study [720min (70)] was similar to
the present study (750min). However, compared to the
latter study we observed a similar improvement in VO2max
following just 4 weeks of training and with less total
training sessions (20 vs. 36) and less HII sessions (10
vs. 36).

Limited research has examined the effects of combining HII
and continuous exercise interventions in healthy individuals
with overweight and obesity. However, this type of training has
been shown to be well-tolerated in a small study of individuals
with overweight and obesity (71). Moreover, in individuals
with Type 2 diabetes, Mourier et al. (72) examined the effects
of combined continuous (2 days per week) and HII exercise
(once per week) for 8 weeks, and observed a substantial
improvement in VO2peak [41% (+9.4ml.kg.min−1) increase]
and reductions in adiposity. The addition of continuous to
HII exercise sessions, thus increasing the total exercise dose
and energy expenditure, is one possible explanation for the
improvements in VO2max and body composition. Molecular
mechanisms such as an increase in PGC1-α with combined
interval and continuous exercise (73) could also potentially
contribute to the significant changes in VO2max observed.
Taken together, the current findings demonstrate that a short-
term intervention combining HII and continuous exercise has
beneficial effects on cardiorespiratory fitness, body composition
and blood pressure.

A final objective was to compare the effects of the intervention
on non-exercise activity. We found no change in non-exercise
activity between baseline and the final week of the exercise
intervention. Although other studies using doubly labeled water
to quantity total EE have shown reductions in non-exercise
activity in women with overweight and obesity (24, 46), the
present findings are consistent with a systematic analysis (74)
and some longer term studies in adults with overweight and
obesity (63, 75). The present data also suggest the prescription
of both HII and continuous moderate intensity exercise are

effective for increasing total daily activity levels during an exercise
intervention in men with overweight and obesity.

We acknowledge that the sample size limits the ability
to generalize the findings, although it is similar to other
studies in this area (3, 23). The study was undertaken in
males to minimize confounding effects of menstrual cycle on
key outcomes. In some studies examining changes in non-
exercise activity and energy intake to exercise training in
females, compensation has been demonstrated (24, 46, 63),
therefore results in females may differ and further studies in
females are warranted. Exercise EE was not directly measured
during all exercise sessions, as indirect calorimetry during each
training session was not feasible. In addition a constant load
exercise test to estimate EE was not undertaken. Test meal
intake as assessed in the present study provides an objective
measurement but does not necessarily reflect daily changes,
which represents a limitation of the current study. For example,
Myers et al. (63) demonstrated an increase in daily energy
intake but not lunch or dinner test meal intake following
exercise intervention in women with overweight and obesity.
It should also be noted that there was no dietary intervention,
similar to others assessing the impact of exercise without dietary
intervention (23, 33–35) and there was similarly no control
group (3, 23, 63). However, the study was well-powered to
detect significant changes in the primary outcome measure
based on our previous work examining the reproducibility
of gastric emptying in this population without intervention
(32), all exercise sessions were supervised in the laboratory,
exercise compliance was high (96%) and the “booster” VO2max
test provided verification VO2peak was indicative of a true
maximal VO2.

Adherence and perceived difficulty of exercise are important
factors for sustaining long-term participation in physical activity.
The exercise intervention used represented a considerable
change in lifestyle for inactive individuals. Given that others
have shown that health benefits can be achieved with less
intense HII protocols (23), more research is needed to identify
the optimal interval protocol for improving health outcomes.
Although achievable, participants reported that the sessions, in
particular the HII sessions, were more difficult at the beginning
of the intervention. However, anecdotally some participants
preferred HII and others continuous exercise. Others have
shown untrained adults reported greater enjoyment after a
single bout of HII as compared to continuous exercise (76).
Moreover, HII exercise has been reported to be perceived as
“more motivating” and continuous exercise “quite boring” (77).
Combining both types of training may therefore further serve to
provide variety.

In conclusion, firstly, 4 weeks of exercise training did not alter
gastric emptying, glucose, insulin, ghrelin or subjective appetite
ratings in the present study of inactive men with overweight and
obesity. In the absence of acute exercise effects, these measures
may only adapt to a greater volume of exercise or changes in other
characteristics associated with regular exercise. Further longer
term interventions are needed to characterize the temporal
pattern of changes in gastric emptying with regular exercise
and the underlying mechanisms. Secondly, the intervention
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combining continuous and HII exercise had beneficial effects on
cardiorespiratory fitness, body composition and blood pressure
and appeared not to alter non-exercise activity. Randomized
controlled trials of larger sample sizes directly examining the
efficacy of a combination of continuous and HII exercise
compared to continuous and HII exercise only interventions
would be of interest for future investigations to determine
whether a combination intervention is more effective than either
intervention alone.
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