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Substantial evidence indicated that maternal malnutrition could increase the susceptibility

to obesity, insulin resistance, and type 2 diabetes in adulthood. It is increasingly apparent

that the brain, especially the hypothalamus, plays a critical role in glucose homeostasis.

However, little information is known about the mechanisms linking maternal protein

restriction combined with post-weaning high-fat (HF) feeding with altered expression

of brain neurotransmitters, and investigations into the epigenetic modifications of

hypothalamus in offspring have not been fully elucidated. Our objective was to explore

the effects of maternal protein restriction combined with post-weaning HF feeding

on glucose metabolism and hypothalamic POMC methylation in male offspring mice.

C57/BL6 mice were fed on either low-protein (LP) or normal chow (NC) diet throughout

gestation and lactation. Then, the male offspring were randomly weaned to either NC

or high-fat (HF) diet until 32 weeks of age. Gene expressions and DNA methylation of

hypothalamic proopiomelanocortin (POMC) and melanocortin receptor 4 (MC4R) were

determined in male offspring. The results showed that birth weights and body weights

at weaning were both significantly lower in male offspring mice of the dams fed with

a LP diet. Maternal protein restriction combined with post-weaning high-fat feeding,

predisposes higher body weight, persistent glucose intolerance (from weaning to 32

weeks of age), hyperinsulinemia, and hyperleptinemia in male offspring mice. POMC and

MC4R expressions were significantly increased in offspring mice fed with maternal LP

and postnatal high-fat diet (P< 0.05). Furthermore, maternal protein restriction combined

with post-weaning high-fat feeding induced hypomethylation of POMC promoter in the

hypothalamus (P < 0.05) and POMC-specific methylation (%) was negatively correlated

with the glucose response to a glucose load in male offspring mice (r = −0.42,

P= 0.039). In conclusion, maternal LP diet combined with post-weaning high-fat feeding
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predisposed the male offspring to impaired glucose metabolism and hypothalamic

POMC hypomethylation. These findings can advance our thinking about hypothalamic

POMC gene methylation betweenmaternal LP diet combined with post-weaning high-fat

feeding and metabolic health in offspring.

Keywords: glucose metabolism, hypothalamus, DNA methylation, offspring, maternal low-protein diet, post-

weaning high-fat feeding

INTRODUCTION

Maternal malnutrition has been associated with the onset
of metabolic diseases in adulthood, including obesity, insulin
resistance, and diabetes (1–4). It has been proposed to result from
unbalanced dietary patterns during pregnancy and after weaning.
Numerous animal experiments, including our previous studies,
have indicated that maternal low-protein (LP) diet combined
with a post-weaning high-fat (HF) diet can significantly increase
susceptibility to obesity, impaired glucose tolerance, and insulin
resistance in offspring (1, 2, 5).

However, the mechanisms underlying maternal and postnatal
unbalanced diets and metabolic diseases in adulthood have
not been fully elucidated. It has been widely accepted that
epigenetic modifications may be the underlying mechanisms
of these effects, which may link such imbalanced nutrition
with the risks of metabolic diseases (6–8). It is reported
that most peripheral organs, including the liver, pancreas,
skeletal muscle, and adipose tissue appeared to be imprinted by
unbalanced nutrition, which can be associated with epigenetic
modulation of key developmental gene expressions (9, 10).
Hypermethylation of these CpG islands has a specific effect
on repressing transcription, whereas hypomethylation of CpG
islands is related to transcriptional activation. When a CpG
island in the promoter region of a gene is methylated,
expression of the gene is repressed and vice versa. Our previous
study showed that maternal LP diet can program glucose
metabolism and hepatic microRNA expressions in early life
offspring (11).

Recently, it became increasingly apparent that the brain,
especially the hypothalamus, is the control center for energy
homeostasis (12). Anorexigenic neuropeptides, located in
the mediobasal hypothalamus, such as proopiomelanocortin
(POMC), and melanocortin-4 receptor (MC4R), mediate satiety
and increase energy expenditure, thus lead to loss of weight
(13–15). Several studies have focused on the effects of maternal
over-nutrition on hypothalamic neuropeptides, with increased
expressions of POMC and MC4R in offspring (16–18). However,
little information is known about the mechanisms linking
prenatal LP and postnatal HF diets with altered expression of
brain neurotransmitters, and investigations into the epigenetic
modification of hypothalamus in offspring are limited. Our
objective was to determine the programming effects of maternal
protein restriction combined with post-weaning HF feeding
on mice offspring, including metabolic health, hypothalamic
neuropeptide gene expressions, and hypothalamic POMC
gene methylation.

MATERIALS AND METHODS

Ethical Statement
All experimental procedures were performed in accordance
with the Guide for the Care and Use of Laboratory Animals,
and procedures were approved by the Peking University First
Hospital Institutional Animal Care and Use Committee.

Experimental Design and Animal Model
Female C57BL/6J mice were maintained under controlled
conditions and randomly assigned to either a LP diet
(8% protein) or normal chow (NC) diet (20% protein)
during pregnancy and lactation, as we previously described
(5). Nutritional composition of the diets is shown in
Supplementary Table 1. In order to avoid nutritional bias
among litters, litter size was standardized to six pups. At 3
weeks of age, offspring mice were weaned either an HF diet
(HF: 58% kcal fat) or an NC diet. Thus, it generated four groups
of offspring mice: NC–NC, LP–NC, NC–HF, LP–HF (n =

8–10/group) (Abbreviations denoted before and after the dash
line were as dam and offspring diets, respectively).

Birth weight of newborn mice and body weight at weaning
were measured. Weight gain and food intake in offspring
mice were recorded periodically. All the offspring mice were
anesthetized and sacrificed at 32 weeks of age. Schematic
representation of the experimental feeding course was shown in
Supplementary Figure 1. Blood samples were collected from the
retrobulbar, intraorbital, capillary plexus in anesthetized mice,
which were fasted 10-h. The hypothalamuses were dissected,
snap frozen, and stored at −80◦C for further analysis, as we
previously described (19). In this study, we mainly focused on
male offspring to prevent confounding factors related to the
estrus cycle and hormone profile of female offspring. In addition,
a sexually dimorphic manner has been reported in the maternal
LP diet rodent model, which was not the concern of this study
(20, 21).

Intraperitoneal Glucose Tolerance Tests
Intraperitoneal glucose tolerance tests (ipGTTs) were performed
as previously described (22). Mice were fasted overnight
(12 h) and injected intraperitoneally with glucose (2 g/kg body
weight). Blood glucose concentrations were determined using
a glucometer (Contour TS, Bayer, Beijing, P. R. China) and
blood from the tail at baseline and 30-, 60-, and 120-min after
glucose injection. Area under the curve (AUC) was calculated
using the trapezoid method to evaluate blood glucose response
to the ipGTTs.
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Serum Hormone Measurements
Serum insulin was detected using the Mouse Ultrasensitive
Insulin ELISA kit (ALPCO Diagnostics, Salem, NH, USA)
and serum leptin was measured using the mouse ELISA kits
(R&D Systems, Minneapolis, MN, USA), according to the
instructions of the manufacturers. Each sample was measured
in duplicate.

RNA Extraction and RT-qPCR Analyses
RNA was extracted from hypothalamus using TRIzol reagent
(Life Technologies Inc., Carlsbad, CA, USA) and 1 µg
RNA was converted into cDNA by a reverse transcription
procedure using the Power cDNA Synthesis kit (Promega
BioSciences LLC, Sunnyvale, CA, USA), according to the
protocol of the manufacturer. Then, cDNA was amplified
using the appropriate primers and probes. The sequences of
the primers are as follows: POMC: forward 5′-CGACAGGC
AGGAGACTGAAC-3′, reverse 5′-CGCAGAGAAACGAGGGT
TTG-3′; MC4R: forward 5′-TGAACTTCTGAGAGGCTGCG-
3′, reverse 5′-TTCTCGGTTGACCAGTCTGC-3′; and β-actin:
forward 5′-TGTTACCAACTGGGACGACA-3′, reverse 5′-GGG
GTGTTGAAGGTCTCAAA-3′. Real-time PCR was performed
and accurately measured using a standard TaqMan PCR kit
protocol on an ABI prism Vii7 Sequence Detection System
(ABI Prism R© Vii7, Applied Biosystems, Life Technologies). The
relative expression levels were calculated using the 2−11Ct

method after normalization to the expression of the β-actin
housekeeping gene (23). All reactions were carried out with
three biological replicates, and each analysis consisted of three
technical replicates.

POMC and MC4R Methylation Levels by
Bisulfite Sequencing PCR
POMC and MC4R promoters methylation levels were examined
by bisulfite sequencing PCR, as our previous study described
(19). Precisely, genomic DNA was extracted from hypothalamus
tissues in offspring mice, using an E.Z.N.A. Tissue DNA
Kit (Omega Bio-tek, Norcross, GA, United States), and
DNA samples were treated with sodium bisulfite, using EZ
DNA Methylation Kit (Zymo Research, HiSS Diagnostics,
Germany), according to the instructions of the manufacturer.
POMC and MC4R promoter areas were amplified using the
following primers: POMC: forward 5′-GATTGGTTTTTGGGG
AGATTT-3′, reverse 5′-ATTTCAAAACCTTAAACAATTCCC
T-3′; MC4R: forward 5′-TTTAAAATTTGGAAAGGAAAATTT-
3′, reverse 5′-TACTAAAAACAAAATCAAAAACAAC-3′; and
β-actin: forward 5′-TGTTACCAACTGGGACGACA-3′, reverse
5′-GGGGTGTTGAAGGTCTCAAA-3′. PCR amplification of
genomic fragment of POMC and MC4R promoters was
performed using BIOTAQ DNA Polymerase (Bioline USA
Inc, Taunton, MA, United States). The PCR products were
separated on 1.5% agarose gel followed by gel extraction with
QIAquick Gel Extraction Kit (QIAGEN, Hilden, Germany)
and cloned into PGEMT-easy vectors (Promega, Madison,
WI, United States). PGEMT-easy vectors were multiplied
using JM109 competent Escherichia coli cells using standard
procedures and then purified from the bacteria with QIAprep

Spin Miniprep Kit (QIAGEN). At least 20 positive bacterial
clones were conducted in each sample and a minimum of
95% bisulfite conversion was included in subsequent analyses.
Figure generation, sequence analysis, and quality control were
performed using BiQ Analyzer software.

Statistical Analysis
Data are presented as mean values ± SEM. Statistical
analysis was conducted through analyses of variance
(ANOVAs), with repeated measures where applicable.
Bonferroni post hoc tests were performed to identify
where statistically significant differences existed when
ANOVAs were significant. Group differences in fasting
blood glucose, serum hormone measurements, mRNA
expression levels, and DNA methylation levels were
analyzed by one-way ANOVA. Body weight and ipGTT
were analyzed by two-way ANOVA followed by Bonferroni
post hoc test. Statistical significance was reached at a P
< 0.05.

RESULTS

Effects of Maternal Protein Restriction and
Post-weaning High-Fat Feeding on Birth
Weight, Body Weight, and Food Intake in
Offspring
Maternal LP diet during pregnancy and lactation induced
lower birth weight in newborn mice (P < 0.05) (Figure 1A1).
At weaning, body weight remained significantly decreased
in mice offspring of dams fed with LP diet (P < 0.01)
(Figure 1A2). At 8 weeks of age, no difference was found
in body weight among the four groups. However, maternal
LP diet combined with post-weaning HF-fed mice (LP–
HF group) had increased body weight from 16-weeks
of age until 32-weeks of age when mice were sacrificed,
compared with both NC–NC and LP–NC groups (P-value
as denoted) (Figure 1B). There was no difference in food
consumption among offspring mice throughout the experiment
(Figure 1C).

Long-Term Effects of Maternal Protein
Restriction and Post-weaning High-Fat
Feeding on Fasted Blood Glucose and
Glucose Tolerance in Offspring From 8 to
32 Weeks of Age
As shown in Figure 2 and Supplementary Figure 2, maternal
protein restriction combined with post-weaning HF feeding
(LP–HF) had impaired glucose tolerance from 8 weeks of
age. At 8 weeks of age, fasted blood glucose concentration
(P < 0.05) and blood glucose levels of the male offspring
in the LP–HF group were significantly higher at 30min (P
< 0.05) after intraperitoneal glucose administration. However,
there is no difference in AUC among the four groups.
Then the glucose metabolism disturbance was exacerbated
in the offspring of LP–HF group during the period from
8 to 32 weeks. At 32 weeks of age, fasted blood glucose
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FIGURE 1 | Effects of maternal protein restriction and post-weaning high-fat

feeding on body weight and food intake in offspring. (A) Birth weight; (B) body

weight at weaning; (C) body weight from 8 to 32 weeks of age. Data were

represented as mean ± SEM (n = 6–8/group). *P < 0.05, ***P < 0.001

NC–HF vs. NC–NC group. ###P < 0.001 LP–HF vs. LP–NC group. ∧P <

0.05, ∧∧∧P < 0.001 LP–HF vs. NC–NC group. Diet abbreviations: NC, normal

chow; LP, low protein; HF, high fat. Dam and pup diets denoted before and

after the dash line, respectively.

concentration was significantly increased in offspring mice
exposed to maternal protein restriction combined with post-
weaning HF feeding, compared with NC–NC (P < 0.05) and
LP–NC (P < 0.001) groups, respectively. The blood glucose
levels of the male offspring in the NC–HF and LP–HF groups
were significantly higher at 30min (P < 0.001), 60min (P <

0.001), and 120min (P < 0.001) after intraperitoneal glucose
administration, compared with those of the NC–NC offspring.
Consistently, the AUC of ipGTT was significantly greater in
NC–HF and LP–HF than NC–NC offspring (P < 0.001).
Thus, it indicates that maternal protein restriction combined
with post-weaning HF feeding, predisposes persistent glucose
intolerance in offspring mice from weaning to 32 weeks
of age.

Maternal Protein Restriction and
Post-weaning High-Fat Feeding Resulted
in Hyperinsulinemia and Hyperleptinemia
in Offspring Mice
Serum insulin concentration was significantly increased in
offspring mice fed an HF diet whose mothers had been fed an LP
diet, compared with NC–NC and LP–NC groups (both P < 0.05)
(Figure 3A). We further detected serum leptin level in offspring
mice. As a critical peripheral hormone, leptin can act on leptin
receptors located in the arcuate nucleus of the hypothalamus
to regulate appetite and energy homeostasis. Leptin levels were
significantly higher in HF-fed offspring whose mothers had eaten
the LP diet, compared with all the other offspring mice (P <

0.001) (Figure 3B).

Maternal Protein Restriction and
Post-weaning High-Fat Feeding Regulated
Hypothalamic POMC and MC4R
Expressions in Offspring
To further assess the potential effects on the neuroendocrine
control of body weight and energy homeostasis, we examined
POMC and MC4R gene expression in the hypothalamus of
the offspring. POMC and MC4R expressions were significantly
increased in offspring mice exposed to maternal protein
restriction combined with post-weaning HF feeding (both P <

0.05) (Figures 4A,B).

Effects of Maternal Protein Restriction and
Post-weaning High-Fat Feeding on POMC
Methylation in Offspring
Then, as one important epigenetic modification, DNA
methylation levels of POMC and MC4R genes were further
examined using MassARRAY EpiTYPER assays. We mainly
concentrated on the CpG islands of POMC and MC4R gene
promoters. We use online EMBOSS Cpgplot software to predict
CpG island (http://www.ebi.ac.uk/Tools/seqstats/emboss_
cpgplot/). According to the prediction results, POMC gene has
one CpG island with 24 CpG sites; however, no CpG islands were
predicted of MC4R gene promoter. For POMC, methylation
level was decreased at the specific sites of 5–7, 9–10, and 11–13
(all P < 0.05) (Figure 5A). The average methylation level of
POMC promoter was significantly decreased in the HF-fed
offspring whose mothers were fed on an LP diet (P < 0.05)
(Figure 5B).

Correlation Between POMC-Specific
Methylation and Glucose Metabolism in
Offspring Mice
To further evaluate whether differential POMC-specific
methylation was responsible for impaired glucose metabolism
due to maternal LP and postnatal HF diet in offspring mice,
Spearman’s correlation analyses were performed between
POMC-specific methylation (%) and fasted blood glucose (10-h
fasting before sacrifice) and AUC of ipGTT, respectively. No
association was observed between POMC-specific methylation
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FIGURE 2 | Long-term effects of maternal protein restriction and post-weaning high-fat feeding on fasted blood glucose and glucose tolerance in offspring from 8 to

32 weeks of age. (A) Glucose metabolism at 8 weeks of age; (B) glucose metabolism at 16 weeks of age; (C) glucose metabolism at 24 weeks of age; (D) glucose

metabolism at 32 weeks of age. AUC: area under the curve of ipGTT; ipGTT: intraperitoneal glucose tolerance test. Data were represented as mean ± SEM (n =

6–8/group). *P < 0.05, **P < 0.01 NC–HF vs. NC–NC group, ***P < 0.001 NC–HF vs. NC–NC group. ##P < 0.01, ###P < 0.001 LP–HF vs. LP–NC group. ∧∧P <

0.01 LP–HF vs. NC–NC group, ∧∧∧P < 0.001 LP–HF vs. NC–NC group. Diet abbreviations: NC, normal chow; LP, low protein; HF, high fat. Dam and pup diets

denoted before and after the dash line, respectively.

(%) and fasted blood glucose (r = −0.03, P = 0.92) (Figure 6A).
Remarkably, it indicated that POMC-specific methylation (%)

was negatively correlated with the glucose response to a glucose
load in offspring mice (r =−0.42, P= 0.039) (Figure 6B).
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FIGURE 3 | Maternal protein restriction and post-weaning high-fat feeding predisposes offspring to hyperinsulinemia and hyperleptinemia. (A) Serum insulin level; (B)

serum leptin level. Data were represented as mean ± SEM (n = 6–8/group). P-value is significant as denoted. Diet abbreviations: NC, normal chow; LP, low protein;

HF, high fat. Dam and pup diets denoted before and after the dash line, respectively. ***P < 0.001 NC–HF vs. NC–NC group. #P < 0.05 LP–HF vs. LP–NC group. ∧P

< 0.05 LP–HF vs. NC–NC group.

FIGURE 4 | Effects of maternal protein restriction and post-weaning high-fat feeding on hypothalamic gene expressions in offspring. (A) POMC; (B) MC4R. Data were

represented as mean ± SEM (n = 6–8/group). #P < 0.05 LP–HF vs. LP–NC group. Diet abbreviations: NC, normal chow; LP, low protein; HF, high fat. Dam and pup

diets denoted before and after the dash line, respectively.

FIGURE 5 | Effects of maternal protein restriction and post-weaning high-fat feeding on POMC methylation in offspring. (A) Methylation level (%) of specific CpG site in

POMC gene promoter; (B) POMC-specific methylation (%). POMC site-specific methylation (%). Data were represented as mean ± SEM (n = 6–8/group). #P < 0.05

LP–HF vs. LP–NC group. Diet abbreviations: NC, normal chow; LP, low protein; HF, high fat. Dam and pup diets denoted before and after the dash line, respectively.

Frontiers in Nutrition | www.frontiersin.org 6 August 2021 | Volume 8 | Article 657848

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Zheng et al. Diets and Hypothalamic POMC Methylation

FIGURE 6 | Correlation analyses between POMC methylation and glucose metabolism status. (A) POMC-specific methylation (%) and fasted blood glucose; (B)

POMC-specific methylation (%) and AUC of ipGTT. Data were represented as mean ± SEM (n = 6–8/group). Diet abbreviations: NC, normal chow; LP, low protein;

HF, high fat. Dam and pup diets denoted before and after the dash line, respectively.

DISCUSSION

It has been widely reported that prenatal LP and postnatal HF
diets can induce the occurrence of long-termmetabolic disorders
in mammals, including obesity, glucose intolerance, and type
2 diabetes (24, 25). In our study, we showed that maternal
LP diet induced adaptive changes, leading to obesity, impaired
glucose tolerance, hyperinsulinemia, and hyperleptinemia when
the mice were challenged with post-weaning high calorie
intake. Consistently, previous studies showed that maternal
and post-weaning imbalanced nutrition induced detrimental
consequences on glucose homeostasis in adult life (1, 2, 26, 27).
However, there is no difference in glucose tolerance between
maternal LP diet and NC diet, both together with a post-weaning
HF. It seems that the impaired glucose homeostasismainly results
from the HF feeding. Thus, a post-weaning HF diet results in
the development of aberrant energy homeostasis and metabolic
diseases in later life.

The central nervous system, mainly hypothalamus is the
central control of whole body energy homeostasis (28). The
arcuate nucleus in hypothalamus contains both anorexigenic
and orexigenic neurons, which can counterbalance each other
to regulate food intake and energy expenditure, and ultimately
control body weight (29). POMC neuron, as the most-studied
anorexigenic neuron in the arcuate nucleus, it can regulate
energy homeostasis via MC4R in the paraventricular nucleus
(30). It indicates that the peptides released from POMC neuron
clearly play a role in reducing food consumption to control
body weight. Increasing evidence has indicated that exposure to
adverse maternal nutrition impairs hypothalamic development
and function, which is plastic and sensitive to metabolic signals,
potentially underpinning metabolic health in adult life (31).
Our study indicated that both hypothalamic POMC and MC4R
expressions significantly increased in offspring mice that were
exposed to maternal protein restriction combined with post-
weaning HF feeding. In addition, we found that serum insulin
and leptin levels were significantly increased in HF-fed offspring

whose mothers had eaten the LP diet. Consistent with our
findings, Ikenasio-Thorpe et al. showed that prenatal under-
nutrition (30% of ad libitum intake throughout gestation)
and postnatal HF nutrition (45% kcal as fat) in Wistar rats
exhibited increased food intake, obesity, and higher fat mass in
offspring at 24 weeks of age, which correlated with hypothalamic
POMC increment and circulating insulin and leptin level
elevations (32).

Furthermore, we investigate the epigenetic status of POMC
andMC4R gene in offspring mice. It indicated that hypothalamic
POMC promoter methylation was significantly decreased in
mice exposed to maternal LP diet and post-weaning HF
feeding. However, no CpG island was detected of MC4R gene
promoter, thus it restricted to evaluate methylation status of
MC4R gene. It is widely acknowledged that hypomethylation
of a certain gene can activate transcription and increase
gene expression (33). In our study, we found that decreased
methylation of POMC gene promoter was consistently related
with increased gene expression in hypothalamus. Consistently,
Stevens et al. showed a marked hypomethylation (62% decrease)
of hypothalamic POMC promoter in the ovine fetus exposed
to maternal diet intake restriction (34). It is widely accepted
that epigenetic modifications mainly occur during early life
development, which may continue throughout the lifespan
(35). Our study indicated that maternal malnutrition and
post-weaning HF diet can regulate epigenetic modifications in
offspring mice at 32 weeks of age. This provides evidence that
DNA methylation could play as a programming mechanism
for hypothalamic POMC gene, which can regulate abnormal
glucose metabolism through hypothalamic feeding center
in later life. Of interest, our present study showed that
POMC-specific methylation (%) was negatively correlated
with the competence of glucose response to a glucose load.
It indicated that POMC promoter methylation may be a
critical epigenetic modification which can project to regulate
food intake, body weight, and glucose metabolism in the
next generation.
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In conclusion, our study indicated that maternal LP
diet combined with post-weaning HF feeding resulted in
obesity, persistent glucose intolerance, hyperinsulinemia, and
hyperleptinemia in offspring. We further found that POMC gene
methylation status may be a potential mechanism for impaired
glucose metabolism in offspring. These findings can advance our
thinking about hypothalamic POMC gene methylation between
maternal LP diet combined with post-weaning HF feeding and
metabolic health in offspring.
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