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The chain length of saturated fatty acids may dictate their impact on inflammation and

mitochondrial dysfunction, two pivotal players in the pathogenesis of insulin resistance.

However, these paradigms have only been investigated in animal models and cell lines

so far. Thus, the aim of this study was to compare the effect of palmitic (PA) (16:0) and

lauric (LA) (12:0) acid on human primary myotubes mitochondrial health and metabolic

inflammation. Human primary myotubes were challenged with either PA or LA (500µM).

After 24 h, the expression of interleukin 6 (IL-6) was assessed by quantitative polymerase

chain reaction (PCR), whereas Western blot was used to quantify the abundance of

the inhibitor of nuclear factor κB (IκBα), electron transport chain complex proteins and

mitofusin-2 (MFN-2). Mitochondrial membrane potential and dynamics were evaluated

using tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and immunocytochemistry,

respectively. PA, contrarily to LA, triggered an inflammatory response marked by the

upregulation of IL-6 mRNA (11-fold; P < 0.01) and a decrease in IκBα (32%; P <

0.05). Furthermore, whereas PA and LA did not differently modulate the levels of

mitochondrial electron transport chain complex proteins, PA induced mitochondrial

fragmentation (37%; P < 0.001), decreased MFN-2 (38%; P < 0.05), and caused a

drop in mitochondrial membrane potential (11%; P < 0.01) compared to control, with

this effect being absent in LA-treated cells. Thus, LA, as opposed to PA, did not trigger

pathogenetic mechanisms proposed to be linked with insulin resistance and therefore

represents a healthier saturated fatty acid choice to potentially preserve skeletal muscle

metabolic health.
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INTRODUCTION

There is an exponential increase in the incidence of obesity and
type 2 diabetes mellitus (T2DM) in the developed and developing
countries, (1). Individuals affected by T2DM are at higher risk of
developing severe health consequences including cardiovascular
disease, nephropathy, and neuropathy (2). Furthermore, this
metabolic disorder is also emerging as a risk factor for the
development of neurodegenerative diseases including Parkinson
and Alzheimer disease (3, 4). T2DM is characterised by
chronic hyperglycaemia, which is a direct consequence of
insulin resistance and pancreatic β-cell dysfunction. Particularly,
insulin resistance is the hallmark of T2DM and develops in
the skeletal muscle decades before pancreatic β-cells become
dysfunctional and overt hyperglycaemia develops (5). Therefore,
skeletal muscle insulin resistance represents a primary defect
in the pathogenesis of T2DM. In terms of the mechanisms
underpinning the onset of skeletal muscle insulin resistance,
mitochondrial dysfunction and metabolic inflammation have
been reported to play a pivotal role (6–8). Mitochondrial
dysfunction in the face of increased fatty acid availability
promotes the buildup of lipotoxic lipid species, such as
ceramides, which disrupt insulin signalling pathway by activating
PKC isoform protein kinase Cζ and protein phosphatase 2A,
which in turn directly hamper AKT (protein kinase B) activation
(9). With regard to metabolic inflammation, the activation
of proinflammatory nuclear factor κ light-chain enhancer of
activated B cells (NFκB) signalling and c-Jun N-terminal kinases
(JNKs) have been reported to impede insulin signal transduction
pathway, underpinned by the serine phosphorylation of insulin
receptor substrate (10, 11).

Mitochondria bioenergetics and inflammation, apart from
being involved in skeletal muscle insulin resistance, are also
interrelated processes, with metabolic inflammation being
able to impair mitochondrial function and mitochondria
themselves, contributing to the activation of intracellular
proinflammatory responses (12, 13). Particularly, the activation
of the proinflammatory NFκB signalling in response to
nutrient overload has been reported to promote mitochondrial
dysfunction with a shift in mitochondrial dynamics towards

fission (12). Nonetheless, mitochondrial dysfunction may also
trigger the activation of proinflammatory pathways by promoting
the accumulation of lipotoxic lipid intermediates (14, 15) or
via the release of damage-associated molecular patterns such as
mitochondrial DNA or increase production of reactive oxygen
species (13).

Circulating nutrient excess and particularly the

overconsumption of long-chain saturated fatty acids have

been reported to trigger metabolic inflammation in a variety of

tissues (15–19), as well as mitochondrial dysfunction marked
by mitochondrial fission, decreased oxidative capacity, and
increased production of reactive species (8, 20–22). These
effects have been well-described for palmitic acid (PA), with
this long-chain saturated fatty acid being reported to induce
mitochondrial dysfunction and metabolic inflammation in a
variety of tissues both in the central nervous system and the
periphery (12, 23–27). The induction of these pathogenetic

mechanisms culminates with the onset of insulin resistance
and impaired metabolic health (24, 28). However, not all the
saturated fatty acids have been reported to be metabolically
detrimental. Indeed, medium-chain saturated fatty acids, such
as lauric acid (LA), have been shown not to promote insulin
resistance, to be less obesogenic, and to decrease the ratio
of total cholesterol to high-density lipoprotein cholesterol
compared to longer chain saturated fatty acids (29–32). LA
has been reported to be less metabolically detrimental and
proinflammatory compared to PA (33). Additionally, LA,
as opposed to PA, is β-oxidised more effectively, which,
in turn, may prevent the deleterious effects linked with
intramyocellular lipid accumulation and lipotoxicity (34).
Despite accumulating evidence on the metabolic effect of
medium-chain saturated fatty acids on metabolic health, their
effect on human skeletal muscle and particularly their ability
to modulate inflammatory responses and mitochondrial health
remain to be elucidated. Indeed, the studies conducted to date,
to our knowledge, reported on the effect of medium-chain
fatty acids on mitochondrial function in rodents and cell lines
(35, 36); there is therefore a lack of data on human tissues.
Furthermore, the activation of proinflammatory NFκB signalling
has been shown to trigger mitochondrial fragmentation (12);
therefore, fatty acids differing for their ability to trigger the
activation of this signalling pathway should also differently affect
mitochondrial health.

Thus, in consideration of the lack of evidence in experimental
models closely mimicking human physiology and considering
the putatively less harmful metabolic effect of LA compared to
PA, the aim of the present study was to compare the effect
of PA and LA on key mechanisms governing in metabolic
health. Particularly, we aimed at investigating the effects of these
long- and medium-chain saturated fatty acids on mitochondrial
dynamics, mitochondrial electron transport chain complex
proteins, mitochondrial membrane potential, and metabolic
inflammation in human primary myotubes.

MATERIALS AND METHODS

Human Primary Myoblasts and Reagents
Human primary myoblasts from four different donors were
obtained from Cook Myosite (USA). Dulbecco modified eagle
low glucose medium (DMEM) containing 5.5mM glucose,
horse serum (HS), heat-inactivated foetal bovine serum (FBS),
penicillin–streptomycin solution (10,000 U/ml), PierceTM BCA
protein assay kit, TaqMan assays, TaqMan fast advanced master
mix, and rabbit anti–mouse immunoglobulin G (IgG) secondary
antibody (Alexa Fluor 488) were from Life Technologies
Australia Pty. Ltd. (Mulgrave, Victoria, Australia). The primary
antibodies, anti-inhibitor of nuclear factor κB (IκBα), anti–MFN-
2, anti–β-actin, and the secondary antibodies, anti–rabbit IgG
horseradish peroxidase (HRP)–linked antibody and anti–mouse
IgG HRP-linked antibody, were obtained from Cell Signalling
Technology. JC-1 mitochondrial membrane potential assay kit,
total OXPHOS rodent antibody cocktail, and anti-TOMM20
were from Abcam Australia Pty. Ltd. (Melbourne, Victoria,
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Australia). PA and LA, as well as low-endotoxin fatty acid–
free bovine serum albumin (BSA), were purchased from Sigma–
Aldrich (Castle Hill, New South Wales, Australia). Finally,
Trans-Blot Turbo Midi 0.2µm polyvinylidene fluoride (PVDF)
Transfer Packs and 4 to 15% Criterion TGX Precast Midi
Protein Gel were obtained from Bio-Rad (Gladesville, New South
Wales, Australia).

Cell Cultures and Fatty Acid Treatments
Human primary myoblasts derived from the abdominal rectus
muscles of four non-type 2 diabetic, non-obese male individuals
31.00 ± 5.67 years of age, body mass index 24.75 ± 1.31
kg/m2 (Human skMDC; Cook Myosite) were maintained in
DMEM (low glucose) containing 20% FBS and 100 U/ml
penicillin–streptomycin at 37◦C under a 5% CO2 atmosphere
as previously reported (37). Cells were grown in 25-cm2 flasks,
6-, 24-, or 96-well plates for the assessment gene expression,
protein expression by Western blot, immunocytochemistry, or
assessment of mitochondrial membrane potential, respectively.
Myoblast differentiation was initiated when cells reached 75 to
80% confluence by incubating the cells for 7 days in DMEM
containing 2% HS and 100 U/ml penicillin–streptomycin. After
7 days, cells were treated with either low-endotoxin fatty acid–
free BSA, 500µM PA, or 500µm LA for 24 h in differentiation
media, and then samples collected for gene or protein expression
or directly assayed for changes in mitochondrial membrane
potential and morphology. The concentration of PA used in the
present study falls within the circulating physiological range, as
previously reported (38). Hence, to compare the effect of PA and
LA, these fatty acids were used at the same concentrations to
allow for an equimolar comparison.

Fatty Acid Conjugation to BSA
Fatty acids are fat-soluble molecules and therefore insoluble in
the cell culture media in their native form; furthermore, free fatty
acids travel in the bloodstream bound to albumin. Thus, to allow
for fatty acid solubilisation in the cell culture media and mimic
fatty acid physiological circulating conditions, both PA and LA
were conjugated to BSA as described previously (15). Low-
endotoxin BSA was used to prevent potential lipopolysaccharide
contamination as reported previously (39). Fatty acids were
dissolved in 0.1M NaOH in a water bath at 70◦C to yield a
final concentration of 20mM. BSA was solubilised in serum
and penicillin-streptomycin–free DMEM at 55◦C and fatty acid
mixed with the fatty acid solutions to obtain a 1:4 molar ratio
(fatty acids 2 mM: BSA 0.5mM). The fatty acid–BSA mix was
vortexed and then incubated for 10min at 55◦C and cooled to
room temperature before being filter sterilised. Conjugated fatty
acids were stored at−20◦C before use.

RNA Extraction, cDNA Synthesis, and
Assessment of Gene Expression by
Real-Time PCR–PCR
After the fatty acid treatments, cells were directly lysed in
the 25-cm2 flasks using RLT lysis buffer (Qiagen, Chadstone,
Victoria, Australia), cell lysates were collected, and total RNA
extracted using RNeasy Mini Kit (Qiagen) according to the

manufacturer instructions. cDNA was synthesised starting from
0.5 µg of total RNA as a template and using SuperScript II (Life
Technologies Australia Pty. Ltd.) as described previously (40).
Real-time PCR to assess the expression of IL-6 and ribosomal
protein S18 was carried out using CFX Connect 96 real-time
PCR detection system (Bio-Rad) employing a two-step cycling
program of 95◦C for 20 s, and then 40 cycles at 95◦C for 3 s
and 60◦C for 30 s. Each reaction contained 1 µl of cDNA
template, 5 µl of TaqMan fast advanced master mix, 3.5 µl of
diethylpyrocarbonate-treated water, and 0.5 µl of either of the
following Taqman assays: ribosomal protein S18 Hs01375212_g1
and IL-6: Hs00174131_m1. Ct values were normalised to the
reference gene ribosomal protein S18 and data analysed using the
comparative 1Ct method (41).

Western Blot
Following 24-h incubation with BSA or fatty acids, cells were
washed with phosphate-buffered saline (PBS) and directly lysed
with RIPA buffer (Sigma–Aldrich) containing Halt Protease and
Phosphatase Inhibitor Cocktail (Life Technologies Australia Pty.
Ltd.). Cell lysate proteins were quantified using PierceTM BCA
protein assay kit and 6 µg of protein loaded and resolved on a 4
to 15% precast polyacrylamide gel. Proteins were then transferred
onto PVDF membranes using a Trans-Blot Turbo Transfer
System (Bio-Rad). Non-specific binding sites were blocked by
incubating the membranes for 1 h at room temperature with a
5% BSA solution made up in PBS. Membranes were then probed
overnight with total OXPHOS rodent antibody cocktail, anti-
IκBα, anti–MFN-2, and anti–β-actin followed by three 5-min
washes with PBS containing 0.1% Tween-20 (PBST). After the
washes, membranes were incubated with HRP-linked secondary
antibodies as appropriate. Membranes were finally washed three
times for 5min in PBST before being revealed using Western
lightning ECL Pro (PerkinElmer). Western blot bands intensities

were quantified by densitometric analysis using NIH ImageJ
software (NIH, USA).

Immunocytochemistry and Assessment of
Mitochondrial Morphology
Cells were grown and differentiated onto sterile glass coverslips
placed in 24-well plates. After differentiation, myotubes were
challenged with either BSA, PA, or LA followed by fixation with
4% formaldehyde for 20min at room temperature. Cells were
then washed with PBS and permeabilised using a 0.5% triton X
PBS solution for 15min followed by incubation with 2% BSA
dissolved in PBS containing 0.25% Triton X (blocking solution)
in order to block non-specific bindings. After permeabilisation
and blocking, cells were incubated for 2 h at room temperature
with anti-TOMM20 diluted 1:1,000 in permeabilisation solution
and then washed with PBS before being incubated with rabbit
anti–mouse IgG secondary antibody (Alexa Fluor 488) for 1 h
at room temperature in the dark. Incubation with secondary
antibody was followed by three washes with PBS. Finally,
coverslips were mounted on slides using fluoroshield with
DAPI to counterstain the nuclei. Cells were imaged using the
EVOS imaging system (Thermo Fisher Scientific, Bothell, WA,
USA). Mitochondria morphology was evaluated using the ImageJ
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FIGURE 1 | Activation of the IKKβ-NFκB signalling pathway in human primary myotubes in response to saturated fatty acids. (A) Representative Western blot of

cellular IκBα abundance, (B) densitometric analysis of IκBα normalised to β-actin, and (C) gene expression analysis of IL-6 by quantitative PCR. Data are reported as

means ± SEM, n = 4 cultures from independent donors (means of two replicates). *P < 0.05, **P < 0.01.

macro developed by Dagda et al. (42), as described previously
(43). The circularity score was used to define mitochondria
morphology, with an increase in the score indicating a higher
degree of fragmentation.

Measurement of Mitochondrial Membrane
Potential
JC-1 mitochondrial membrane potential assay kit (Abcam
Australia Pty. Ltd.) was used to measure mitochondrial
membrane potential. JC-1 is a cationic fluorescent dye that
accumulates within the mitochondria in a membrane potential-
dependent manner. After 24-h exposure to either BSA, PA,
or LA, JC-1 was directly administered directly to cell culture
media at a final concentration of 10µM and cells incubated
for 10min at 37◦C in the dark. Cells were then washed
three times with PBS and JC-1 red fluorescence recorded
at 550/615 (excitation/emission) and green fluorescence at
489/535 (excitation/emission) using Victor3V 1420 Multilabel
Counter (PerkinElmer). Finally, the ratio of red to green
fluorescence was calculated to quantify mitochondrial membrane
potential. The green fluorescence quantified at 489/535
(excitation/emission) is directly proportional to mitochondrial
membrane potential, whereas red fluorescence, detected at
550/615 (excitation/emission), represents JC-1 aggregates that
accumulate within the mitochondria when membrane potential
exceeds −240mV (44). In light of this, calculating the ratio
between red vs. green fluorescence allows the quantification of
mitochondrial membrane potential independently of the number
of mitochondria assessed. After fluorescence quantification, cells
were imaged using the EVOS imaging system to obtain
representative images (Thermo Fisher Scientific).

Statistical Analysis
Data are expressed as mean ± SEM and represent the
experiments conducted on cells derived from four independent

individuals (n = 4) and analysed at least in duplicate as reported
in figure legends. Difference between treatments was assessed
using repeated-measures one-way analysis of variance followed
by Tukey post hoc test using GraphPad Prism 8 forWindows. p<

0.05 was considered statistically significant.

RESULTS

PA, but Not LA, Triggers an Inflammatory
Response in Human Primary Myotubes
Metabolic inflammation and particularly the activation of the
NFκB signalling pathway was investigated in order to assess
the difference between PA and LA in their ability to trigger an
inflammatory response. PA decreased the abundance of IκBα (p
< 0.05) (Figures 1A,B), a protein that forms a stable complex
with NFκB and inhibits its transcriptional activity. However,
upon activation of the proinflammatory NFκB signalling, IκBα

is phosphorylated by IκB kinase (IKK) and channelled towards
proteasomal degradation, thus allowing NFκB to migrate to the
nucleus and induce the expression of its gene targets (45). In light
of this, PA-induced decrease in IκBα marks the activation of the
NFκB signalling pathway, which was further confirmed by the
upregulation of IL-6, a NFκB target gene (46), compared to BSA
and LA-treated cells (p < 0.01) (Figure 1C). However, despite
LA also being a saturated fatty acid, it did not decrease IκBα

relative to BSA (p > 0.05) while tended to induce its abundance
compared to PA (p = 0.094). Furthermore, LA did not increase
IL-6 expression compared to BSA-treated cells (Figure 1C).

Both PA and LA Modulate the Abundance
of Mitochondrial Electron Transport Chain
Proteins
Mitochondria are key organelles for the catabolism of fatty
acids; therefore, the relative abundance of mitochondrial electron
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FIGURE 2 | Relative abundance of electron transport chain complex proteins in response to palmitic or lauric acid. (A) Representative Western blot of CV alpha

subunit (complex V), CIII-Core protein 2 (complex III), CIV subunit I (complex IV), CII-30kDa (complex II), CI subunit NDUFB8 (complex I). Densitometric analysis

normalised to β-actin of CV alpha subunit (complex V) (B); CIII-Core protein 2 (complex III) (C); CIV subunit I (complex IV) (D); CII-30kDa (complex II) (E); CI subunit

NDUFB8 (complex I) (F). Data are reported as means ± SEM, n = 4 cultures from independent donors (means of two replicates). *P < 0.05.

transport chain complex proteins was assessed to evaluate
whether PA and LA differently modulate their expression. Both
PA and LA tended to induce CV alpha subunit (complex
V) (p = 0.052 and p = 0.058, respectively) (Figures 2A,B)
and upregulated CIII-Core protein 2 (complex III) (p < 0.05)
(Figures 2A,C). Furthermore, while PA tended to upregulate
CIV subunit I (complex IV) (p = 0.078) compared to BSA
(Figures 2A,D), LA did not affect the abundance of this
protein (Figures 2A,D). Finally, neither PA nor LA induced the
abundance of CII-30 kDa (complex 2) (Figures 2A,E), nor CI
subunit NDUFB8 (complex I) (Figures 2A,F).

PA Promotes Mitochondrial Fragmentation
Mitochondria go through cycles of fusion and fission, termed
mitochondrial dynamics. Mitochondrial dynamics represents a
key modulator of mitochondrial oxidative capacity, allowing the
cells to adapt to short-term changes in fuel availability (47). PA
induced an increase in mitochondrial fragmentation as indicated
by a drop in the circularity score compared to BSA-treated cells
(p < 0.001) (Figures 3A,B,D). However, LA, despite being a

saturated fatty acid, did not induce mitochondria fragmentation
(Figures 3C,D), with LA-treatedmyotubes maintaining a tubular
mitochondrial network comparable to cells challenged with PA
(Figure 3C). MFN-2 is a key protein responsible for promoting
mitochondrial fusion (48) with its overexpression ameliorating
PA-induced insulin resistance (49). Therefore, to further confirm
the effect of PA on mitochondria dynamics, its expression
was assessed in response to fatty acid challenges. While PA
downregulated MFN-2 compared to myotubes treated with BSA
(p < 0.05) (Figures 3E,F), the same effect was not elicited
by LA (Figures 3E,F), confirming that PA and LA differently
regulate mitochondrial dynamics, with PA promoting a shift
towards fission.

PA and LA Differently Regulate
Mitochondrial Membrane Potential
Considering mitochondrial dynamics being closely related to
function (47), mitochondrial membrane potential was assessed
to evaluate whether PA-induced mitochondrial fragmentation
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FIGURE 3 | The effect of palmitic and lauric acid on mitochondrial dynamics. Myotubes were immunostained with anti-TOMM20 and fluorescence detected using the

EVOS imaging system following 24 incubation with BSA (A), PA (B), and LA (C). Nuclei were counterstained with DAPI (blue). Scale bar = 10µm. (B) PA induced

mitochondrial fragmentation. (D) Image analysis of fluorescence-labelled mitochondria, values represent mitochondrial circularity score, with a higher score indicating

increased mitochondrial circularity and fragmentation. (E) Representative Western blot reflecting the abundance of MFN-2. (F) Densitometric analysis of MFN-2

normalised to β-actin. Data are reported as means ± SEM, n = 4 cultures from independent donors. Image analysis was performed on 10 different fields per

treatment on each independent cell line. Western blot data are the means of three replicates. *P < 0.05, ***P < 0.001.

also resulted in a decrease in mitochondrial function. In
agreement with its effect on mitochondrial fragmentation
and downregulation of MFN-2, PA also caused a drop in
mitochondrial membrane potential relative to myotubes treated
with both BSA and LA (p < 0.01) (Figures 4A–D). Contrarily
to PA, however, LA did not induce a drop in mitochondrial
membrane potential relative to cells exposed to BSA alone
(Figures 4A,B,D), indicating that the carbon-chain length,
and not only the presence of double bonds, also plays an
important role in dictating the impact of fatty acids on
mitochondrial function.

DISCUSSION

The results of this study highlight the contrasting effects
of PA and LA on metabolic inflammation, mitochondrial
dynamics, and function in human primary myotubes, providing
mechanistic insights on the effects of long- vs. medium-chain
saturated fatty acids on metabolic health (31, 32) and particularly
on insulin sensitivity (29, 50).

Metabolic inflammation, defined as a sterile inflammatory
response (51) and typical of obesity and the metabolic syndrome
(52), has been widely described for its ability to induce insulin

resistance in metabolically active tissues (6, 51, 53, 54). Thus, the
inability of LA to trigger an inflammatory response as opposed
to PA may, at least in part, explain the different metabolic
effects of medium- compared to long-chain saturated fatty acids
(35, 55, 56). Particularly, the metabolic fate of PA and LA may
be held responsible for their contrasting effects on inflammation.
Indeed, LA compared to PA can directly enter the mitochondria
for β-oxidation independently of carnitine palmitoyl transferase-
dependent conjugation with carnitine (57), which therefore
facilitate its catabolism. Increased fatty acid catabolism prevents
the accumulation of lipotoxic lipid species, such as ceramides and
diacylglycerols (32), which, in turn, has been shown to be, at least
in part, responsible for long-chain saturated fatty acid-induced
inflammation (14, 15). Furthermore, this confirms the inability
of LA to trigger the activation of NFκB via the Toll-like receptor
4 (39).

Interestingly, PA and LA modulate the abundance of

the mitochondrial electron transport chain complex proteins,

suggesting that both fatty acids trigger adaptive responses
aimed at increasing fatty acid catabolism. This notion, in
particular, is supported by the induction of CIII-Core protein 2
(complex III). Indeed, there is a close physical and functional
interaction between the mitochondrial electron transport chain
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FIGURE 4 | The impact of palmitic and lauric acid on mitochondrial membrane potential. (A) Mitochondrial membrane potential calculated as red to green JC-1

fluorescence ratio. Representative images of JC-1–derived red and green fluorescence of myotubes treated with BSA (B), PA (C), and LA (D). Scale bar = 275µM.

Data are reported as means ± SEM, n = 4 cultures from independent donors (means of three replicates). **P < 0.01.

supercomplexes and fatty acid oxidation enzymes (58, 59).
Particularly, reducing equivalents resulting from the first
reaction of the β-oxidation pathway in the mitochondrial
matrix, catalysed by acyl-CoA dehydrogenases, are transferred
to mitochondrial complex III, which directly interacts with
electron flavoprotein dehydrogenase, the enzyme responsible
for the oxidation of electron transfer flavoprotein (60). Thus,
the induction of mitochondrial complex III in response to
PA and LA challenge suggests myotubes mounting a response

to cope with increased fatty acid availability. Nonetheless,
despite promoting similar changes with regard to mitochondrial
electron transport chain complex proteins, PA and LA differently
impact upon mitochondrial dynamics with PA, contrarily
to LA, downregulating MTF-2 and promoting mitochondria
fragmentation. Importantly, a shift in mitochondrial dynamics
towards fission is associated with a decrease in mitochondrial
oxidative capacity (20) and therefore a compromised ability to
effectively catabolise PA in excess. On the contrary, LA did not
negatively impact mitochondrial dynamics maintaining a fused
mitochondrial network, which, in turn, has been reported to
promote fatty acid utilisation (21). This supports the notion
that LA may be β-oxidised more effectively compared to
PA (34), thereby preventing lipotoxicity and the downstream
effects on skeletal muscle metabolic health. However, despite
this being supported by previous evidence (34), it remains
to be fully investigated by directly quantifying fatty acid β-
oxidation (61) or tracking fatty acid metabolic fate by lipidomics

(62). Furthermore, whereas LA did not impair mitochondrial
membrane potential, exposure of myotubes to PA induced
a drop in mitochondrial membrane potential, which further
confirms that LA, compared to PA, preserved mitochondrial
oxidative capacity as already reported in C2C12 myotubes
(35). Nevertheless, despite assessing mitochondrial dynamics
and mitochondrial membrane potential, which represent two
key discriminants of mitochondrial function (20, 44, 47), a
limitation of the present study is related to the fact that we

did not directly assess mitochondrial oxidative capacity or
oxygen consumption. Thus, the direct impact of PA and LA on
mitochondrial oxidative capacity remains to be fully elucidated
in human skeletal muscle. However, our data suggest that PA
and LA differently regulate mitochondrial oxidative capacity, as
demonstrated by mitochondrial fragmentation and the drop in
mitochondrial membrane potential induced by PA.

The activation of the proinflammatory NFκB signalling in
response to nutrient overload, including an excess of PA, has
been recently reported to promote mitochondrial dysfunction,
also underlaid by an increase in mitochondrial fission and
a significant decrease in respiratory capacity (12). The same
effect was reported herein, with PA inducing the activation of
NFκB, which was paralleled by an increase in mitochondrial
fragmentation and a drop in mitochondrial membrane potential,
an effect completely absent in myotubes challenged with LA,
albeit fatty acids being used at equimolar concentrations. Despite
being tempting to blame metabolic inflammation for the effects
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of PA on mitochondria, the fact that metabolic inflammation
may be a direct consequence of mitochondrial dysfunction rather
than a cause must not be overlooked. Indeed, mitochondrial
dysfunction in the face of increased PA availability favours
the accumulation of ceramides, which, as already described,
promote inflammation in metabolically active tissues (14). LA
instead failed to trigger the activation of NFκB, which on
the one hand may be responsible for the inability of this
fatty acid to compromise mitochondrial health, but on the
other may depend on LA failing to promote mitochondrial
dysfunction and lipotoxicity (63, 64). Independently on whether
mitochondrial fragmentation and the drop in mitochondrial
membrane potential are a consequence or a cause of metabolic
inflammation, these are both pathophysiological mechanisms
associated with skeletal muscle insulin resistance, which,
however, was not directly assessed in the experimental model
used as part of this study. Therefore, the ability of PA to
trigger these mechanisms, as opposed to LA, further supports
the contrasting effects of these fatty acids on metabolic health,
previously reported (29–33). Thus, despite PA and LA being
both saturated fatty acids, their chain lengths, C12:0 vs. C16:0,
respectively, appear to be an important discriminant in dictating
the effects of these fatty acids on mitochondrial health as well
as inflammation.

In conclusion, this study provides novel insights on the

putative mechanisms responsible for the different metabolic

outcomes of saturated fatty acids differing for their chain length

(29, 30, 55, 65) in a physiologically relevant in vitro model
closely mimicking human physiology: human primarymyotubes.
These findings support the possibility that the prevention of
metabolic inflammation and mitochondrial dysfunction may

be key mechanisms in preserving skeletal muscle insulin

sensitivity in response to diets enriched in medium-chain
triglycerides, as already demonstrated in rodents (50). Thus,
LA, despite being a saturated fatty acid, did not induce the
activation of pathophysiological mechanisms linked with insulin
resistance, and therefore, eucaloric substitution of LA for PA
may represent a valid strategy to preserve skeletal muscle
metabolic health.
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