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This study investigated the effects of selenomethionine (Se-Met) on the cell viability,

selenoprotein expression, and antioxidant function of porcine mammary epithelial cells

(pMECs) to reveal the underlying molecular mechanism of Se-Met on the lactation

performance and antioxidant capacity of sows in vitro. The pMECs were used as

an in vitro model and were treated with various concentrations of Se-Met (0, 0.5,

1, 2, and 4µM). Cells were analyzed for cell viability, selenoprotein transcriptome,

selenoprotein expression, and antioxidant enzyme activities. The results showed that,

with increasing Se-Met concentrations, cell viability first increased and then decreased

at 24, 48, or 72 h posttreatment with maximum values at 0.5-µM Se-Met. As the

Se-Met concentrations increased, the mRNA expression of 17 selenoproteins first

upregulated and then downregulated, with maximum values at 0.5-µM Se-Met. The

17 selenoproteins included SEPHS2, SELENOP, GPX1, GPX2, GPX3, GPX6, TXNRD1,

SELENOK, SELENOW, DIO1, DIO2, DIO3, SELENOF, SELENOS, SELENOH, SELENOI,

and SELENOT. Additionally, the protein expression levels of SEPHS2, SELENOP, GPX1,

and TXNRD1 and the activities of glutathione peroxidase and thioredoxin were highest

at 0.5-µM Se-Met. In conclusion, 0.5-µM Se-Met promotes cell viability partially by

improving selenoprotein expression and antioxidant function in pMECs, which provides

evidence for the potential ability of Se-Met to improve mammary gland health in sows.

Keywords: antioxidant, cell viability, porcine mammary epithelial cells, selenomethionine, selenoproteins

INTRODUCTION

Lactating sows have a significant demand for energy and nutrients due to a substantial metabolism,
and the mammary gland is one of the most metabolically active tissues in lactating sows. It has been
reported that sows produce 60-g milk/kg body weight, which is even higher than that of dairy cows
(50-g milk/kg body weight) (1). Once sows enter the lactating stage, mammary gland metabolism
rapidly increases, and genes involved in the synthesis of milk components (protein, fat, lactose, etc.)
are significantly upregulated in mammary gland tissues, such as CSN1S2, LALBA,WAP, SAA2, and
BTN1A1, and the transcriptional regulators SREBP1 and XBP1 are activated (2). Compared with
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non-lactating sows, there are 632 differentially expressed genes
in the liver of lactating sows, which are mainly involved in the
metabolism of threonine, serine, glycine, glutathione, pyruvate,
fatty acids, and glycerophospholipids, PPAR signaling, focal
adhesions, and the citric acid cycle (3), and the genes associated
with the synthesis and uptake of carnitine in the liver are also
significantly upregulated (4). However, substantial metabolism
leads to a large amount of oxygen consumption, which is prone
to generate many oxygen-free radicals and lipid peroxide. Indeed,
Rosenbaum et al. (5) found that lactation activated the Nrf2
pathway in the sow liver, which is a stress signaling pathway
associated with inflammation and oxidative stress.

It has been demonstrated that selenium (Se) promotes the
development of the mammalian mammary gland (6) and affects
milk production (7–9), and milk composition in dairy livestock
(10–13), as well as the maternal transfer of immunoglobulins
via milk (13–17). The beneficial effect of Se may be related to
the fact that Se can improve antioxidant functions and reduce
tissue damage in livestock (18, 19) because lactation is a process
involving high metabolism and a large number of free radicals.
Currently, 25 selenoproteins have been found in pigs, and at
least half of them are associated with antioxidant functions
(20). Selenium (Se) plays a crucial role in cell growth, the cell
cycle, and apoptosis (21), and it is an essential regulator of the
expression and activity of selenoproteins in mammary tissue
(22). Se status is one of the most critical factors determining
selenoprotein expression (23). The Se is an essential regulator of
the expression and activity of selenoproteins in mammary tissue
(22). The Se is incorporated into selenoproteins in the form of
selenocysteine, and the biological functions of Se are mediated
via selenoproteins (23). Se phosphate synthase 2 (SEPHS2) plays
an essential role in selenoproteins synthesis, and it plays a
self-regulating role in selenoproteins synthesis (24). SEPHS2
catalyzes the synthesis of an active Se donor—selenophosphate
(25), which is essentially needed for selenocysteine synthesis (24).
Glutathione peroxidase (GPX) is a family of antioxidant enzymes
that rely on glutathione to reduce peroxide to non-toxic water to
protect cells from oxidative damage (26). There are eight GPX
subtypes in mammals, of which GPX1, GPX2, GPX3, GPX4, and
GPX6 have selenocysteine residues present in their active sites,
while GPX5, GPX7, and GPX8 active sites are cysteines in place
of selenocysteine (24). Thioredoxin reductase (TXNRD) plays an
essential role in mammalian redox signals. Mammals have three
TXNRD isozymes (TXNRD1, TXNRD2, and TXNRD3) (21).
However, studies on the effects of Se on selenoprotein expression
and antioxidant capacity in pMECs have not been reported.

Therefore, this study aimed to investigate the effect of
selenomethionine (Se-Met) on selenoprotein expression and
antioxidant function in pMECs to reveal the underlying
molecular mechanism of Se-Met on the lactation performance
and antioxidant capacity of sows in vitro.

MATERIALS AND METHODS

Cell Culture
The pMECs used in this study were previously isolated and
characterized from the mammary glands of lactating sows

in our lab and were used to evaluate the synthesis and/or
transport of amino acids, fatty acids, and lactose in sows in
our previous studies. Cells were incubated at 37◦C in 5%
CO2. Cells were cultured in a complete medium according
to the formula of Jaeger et al. (27), which consisted of
Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12
(DMEM/F12, GIBCO), 10% fetal bovine serum (FBS, PAA),
1% antibiotic/antimycotic solution (10,000-U/mL penicillin, 10-
mg/mL streptomycin sulfate, 25-µg/mL amphotericin B, GIBCO,
I-15240), 10-µg/mL insulin (Sigma, I 6634) and 1-µg/mL
hydrocortisone (Sigma-Aldrich). Cell culture media contain
approximately 20 nM selenium due to the presence of 10% fetal
calf serum (28).

Cell Viability Assay
Cell viability was assessed using the CCK-8 assay (Dojindo,
Japan) according to the instructions of the manufacturer. Briefly,
pMECs were seeded into 96-well microplates at 200 µL/well
at 2 × 104 cells/mL and cultured in a complete medium at
37◦C and 5% CO2 for 48 h. Then, the cells were treated with
different levels of Se-Met (0, 0.5, 1, 2, or 4µM). At 24, 48, and
72 h posttreatment, 20-µL CCK-8 was added to each well and
incubated for 4 h at 37◦C and then measured using a microplate
reader at a wavelength of 450 nm.

RNA Isolation and Quantitative Real-Time
PCR
Porcine mammary epithelial cells were seeded into six-well plates
at 2 mL/well at 5 × 104 cells/mL and cultured in a complete
medium at 37◦C and 5% CO2 for 48 h. Then, the cells were
treated with different levels of Se-Met (0, 0.5, 1, 2, or 4µM)
for 48 h. After that, total RNA was extracted from pMECs using
TRIzol (Invitrogen catalog, No. 15596-026) according to the
instructions of the manufacturer. The quality and the quantity
of RNA were analyzed by an Agilent Bioanalyzer 2100 using
an RNA 6000 Labchip kit. Potential DNA contamination in the
extraction was eliminated using a DNA-free kit (Ambion, catalog
No. AM1906), and the RNA quality was verified by both agarose
gel (1%) electrophoresis and spectrometry (A260/A280). First-
strand cDNA synthesis was performed by using a PrimeScript
RT reagent kit with a gDNA eraser (Takara, Dalian, China).
cDNA was synthesized from 1 µg of total RNA using SuperScript
III reverse transcriptase according to the instructions of the
manufacturer. The mRNA levels of 25 selenoprotein genes
were analyzed by qPCR using SYBRR Green PCR Master Mix
according to the instructions of themanufacturer (Cat # RR047A,
Takara). Primers for the 25 selenoprotein genes (seeTable 1) were
referenced from the study of Zhao et al. (29), and primers for
the β-actin gene (ACTB) were from our previous study (30). The
2−11Ct method was used for quantification with the β-actin gene
as a reference gene, and the relative abundance was normalized to
the control.

Western Blot Analysis
Porcine mammary epithelial cells were seeded into six-well
plates at 2 mL/well at 5 × 104 cells/mL and cultured in
a complete medium at 37◦C and 5% CO2 for 48 h. Then,
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TABLE 1 | Primers used for RT-PCR1.

Gene Accession number Primer pairs (5′ to 3′ direction)

DIO1 AY533206 F: CATGGCCAAGAACCCTCACT

R: CCAGAAATACTGGGCACTGAAGA

DIO2 AY533207 F: CGCTGCATCTGGAAGAGCTT

R: TGGAATTGGGTGCATCTTCA

DIO3 AY533208 F: TGAAGTGGAGCTCAACAGTGATG

R: TGTCGTCAGACACGCAGATAGG

GPX1 AF532927 F: GATGCCACTGCCCTCATGA

R: TCGAAGTTCCATGCGATGTC

GPX2 DQ898282 F: AGAATGTGGCCTCGCTCTGA

R: GGCATTGCAGCTCGTTGAG

GPX3 AY368622 F: TGCACTGCAGGAAGAGTTTGAA

R: CCGGTTCCTGTTTTCCAAATT

GPX4 NM_214407 F: TGAGGCAAGACGGAGGTAAACT

R: TCCGTAAACCACACTCAGCATATC

GPX6 NM_001137607 F: GAGCTGAAGCCTTTTGGTGTAGTT

R: CTTTGCTGGTTCTTGTTTTCCA

MSRB1 EF113597 F: ATCCCTAAAGGCCAAGAATCATC

R: GGCCACCAAGCAGTGTTCA

SELENOF EF178474 F: ACAGCCCTGCCAAGCAGAT

R: AACAGGGAGGCTGGGTAACAC

SELENOH HM018602 F: TGGTGGAGGAGCTGAAGAAGTAC

R: CGTCATAAATGCTCCAACATCAC

SELENOI EST F: GATGGTGTGGATGGAAAGCAA

R: GCCATGGTCAAAGAGTTCTCCTA

SELENOK DQ372075 F: CAGGAAACCCCCCTAGAAGAA

R: CTCATCCACCGGCCATTG

SELENOM FJ968780 F: CAGCTGAATCGCCTCAAAGAG

R: GAGATGTTTCATGACCAGGTTGTG

SELENON EF113595 F: ACCTGGTCCCTGGTGAAAGAG

R: AGGCCAGCCAGCTTCTTGT

SELENOO AK236851 F: CTTCCGACCCCAGATGGAT

R: GGTTCGACTGTGCCAGCAT

SELENOP EF113596 F: AACCAGAAGCGCCAGACACT

R: TGCTGGCATATCTCAGTTCTCAGA

SELENOS AY609646 F: GAGGCAGAGGCACCTGGAT

R: CTGCTAAAGCCTCCTGTCGTTT

SELENOT AY609428 F: GGCTTAATAATCGTTGGCAAAGA

R: TGGCCCCATTGCCAGATA

SELENOV GQ478346 F: CACTGGTCGCCAATGGATTC

R: AGTGGCCAACGGAGAAAGC

SELENOW NM_213977 F: CACCCCTGTCTCCCTGCAT

R: GAGCAGGATCACCCCAAACA

SEPHS2 EF033624 F: TGGCTTGATGCACACGTTTAA

R: TGCGAGTGTCCCAGAATGC

TXNRD1 AF537300 F: GATTTAACAAGCGGGTCATGGT

R: CAACCTACATTCACACACGTTCCT

TXNRD2 GU181287 F: TCTTGAAAGGCGGAAAAGAGAT

R: TCGGTCGCCCTCCAGTAG

TXNRD3 BX918808 F: GTGCCCTACGTTTATGCTGTTG

R: TCCGAGCCACCAGCTTTG

ACTB XM003124280 F: GGATGCAGAAGGAGATCACG

R: ATCTGCTGGAAGGTGGACAG

ACTB, beta actin; DIO, iodothyronine deiodinase; GPX, glutathione peroxidase; MSRB1,

methionine sulfoxide reductase B1; SELENOF, H, I, K, M, N, O, P, S, T, V, and W,

selenoproteins F, H, I, K, M, N, O, P, S, T, V, andW; SEPHS2, selenophosphate synthetase

2; and TXNRD, thioredoxin reductase.

the cells were treated with different levels of Se-Met (0, 0.5,
1, 2, or 4µM) for 48 h. After that, the cells were collected
and homogenized in a RIPA lysis buffer (Beyotime, Nanjing,
China). Western blot analysis was performed according to
the procedures described in our previous study (26). The
primary antibodies were as follows: (1) anti-SEPHS2 antibody
(1:1,000, ab153878, Abcam, MA, USA), (2) anti-SELENOP
antibody (1:1,000, sc-376858, Santa Cruz, CA, USA), (3) anti-
GPX1 antibody (1:1,000, ab59546, Abcam, MA, USA), (4) anti-
TXNRD1 antibody (1:1,000, ab78629, Abcam,MA,USA), and (5)
anti-β-actin (1:1,000, bs-0061R, Bioss, Beijing, China).

Antioxidant Enzymes Assay
Porcine mammary epithelial cells were seeded into six-well
plates at 2 mL/well at 5 × 104 cells/mL and cultured in a
complete medium at 37◦C and 5% CO2 for 48 h. Then, the
cells were treated with different levels of Se-Met (0, 0.5, 1,
2, or 4µM) for 48 h. After that, the cells were collected for
glutathione peroxidase (GPX) activity and thioredoxin reductase
(TRX) activity analysis. GPX activity (nmol NADPH/min/mL)
was measured in the supernatant using a cellular glutathione
peroxidase assay kit (Beyotime Institute of Biotechnology) that
measures the coupled oxidation of NADPH during glutathione
reductase (GR) recycling of oxidized glutathione from GPX-
mediated reduction of t-butyl peroxide. For this assay, excess
GR, glutathione, and NADPH were added according to the
instructions of the manufacturer. The protein concentration of
splenocyte lysate was measured using a Bicinchoninic Acid assay
(Beyotime Institute of Biotechnology). Protein concentrations
were used to correct the GPX activity of the cell lysates. GPX
activity was expressed as mU/mg.

Thioredoxin reductase activity was measured using a
thioredoxin reductase activity colorimetric assay kit (BioVision,
USA). In this assay, TRX catalyzes the reduction of 5, 5′-
dithiobis (2-nitrobenzoic) acid (DTNB) with NADPH to 5-thio-
2-nitrobenzoic acid (TNB2−), which generates a strong yellow
color (λmax = 412 nm). Since other enzymes, such as glutathione
reductase and glutathione peroxidase, can also reduce DTNB in
crude biological samples, a TRX-specific inhibitor was utilized to
determine the TRX-specific activity. Two assays were performed:
the first measurement was the total DTNB reduction by the
sample, and the second was the DTNB reduction by the sample
in the presence of the TRX specific inhibitor. The difference
between the two results represented the DTNB reduction
by TRX.

Statistical Analysis
Statistical analysis was conducted using SPSS 22.0 (SPSS, INC.,
Chicago, IL, USA). Data were analyzed using one-way ANOVA,
followed by Duncan’s multiple comparison test. The results are
presented as mean and SEM. p < 0.05 was considered to be
statistically significant. The figures and heatmap were drawn
using Origin 8.0 software and Heatmap Illustrator software
(HemI 1.0, version 1.0), respectively.
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FIGURE 1 | Effects of selenomethionine (Se-Met) supplementation on cell

viability in porcine mammary epithelial cells (pMECs). The cells were incubated

with different concentrations of Se-Met (0, 0.5, 1, 2, and 4µM) for 24, 48, and

72 h. Cell viability was analyzed using the CCK-8 assay. The data are

expressed as the mean ± SEM (n = 12). Different superscript letters indicate a

significant difference (p < 0.05).

RESULTS

Cell Viability
As shown in Figure 1, when pMECs were incubated for 24 h,
compared with the control group,.5, 1., or 2.-µM Se-Met
increased cell viability by 11.36, 8.59, and 8.06 (p < 0.05),
respectively, while 4.µM Se-Met did not affect cell viability
(p > 0.05). After 48 h of incubation, compared with the control
group, 0.5- and 1.-µM Se-Met enhanced cell viability by 15.26
and 15.36% (p < 0.05), respectively, but 2.- or 4.-µM Se-Met did
not influence cell viability (p > 0.05). When cells were treated
for 72 h, Se-Met did not affect cell viability in comparison to
the control group (p > 0.05), but 0.5-µM Se-Met improved cell
viability compared with the 4.-µM Se-Met group by 12.55% (p <

0.05). Therefore, we selected 48 h as the incubation time for the
subsequent experiments.

Selenoprotein Transcriptome
A heat map of the effects of Se-Met supplementation on the
selenoprotein transcriptome of pMECs is shown in Figure 2. The
results showed that the mRNA expression of most selenoproteins
was first upregulated, and then gradually downregulated with
increasing Se-Met concentration, peaking at 0.5-µM Se-Met.

With increasing Se-Met concentration, the mRNA expression
of SEPHS2 and SELENOP first increased and then gradually
decreased, reaching a maximum value at 0.5-µM Se-Met,
which was higher than that of the 4.-µM Se-Met group (p <

0.05) (Figure 3A). For the GPX family, the mRNA expression
of GPX4 was unaffected by Se-Met treatments (p > 0.05).
However, the mRNA expression of GPX1, GPX2, GPX3, and
GPX6 first increased and then decreased with the increase of
Se-Met concentration, reaching a plateau value at 0.5-µM Se-
Met (Figure 3B). Regarding the TXNRD family, the mRNA
expression of TXNRD1 first increased and then decreased, and
the expression was the highest at 0.5-µM Se-Met, while the

mRNA expression of TXNRD3 first increased and then decreased
(p < 0.05) (Figure 3C). As presented in Figure 3D, Se-Met
did not affect the mRNA expression of MSRB1 (p > 0.05). As
the Se-Met concentration increased, the mRNA expression of
SELENOK and SELENOW first increased and then decreased,
peaking at 0.5-µM Se-Met (p < 0.05). As displayed in Figure 3E,
with the increasing Se-Met concentration, the mRNA expression
of DIO1, DIO2, and DIO3 first increased and then decreased,
reaching a maximum value at 0.5-µM Se-Met (p < 0.05).
As shown in Figure 3F, Se-Met did not affect the mRNA
expression of SELENOM (p > 0.05). With the increasing Se-
Met concentrations, the mRNA expression of SELENON first
increased and then increased, reaching a minimum value at
0.5-µM Se-Met. With the increasing Se-Met concentration, the
mRNA expressions of SELENOF and SELENOS mRNA were
increased firstly and then decreased, and the expression was the
highest at 0.5-µM Se-Met (p < 0.05). As shown in Figure 3G,
Se-Met did not affect the mRNA expression of SELENOV (p
> 0.05). With the increasing Se-Met concentration, the mRNA
expression of SELENOO first increased and then increased. With
the increasing Se-Met concentration, the mRNA expression of
SELENOH, SELENOI, and SELENOT first increased and then
decreased, and the expression was the highest at 0.5-µM Se-Met.
The mRNA expressions of SELENOH, SELENOI, and SELENOT
were higher in the 0.5-µM Se-Met group than that in the 4.-µM
Se-Met group (p < 0.05).

Protein Expression of Selenoproteins
As displayed in Figure 4, the protein expression of SEPHS2
first increased and then decreased with the increasing Se-Met
concentration, and the expression was the highest at 0.5-µM
Se-Met. The protein expression of SEPHS2 was elevated when
cells were treated with 0.5-µM Se-Met compared with the 0-,
2.-, 4.-µM Se-Met groups (p < 0.05). Additionally, the protein
expression of SEPHS2 in the 1.-µM Se-Met group was increased
compared with that in the 4.-µM Se-Met group (p < 0.05). As
the Se-Met concentration increased, the protein expression of
SELENOP first increased and then decreased; the expression was
the highest at 0.5-µM Se-Met, and the expression of SELENOP
in the 0.5-µM Se-Met group was higher than that in the 2.- and
4.-µM Se-Met groups (p < 0.05) (Figure 5). As presented in
Figure 6, the protein expression of GPX1 first increased and then
decreased with the increasing Se-Met concentration, peaking at
0.5-µM Se-Met. Additionally, the protein expression of GPX1
in the 0.5-µM Se-Met group was higher than that in the 0-, 1.-
, 2.-, and 4.-µM Se-Met groups (P < 0.05), while the 1.- and
2.-µM Se-Met groups had higher GPX1 protein expression than
the control group (p < 0.05). As represented in Figure 7, with
the increasing Se-Met concentration, the protein expression of
TXNRD1 increased first and then decreased; the expression was
the highest at 0.5-µM Se-Met, and the expression of TXNRD1
in the 0.5-µM Se-Met group was higher than in the 0-, 2.-,
and 4.-µM Se-Met groups (p < 0.05), while the 1.-µM Se-Met
group was higher than that in the 2.- and 4.-µM Se-Met groups
(p < 0.05). The original images for the blots are provided in the
Supplemental Materials.
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FIGURE 2 | Heat map of the effects of selenomethionine (Se-Met) supplementation on the selenoprotein transcriptome in porcine mammary epithelial cells (pMECs).

The cells were incubated for 48 h with different concentrations of Se-Met (0, 0.5, 1, 2, and 4µM), and then collected for determination of mRNA expression. The heat

map displays the extent of the changes. The color scale ranges from saturated red (1.5) to black (0) to saturated green (−1.5). Red and green colors represent

increased and decreased expressions, respectively.

GPX and TRX Activities
As presented in Figure 8, with the increasing Se-Met
concentrations, GPX activity first increased and then decreased,
and the activity was highest at 0.5-µM Se-Met. The GPX activity
in the 0.5-µM Se-Met group was higher than that in the 0-, 2.-,
and 4.-µM Se-Met group (p < 0.05), while GPX activity in the
1.-µM Se-Met group was elevated compared with that in the
4.-µM Se-Met group (p < 0.05). With the increasing Se-Met
concentration, TRX activity first increased and then decreased,
peaking at 0.5µM. The TRX activity in the 0.5-µM Se-Met
group was higher than that in the 0-, 1.-, 2.-, and 4.-µM Se-Met
groups (p < 0.05).

DISCUSSION

This study was conducted to investigate the effects of Se-Met
on selenoprotein expression and antioxidant function in pMECs
to reveal the underlying molecular mechanism of Se-Met on
the lactation performance and antioxidant capacity of sows in

vitro. Yan et al. (31) found that Se promotes the proliferation
of chondrocyte ATDC5 cells by increasing intracellular ATP
content. Hao et al. (32) treated primary porcine splenocytes with
0-,.5-, 1-, 2-, 4-, 8-, and 16-µM selenite or Se-Met and found that
T-cell proliferation gradually increases in response to Se levels,
with the maximum value at 2-µM Se-Met or sodium selenite.
Similarly, Zhuang et al. (33) treated primary porcine splenocytes
with 0-,.5-, 2-, and 5-µM sodium selenite, and found that cell
proliferation gradually increases with increasing Se levels and
reaches a maximum value at 2-µM sodium selenite. The results
of this experiment showed that, with increasing Se-Met levels,
cell viability first increased and then decreased, with a maximum
value at 0.5-µM Se-Met. Our results suggest that normal levels of
Se can promote cell growth, while supra-nutritional levels of Se
inhibit cell proliferation (21).

In the present study, the expression of SEPHS2 at either
the mRNA or protein level was highest at 0.5-µM Se-Met,
which indicates selenoprotein biosynthesis was most favorable
at 0.5-µM Se-Met. It has been reported that selenoprotein P
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FIGURE 3 | Effects of selenomethionine (Se-Met) supplementation on the relative mRNA expression of 25 selenoproteins in porcine mammary epithelial cells

(pMECs). (A) selenoprotein SEPHS2 and SELENOP; (B) the selenoprotein GPX family; (C) the selenoprotein TXNRD family; (D) antioxidant selenoproteins; (E) the

selenoprotein DIO family; (F) protein-fold function selenoproteins; (G) other unknown functions of selenoproteins. The cells were incubated for 48 h with different

concentrations of Se-Met (0, 0.5, 1, 2, and 4µM) and then collected for determination of mRNA expression. The data are expressed as the mean ± SEM (n = 6).

Different superscript letters indicate a significant difference (p < 0.05).

(SELENOP) is the primary transporter of Se in milk (34). The
Se content in the milk of female mice with a knockout of the
SELENOP gene is reduced by 73%, and the Se intake of suckling

rats is reduced by 65% (34). In other words, a knockout of
the SELENOP gene reduces Se transfer from lactating mothers
to suckling offsprings (34). Hill et al. (34) also reported that
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FIGURE 4 | Effects of selenomethionine (Se-Met) supplementation on

SEPHS2 protein expression in porcine mammary epithelial cells (pMECs). The

cells were incubated for 48 h with different concentrations of Se-Met (0, 0.5, 1,

2, and 4µM), and then collected for determination of protein expression. The

data are expressed as the mean ± SEM (n = 3). Different superscript letters

indicate a significant difference (p < 0.05).

FIGURE 5 | Effects of selenomethionine (Se-Met) supplementation on

SELENOP protein expression in porcine mammary epithelial cells (pMECs).

The cells were incubated for 48 h with different concentrations of Se-Met (0,

0.5, 1, 2, and 4µM) and then collected for determination of protein

expression. The data are expressed as the mean ± SEM (n = 3). The β-actin

blot was reused as shown in Figure 4. Different superscript letters indicate a

significant difference (p < 0.05).

milk SELENOP is synthesized by the mammary gland. In the
present experiment, the expression of SELENOP at either the
mRNA or protein level was the highest at 0.5-µM Se-Met, which
indicates that Se transfer was most favorable at 0.5-µM Se-
Met. Therefore, selenoprotein synthesis (SEPHS2) and transport
(SELENOP) were highest at 0.5-µM Se-Met, which makes it easy

FIGURE 6 | Effects of selenomethionine (Se-Met) supplementation on GPX1

protein expression in porcine mammary epithelial cells (pMECs). The cells were

incubated for 48 h with different concentrations of Se-Met (0, 0.5, 1, 2, and

4µM) and then collected for the determination of protein expression. The data

are expressed as the mean ± SEM (n = 3). Different superscript letters

indicate a significant difference (p < 0.05).

FIGURE 7 | Effects of selenomethionine (Se-Met) supplementation on

TXNRD1 protein expression in porcine mammary epithelial cells (pMECs). The

cells were incubated for 48 h with different concentrations of Se-Met (0, 0.5, 1,

2, and 4µM), and then collected for the determination of protein expression.

The data are expressed as the mean ± SEM (n = 3). The β-actin blot was

reused as shown in Figure 6. Different superscript letters indicate a significant

difference (p < 0.05).

to understand that most other selenoproteins were upregulated
at 0.5-µM Se-Met.

In this study, as the Se-Met concentration increased,
the mRNA expression of most selenoproteins, including
SEPHS2, SELENOP, GPX1, GPX2, GPX3, GPX6, TXNRD1,
SELENOK, SELENOW, DIO1, DIO2, DIO3, SELENOF,
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FIGURE 8 | Effects of selenomethionine (Se-Met) supplementation on glutathione peroxidase (GPX) (A) and thioredoxin reductase (TRX) activity (B) in porcine

mammary epithelial cells (pMECs). The cells were incubated for 48 h with different concentrations of Se-Met (0, 0.5, 1, 2, and 4µM), and then collected for GPX and

TRX activity analysis. The data are expressed as the mean ± SEM (n = 6). Different superscript letters indicate a significant difference (p < 0.05).

SELENOS, SELENOH, SELENOI, and SELENOT, was first
increased and then decreased, reaching a maximum at 0.5-
µM Se-Met. It has been reported that Se can affect the
selenoprotein transcriptome in mouse ATDC5 chondrocytes
and human C28/I2 cells (35). Se supplementation was shown
to significantly upregulate the mRNA expression of GPX1,
SELENOH, SELENON, SELENOP, and SELENOW in ATDC5
cells and GPX1, SELENOH, SELENON, SELENOP, SELENOW,
and GPX3 in C28/I2 cells and significantly downregulate the
mRNA expression of SEPHS2 and SELENOO in ATDC5 cells
and SEPHS2, SELENOO, and TXNRD2 in C28/I2 cells (35).
In vivo experiments also demonstrated that the selenoprotein
transcriptome in the liver and muscle of chickens is regulated
by different Se sources in the diet (36). Se has been reported to
regulate the selenoprotein transcriptome of chicken embryonic
neurons, and the mRNA expression of SELENOT, SELENOF,
SELENOU, GPX3, SELENOK, SELENOW, GPX4, SELENOP,
and GPX2 is sensitive to Se levels in the diet (37). Huang et al.
(38) found that the Se-deficiency disease exudative diathesis
of chickens is related to the downregulation of seven common
selenoprotein genes, including GPX1, GPX4, SELENOW,
SELENON, SELENOP, SELENOO, and SELENOK, in the liver
and muscle. However, Zhou et al. (39) found that the expression
of selenoprotein genes in the thyroid and pituitary of weaned
piglets is unaffected by a deficiency or excess of Se in the diet.
Therefore, as reported by Liu et al. (40), Se supplementation
does not globally regulate all selenoproteins, and the expression
situation is also different due to different tissues. Miranda et
al. (41) reported that Se-Met promotes the expression of GPX1
and GPX3 in primary bovine mammary epithelial cells. Hao
et al. (32) also found that Se-Met promoted the mRNA and
protein expression of GPX1 and SELENOS without affecting
GPX4 mRNA expression in primary porcine splenocytes, which
is consistent with our results. However, Se-Met does not alleviate
the toxic effects of aflatoxin B1 on primary porcine spleen
cells treated with GPX1-siRNA and SELENOS-siRNA (32, 33).
The results of Hao et al. (32) suggested that Se-Met exerts
biological functions by regulating the expression of GPX1 and
SELENOS. Does Se deficiency reduce GPX activity of cells?

In primary cultured pig thyrocytes, hydrogen peroxide causes
a decrease in GPX activity and activation of caspase-3, and
Se deficiency aggravates cell apoptosis due to decreased GPX
activity (42). Chen et al. (43) found that oxidative stress induces
the reproduction of porcine circovirus PCV2, while 6-µM
Se-Met inhibits the proliferation of PCV2. However, Se-Met did
not alleviate the proliferation of PCV2 treated with GPX1-siRNA
(43), suggesting that GPX1 may be a critical factor blocking
oxidative stress and porcine circovirus reproduction (44). The
results of this experiment showed that the mRNA expression of
GPX1, GPX2, GPX3, and GPX6 was highest at 0.5-µM Se-Met.
Western blot results also showed that GPX1 protein expression
was highest at 05-µM Se-Met, indicating that 0.5-µM Se-Met is
most beneficial for the synthesis of GPX1.

In the present study, the mRNA and protein expression of
TXNRD1 was highest at 0.5-µM Se-Met. Studies have shown
that thioredoxin reductase deficiency exacerbates oxidative stress,
mitochondrial disorders, and cell death in N27 cells (45).
Se upregulates the endogenous antioxidant system of human
placental trophoblast cells (Bewo and Jeg-3 cells), thereby
protecting cells from oxidative damage (46, 47). However, Se did
not relieve cellular oxidative stress after cells were treated with
auranofin (a specific blocker of GPX and TRX), suggesting that
GPX and TRX are two crucial members of alleviating oxidative
stress (46, 47). Se plays a vital role in the antioxidant system
of animal organisms. The results of this experiment showed
that the activities of GPX and TRX were first increased and
then decreased with increasing Se-Met concentration, reaching
a maximum value at 0.5-µM Se-Met. Miranda et al. (48)
found that Se-Met increases GPX activity in bovine mammary
epithelial cells and restores intracellular peroxide to normal
levels. In vivo experiments also found that Se treatment can block
cadmium-induced reactive oxygen species (ROS) production
in mice, inhibit cadmium-induced mitochondrial membrane
collapse, prevent cytochrome C release, and inhibit caspase death
receptor activation (49). Higuchi et al. (50) reported that dry
eye disease is thought to be a disease induced by oxidative
stress and that Se protects the oxidative stress of the corneal
epithelium. Although a lot of studies have reported the beneficial
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effects of Se-Met or yeast Se in dairy animals during the
lactation or perinatal period, to the best of our knowledge, the
present study is the first to investigate the impact of Se-Met on
pMECs. The current experiment provides insights into the key
regulatory role of Se-Met in the selenoprotein transcriptome of
pMECs while revealing its importance for improving mammary
gland health in sows. However, further studies are required
to explore the regulatory effects of Se-Met on the synthesis
and secretion of milk components, including milk fat (fatty
acids), protein (amino acids), and lactose using pMECs and
animal models.

CONCLUSIONS

In conclusion, 0.5-µM Se-Met promotes cell viability partially
by improving selenoprotein expression and antioxidant function
in pMECs. Our results provide evidence for the potential
ability of Se-Met for improving mammary gland health
in sows.
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