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Previous studies have found donkey milk (DM) has the similar compositions with human

milk (HM) and could be used as a potential hypoallergenic replacement diet for babies

suffering from cow’s milk allergy. Milk fat globule membrane (MFGM) proteins are involved

in many biological functions, behaving as important indicators of the nutritional quality of

milk. In this study, we used label-free proteomics to quantify the differentially expressed

MFGM proteins (DEP) between DM (in 4–5 months of lactation) and HM (in 6–8 months

of lactation). In total, 293 DEP were found in these two groups. Gene Ontology (GO)

enrichment analysis revealed that themajority of DEP participated in regulation of immune

system process, membrane invagination and lymphocyte activation. Several significant

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined for the

DEP, such as lysosome, galactose metabolism and peroxisome proliferator-activated

receptor (PPAR) signaling pathway. Our study may provide valuable information in the

composition of MFGM proteins in DM and HM, and expand our knowledge of different

biological functions between DM and HM.
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INTRODUCTION

Donkeymilk is more similar to humanmilk because of its total protein and lactose contents, similar
fatty acid and protein profiles (1). It has been indicated to be more suitable for children and elderly
people due to its remarkable nutritional value and less allergenic. Besides, milk fat globules in DM
are smaller and more easily digested and absorbed by infants (2). With its obvious advantages, the
demand of direct consumption for DM has increased.

Milk fat globule membrane (MFGM), a three-layer membrane, covers on the surface of the milk
fat globule (3). MFGM proteins make up only 1–2% of the total milk proteins, but they are thought
to play important roles in biological processes, including cell growth promotion, cell activity
regulation and defense mechanisms against bacteria and viruses in infants (4). Investigations on
MFGM proteome have primarily focused on profiling analyses of MFGM fractions from different
mammals. For example, Yang et al. identified 232 differentially expressed MFGM proteins in HM
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and CM across different lactation stages using the iTRAQ
proteomic approach (5). To reveal the differences in the
formation of MFGM in different mammals, the MFGM proteins
of cow, yak, buffalo, goat, horse, camel and human were also
compared by iTRAQ proteomics (6). Recently, Li et al. hoped
to explore the changes in the regulation mechanism of different
lactation stages by analyzing the differences of MFGM proteins
between donkey colostrum and mature milk (2). However,
studies of the DMMFGM proteome are relatively sparse and less
comprehensive, especially fully comparative analyses of MFGM
protein compositions and potential biological activities between
DM and other species.

The aim of our study was to compare the expression ofMFGM
proteins between DM and HM by label-free quantification and to
explore the biological processes they were involved in. The results
are helpful for us to better understand the differences between
DM and HM in the composition of MFGM and provide strong
support for the future development of formulamilk using donkey
milk as nutritional provider.

MATERIALS AND METHODS

Sample Collection and Treatment
HM samples were donated by twelve healthy mothers with the
lactation of 6–8 months with written informed consent which
indicated that the milk would be used in research. Twelve DM
samples were obtained from a local farm breeding Dezhou
donkeys (6–9 years old) with the lactation of 4–5 months in
Liaocheng City of Shandong province, China. All procedures
involving donkeys were performed by the Shandong Agricultural
University Animal Care and Use Committee (approval number,
SDAUA-2020-053). Four samples of each group were randomly
mixed and stored at−80◦C.

MFGM proteins separation was done as described by previous
report (2). All samples were centrifuged at 4◦C and 10,000 g for
15min to obtain the upper fat portion containing MFGM. The
upper fat layer was washed with 10ml cold phosphate-buffered
saline (0.24 g KH2PO4, 1.44 g Na2HPO4, 8 g NaCl and 0.2 g KCl
were dissolved in 800ml deionized water, the PH was adjusted to
7.4 and the volume was fixed to 1,000mL) and homogenized by
ultrasound (80W, 15 s) for 3 times. The mixture was centrifuged
at 4◦C and 10,000 g for 1 h. Then, acetone was added to the
collected supernatant to segregate the fat globules overnight.
After centrifugation at 15,000 g at 4◦C for 30min, the supernatant
was poured away. Finally, lysate was added to the protein particle
sample and ultrasonicated for 15 s at 80W for 10 cycles.

MFGM Protein Digestion
Thirty microliters protein solution were taken from each sample
and dithiothreitol (DTT) were added to the final concentration
of 100mM. The samples were incubated in boiling water for
5min and cooled to room temperature. Then, 200 µL UA buffer
(8M urea, 150mM TrisHCl, pH 8.0) was added and mixed
thoroughly. After that, each sample was transferred into a 10
kDa ultrafiltration centrifuge tube (Sartorius, Germany) and
centrifuged at 14,000g for 15min, then discarded the filtrate
(repeat this step once). 100 µL IAA buffer (100mM IAA in UA)

was added to the protein mixture in the tube and shaken at 600
rpm for 1min. The mixture was left at room temperature in dark
for 30min and centrifuged at 14,000 g for 15min and the process
was repeated twice. Hundred microliters 25mm NH4HCO3
solution was added to the tube and centrifuged at 14,000 g
for 15min and repeated the procedure twice. Subsequently, 40
µL trypsin buffer (4 µg trypsin in 40 µL 100mM NH4HCO3)
were added to the mixture and sample was shaken at 600 rpm
for 1min. The mixture was left at 37◦C for 16–18 h and then
transferred to a new collecting tube and centrifuged at 14,000 g
for 15min. Then, 40 µL 25mm NH4HCO3 was added in the
mixture and sample was centrifuged at 14,000 g for 15min to
collect the filtrate. The peptide was desalted by C18 cartridge
(Sigma, USA). After freeze-drying, the peptide was dissolved in
40 µL 0.1% formic acid solution.

LC- MS/MS Experiments
Each sample was separated by the Easy-nLCTM (Proxeon
Biosystems, Thermo Fisher Scientific) orbitrap HPLC system
with nano-flow. Buffer A was 0.1% formic acid, and buffer B
was 84% acetonitrile in 0.1% formic acid. The chromatographic
column was equilibrated with 95% buffer A. The sample was
loaded by an automatic sampler to the sample column (Thermo
Scientific Acclaim Pepmap 100, 100µm× 2 cm, nanoViper C18),
and separated by the analytical column (Thermo scientific EASY
column, 10 cm, ID75µm, 3µm, C18-A2). The flow rate was 300
nL/min. Two-hour gradient: 0–110min, buffer B linear gradient
from 0 to 55%; 110–115min, buffer B linear gradient from 55 to
100%; 115–120min, buffer B maintained at 100%.

The samples were analyzed on a Q ExactiveTM mass
spectrometer (Thermo Fisher Scientific). Parameters were set
as follows: analysis time 120min; detection mode: positive ion;
scanning range of parent ion: 300–1,800 m/z; first-order mass
spectrometry resolution: 70,000 at 200m/z; AGC (automatic gain
control) target: 1e6; maximum IT (inject time): 50ms; dynamic
exclusion: 60 s. The mass charge ratio of polypeptide and
polypeptide fragments was collected according to the following
methods: after each full scan, 20 fragments (MS2 scan) were
collected. The MS2 activation type was HCD, the isolation width
was 2 m/z, the secondary mass spectrum resolution was 17,500 at
200 m/z. Normalized collision energy was 30 eV, and the underfill
ratio was defined as 0.1%.

Sequence Database Searching
Relative intensity-based label-free quantification (LFQ) was
analyzed by MaxQuant version 1.5.3.17 (Max Planck Institute
of Biochemistry in Martinsried, Germany) and searched against
the UniProtKB Equus asinus database (47,825 total entries,
downloaded on August 12, 2019) and Homo sapiens (included
20,422 series, downloaded on May 22, 2019). Proteins with p
< 0.05 and fold change >2 or <0.5 were deemed significantly
expressed between groups by t-test. The false discovery rate
(FDR) for peptide and protein identification was set to 1%.

Bioinformatics Analysis
Quantified MFGM samples were used to performing hierarchical
clustering analysis. For this purpose, Cluster3.0 (http://bonsai.

Frontiers in Nutrition | www.frontiersin.org 2 June 2021 | Volume 8 | Article 670099

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
http://bonsai.hgc.jp/${sim }$mdehoon/software/cluster/software.htm


Zhang et al. Donkey and Human MFGM Comparison

hgc.jp/$\sim$mdehoon/software/cluster/software.htm) and the
Java Treeview software (http://jtreeview.sourceforge.net) were
used. GO enrichment on three ontologies (biological process,
molecular function, and cellular component) and KEGGpathway
enrichment analyses were applied based on the Fisher’ exact
test, considering the whole quantified protein annotations as
background dataset using DAVID (https://david.ncifcrf.gov/).
Benjamini-Hochberg correction for multiple testing was further
applied to adjust derived P -values, and only functional categories
and pathways with P-values under a threshold of 0.05 were
considered as significant.

RESULTS

Quantitative Overview of Identified MFGM
Proteins in DM and HM
As shown in Figures 1A, 454 MFGM proteins were identified in
DM and HM. Proteins having at least two replicates and fold
changes >2.0 or <0.5 and P < 0.05 were defined as differentially
expressed proteins (DEP). In addition, the proteins with at least
two replicates in one group and in another group with null
values were also defined as DEP. A volcano plot was used to
show significant differences between the two groups based on
the fold change and P-value (Figure 1B). Compared withMFGM
proteins in HM, 204 MFGM proteins in DM were upregulated
and 89 MFGM proteins were downregulated. DEP detailed
information is shown in Supplementary Table 1.

Cluster Analysis
Meanwhile, a hierarchical cluster analysis of MEGM proteins
in DM and HM group was shown in Figure 2. The upregulated
MFGM proteins in DM compared with HM mainly included
alpha-s2-casein, lysozyme, alpha-s1-casein and secreted

phosphoprotein 1 (SPP1), and the downregulated MFGM
proteins were lipoprotein lipase, fatty acid-binding protein 3 and
nucleobindin 1.

GO Analysis of DEP in DM Compared With
HM and CM
DEP were then classified into the GO enrichment analysis of
three distinctive functional sets, cellular component, molecular
function, and biological process. In terms of molecular function,
DEP in DM and HM group were primarily related to
immunoglobulin receptor binding, protein homodimerization
activity and antigen binding (Figure 3). In the category of
biological process, DEP in these two groups weremainly involved
in regulation of immune system process, membrane invagination
and lymphocyte activation. GO enrichment of DEP information
is listed in Supplementary Table 2.

KEGG Pathway Analysis of DEP in DM
Compared With HM and CM
In Figure 4, the DEP were mainly involved in lysosome, galactose
metabolism and PPAR signaling pathway. KEGG pathway
enrichment of DEP information was listed in Table 1.

DISCUSSION

In this study, 293 MFGM proteins were found to be significantly
different between DM and HM. These DEP were involved in
regulation of immune system process, complement activation
and integral component of membrane. These results may provide
valuable information in the MFGM composition of DM and
HM, especially for low abundant components, and expand
our knowledge of different biological functions between DM
and HM.

FIGURE 1 | Venn diagram of MFGM proteins identified from DM and HM group (A); Volcano plot of proteins identified from DM and HM group (B). Red dot,

up-regulated proteins in DM and HM MFGM; Green dot, up-regulated proteins in DM and HM MFGM; Black dot, not significant different proteins between DM and

HM. MFGM, milk fat ball membrane; DM, donkey milk; HM, human milk.
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FIGURE 2 | Hierarchical clustering of DEP in DM and HM group. Bar color represents a logarithmic scale from −2 to 2. DEP, differentially expressed proteins; DM,

donkey milk. HM,: human milk.

Caseins in milk exert multifunctional effects including
amino acid and calcium supply (5), cellular immune functions
stimulation (7, 8), and chemotactic properties (9). Studies of
human, bovine, goat, and camel MFGM proteomes identified
milk caseins in the MFGM fractions (2, 6, 10). In our data,
four caseins (α-s1-casein, α-s2-casein, β-casein, κ-casein) were
detected in DM MFGM fractions and significantly higher than
that in HM. The main role of human α-s1-casein is to serve as an
amino acid source to the newborns. Beyond nutritional aspects,
α-s1-casein could contribute to the development of immune
system. Moreover, α-s1-casein in nursed individuals gives rise
to sustained specific IgG production (8). Cocco et al. found that
single amino acid substitution in the specific linear epitopes of

alpha s1-casein can significantly reduce the binding ability of
serum IgE in patients with CM allergy (11). Donkey and cowmilk
alpha s1-casein share a low sequence homology, and particularly
their IgE binding linear epitopes have remarkable differences
in amino acid sequences (12). Moreover, Bertino et al. found
that donkey alpha-s1-casein appears as both phosphorylated
and glycosylated forms, but neither human nor bovine alpha-
s1-caseins have been reported to be glycosylated (13). Studies
have shown that in many cases milk from donkey represents
a safe and alternative food in both IgE-mediated and non-IgE-
mediated cow’s milk protein allergy (14, 15). These differences
in alpha s1-casein amino acid sequence or post-translational
modifications might be related to the low allergenic properties
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FIGURE 3 | Enriched Gene Ontology (GO) Terms of the DEP in DM and HM group. GO enrichment of DEP on three categories. BP, biological processes; MF,

molecular functions; CC, cellular components; DEP, differentially expressed proteins; DM, donkey milk; HM, human milk.

of donkey milk. As for β-casein and kappa-casein, both of them
fromHM and DM are more closely related to each other than the
cow counterparts (16). β-casein is the major casein constituent
in human MFGM and generates smaller casein phosphopeptides
upon digestion to aid the absorption of calcium (17). κ-casein
is the only glycosylated in the four casein families. DM κ-casein
carries a higher number of potential O-glycosylation than that
cow milk κ-casein. Therefore, DM similar to HMmay contribute
to inhibit the adhesion ofHelicobacter pylori to gastric mucosa in
infant (18).

In general, β-lactoglobulin can be found in the majority of
milks, but not in human’s milk. However, in this study we
detected β-lactoglobulin in HM. It has been found that beta-
lactoglobulin can be detected in the human milk within 7 days
after ingestion of milk (19). We hypothesized that the mothers
who donated breast milk in this study were likely to have taken
other milks before providing milk samples.

According to the GO enrichment analysis, DEP in DM vs.
HM group were mainly involved immune response, such as
complement activation, defense response or positive regulation
of B cell activation (Supplementary Table 2). It is well-known

that milk could provide large amounts of bioactive components
to the infants in the critical phase of immunological immaturity.
Mature breast milk could enhance B cell proliferation and
antibody secretion (20). Among the DEP involved in the
positive regulation of B cell activation, 9 proteins were all
upregulated in DM, including immunoglobulin heavy constant
gamma 3 (IGHG3) and immunoglobulin kappa constant (IGKC),
which all function in B cell selection or antigen recognition
(21). In addition, 49 DEP were involved in defense response,
among which 32 proteins were upregulated in the DM MFGM,
namely semaphorin 7A, complement 3 (C3), joining (J) chain.
Semaphorin 7A (also known as CD108) plays a key role
in innate immune regulation. Semaphorin 7A could induce
proinflammatory cytokines production (22). Semaphorin 7A-
deficient mice are defective in T cell-mediated inflammatory
responses, indicating the role of semaphorin 7A in evoking
inflammatory immune reactions (23). In addition to its role
in the immune response, semaphorin 7A also functions as a
chemoattractant and stimulates neuronal migration, which is an
essential process in central nervous system development (24).
The defect of neuron migration may lead to nervous system
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FIGURE 4 | Enriched KEGG pathway analysis of the DEP in DM and HM group. KEGG, Kyoto Encyclopedia of Genes and Genomes pathways; DEP, differentially

expressed proteins; DM, donkey milk; HM, human milk.

disorder (25). J chain is a small polypeptide contained in dimeric
IgA and pentameric IgM, which plays an important role in
the generation of secretory antibodies (26). This peptide can
be produced by immunocytes of all Ig isotypes, but it becomes
incorporated only into IgA and pentameric IgM (27). Moreover,
the expression of J chain may be a marker of B cell clone
in mucosa associated lymphoid tissue, as there is a positive
correlation between the production of polymeric IgA, IgG or
IgD-producing cells and J chain (28). C3 is an important part of
the innate immune system. It combines with other complement
proteins to form the main host mechanism for detecting and
eliminating potential pathogens (29). Complement proteins
contribute to the establishment of natural immune system in
newborns (2). The presence of abundant immunological factors
in DMMFGM proteins are helpful for the newborns to establish
an immune system against microbial infection to adapt to the
new environment to prevent diseases.

In this study, a solute carrier (SLC) superfamily, namely,
SLC34A2, SLC36A1, SLC4A9, and SLC9A3R1, was more
abundant in DM MFGM proteins. This superfamily is a major
membrane transporter group that controls the uptake and
excretion of nutrients, neurotransmitters, metabolites, drugs
and toxins (30). SLC34A2 is a member of SLC34 family, a

group of phosphate transporters, which are responsible for
transporting inorganic phosphate. Phosphate is an essential
nutrient for life and a key component of bone formation
(31). Recently, it was concluded that SLC34A2 was responsible
for the sodium-dependent component of intestinal phosphate
absorption (32). SLC36A1, an amino acids transporter in small
intestinal enterocytes, could regulate cell growth and sense
the availability of amino acids in other cell types. SLC36A1
also could be a target for rapamycin complex 1 (TORC1)
activation (33). TORC1 regulates some metabolic pathways
and adapts cells to applied bioenergy and anabolic conditions
(34). SLC9A3R1 is a multifunctional scaffold protein, which is
involved in cell activities and affects many protein functions,
including ion channels, receptors, signaling and nuclear proteins.
In addition, SLC9A3R1 has potential antitumor effects in breast
cancer (35). SLCs also play an important role in the function
of the central nervous system. A total of 287 SLC genes
were identified in the brain, especially in the barrier cells.
SLCs expressed in neurons and glial cells play irreplaceable
roles in maintaining brain homeostasis (36). Moreover, we also
found some other abundant proteins in DM MFGM that are
expressed in the brain, such as neuro plastin (NP). NP is a
cell adhesion molecule rich in synaptic membranes and belongs
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TABLE 1 | Detailed information of KEGG pathway-based enrichment of the differentially expressed proteins between DM and HM.

Pathway_ID KEGG pathways Protein

number

Genes Fold

enrichment

P-value

ecb04142 Lysosome 9 F6YQM5, F7BPX8, F6YNH6,

F6V812, F7B6D0, F7DG10,

F6V3X9, F7BV85, F6VUW2

7.69 1.72E-05

ecb03320 PPAR signaling pathway 5 F7AYT5, F6Z2L5, F6RM73,

F6QUF7, F6U904

7.51 4.07E-03

ecb04145 Phagosome 6 Q95M34, Q5XWB8, F7BPX8,

F7DG10, F6U904, F6VUW2

4.02 1.56E-02

ecb01130 Biosynthesis of antibiotics 7 F6X8Q2, F6TL52, F6SX98,

F6Y688, F6RI26, L7MRN0,

F6R7J2

3.38 1.58E-02

ecb00561 Glycerolipid metabolism 4 F6TN81, F6QUF7, F7B6D0,

F6RI26

7.08 1.79E-02

ecb04612 Antigen processing and

presentation

4 Q9GKX8, F7BPX8, F6YNH6,

F6VUW2

6.19 2.55E-02

ecb04610 Complement and

coagulation cascades

4 F6USP9, F6XSF7, F6PH38,

F6XGE0

5.74 3.10E-02

ecb00052 Galactose metabolism 3 F6X8Q2, F7B6D0, F6SUZ2 10.25 3.33E-02

ecb04611 Platelet activation 5 F6QMB8, F6XAB0, F7AQZ6,

K9K4D8, F6PH38

4.03 3.36E-02

ecb05133 Pertussis 4 Q6TGR2, Q5XWB8, F6XSF7,

K9K4D8

5.43 3.57E-02

ecb05100 Bacterial invasion of epithelial

cells

4 F6VZN7, F6Y0D9, K9K4D8,

F7BV85

5.08 4.22E-02

to immunoglobulin superfamily. Np plays a role in synaptic
plasticity and neurite growth (37, 38). In recent years, NP
has attracted much attention because of its correlation with
adolescent cortical thickness and intelligence (39). Therefore, the
abovementioned functional components in DMMFGMmay play
a more important role in promoting the growth and learning of
newborn infants.

Among these DEP, a family of apolipoproteins (Apos),
namely, apolipoprotein A1 (ApoA1), ApoA2, ApoC3, ApoD, and
ApoE, were significantly upregulated in DM MFGM. ApoA1
and ApoA2 are the major proteins in high-density lipoproteins
(HDL) (40). ApoA1 has multiple beneficial functions, including
potent antioxidant, anti-inflammatory, antiviral and antibacterial
activities in blood (41, 42). Recently, ApoA1 was found in
HM and DM. Kim et al. identified that ApoA1 interacts
with cholesterol in HM, provides antioxidant activity and
improves embryo survivability (43). In DM MFGM, ApoA1
was upregulated in colostrum compared with mature milk (2).
ApoD is a glycosylated protein involved in lipid transport, food
intake, inflammation, antioxidant response and development.
In humans, ApoD levels rise considerably in association
with aging possibly in response to accumulated damage (44).
Overexpression of humanApoD could protect drosophila against
various extrinsic stresses and extend its normal lifespan (45).
ApoE is an important element in the lipoprotein metabolism
and cholesterol transport (46). Cholesterol plays a key role
in vitamin D and steroid hormones synthesis, which is
critical to the development of the newborns (47). In our
study, DM MFGM provides a higher level of cholesterol

transporters, which may help the newborns acquire a large
amount of cholesterol.

In conclusion, 204 up-regulated proteins were identified in
the lipid globules of donkey milk. Through GO functional
annotation and KEGG pathway enrichment analysis, we found
that these upregulated proteins not only have nutritional effects,
but also promote the improvement of the immune system,
cognitive learning and anti-oxidation of newborns. Therefore,
donkey milk might be used as a nutritional provider in
infant formula. In addition, the comparison of the fat globular
membrane protein between donkey milk and cow milk was
missing in this study, which was a limitation of our research and
will be carried out in the future.

CONCLUSION

A quantitative proteomic method was used to investigate the
MFGM proteins proteome in DM and HM. DEP were analyzed
by multivariate statistical methods and found mainly involved in
regulation of immune system process, membrane invagination
and lymphocyte activation. Our findings also provided more
in-depth reference for the dairy food industry and infant health.
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