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The gut microbiota in the human body is an important component that plays a

pivotal role in the ability of the host to prevent diseases and recover from these

diseases. If the human microbiome changes for any reason, it affects the overall

functioning of the host. Healthy and vigorous gut microbiota require dietary fiber

supplementation. Recently, oligosaccharides have been found to play a significant role in

the modulation of microbiota. Several such oligosaccharides, i.e., xylooligosaccharides

(XOS), mannooligosaccharides (MOS), and arabino-xylooligosaccharides (AXOS), are

derived from hemicellulosic macromolecules such as xylan, mannan, and arabino-xylan,

respectively. These oligosaccharides serve as substrates for the probiotic production

of health-promoting substances (short-chain fatty acids, branched chain amino acids

etc.), which confer a variety of health benefits, including the prevention of some

dreaded diseases. Among hemicellulose-derived oligosaccharides (HDOs), XOS have

been largely explored, whereas, studies on MOS and AXOS are currently underway.

HDOs, upon ingestion, help reduce morbidities by lowering populations of harmful

or pathogenic bacteria. The ATP-binding cassette (ABC) transporters are mainly

utilized for the uptake of oligosaccharides in probiotics. Butyrate generated by the

selective fermentation of oligosaccharides, along with other short-chain fatty acids,

reduces gut inflammation. Overall, oligosaccharides derived from hemicelluloses show

a similar potential as conventional prebiotics and can be supplemented as functional

foods. This review summarizes the role of HDOs in the alleviation of autoimmune

diseases (inflammatory bowel disease, Crohn’s disease), diabetes, urinary tract infection,

cardiovascular diseases, and antimicrobial resistance (AMR) through the modulation of

the gut microbiota. The mechanism of oligosaccharide utilization and disease mitigation

is also explained.
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INTRODUCTION

Humans are very interested in controlling and minimizing the risk of their personal health,
and modern consumers have a strong preference for natural food over processed food (1).
An adequate consumption of dietary short-chain carbohydrates, such as dietary fibers and
oligosaccharides, decreases the risk of development of diseases such as colorectal cancer (CRC),
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cardiovascular diseases, obesity, diabetes, etc. (2). The human
gut comprises ∼1013-1015 microbial cells that amount to a
complex and diverse microbial community. Host gut microbiota
vary among individuals and have a close relation with different
factors such as the sex, age, health, diet, genetic makeup, and
immune system of the host. However, Firmicutes, Bacteroidetes,
and Actinobacteria comprise the most common microbiota
residing in the human gut (3). Together, these communities
contain much more genomic information (100-fold) than
the host itself, which leads to functional expansion of the
abilities of the host. Functional oligosaccharides directly
influence the gut microbiota and help to produce different key
health-promoting metabolites, which are directly associated
with the physiology of the host (4, 5). For this reason, the
physicochemical and physiological properties of non-digestible
carbohydrate fibers have drawn the attention of food scientists
who explore them as functional food ingredients. Different
types of oligosaccharides, like galactooligosaccharides (GOS),
fructooligosaccharides (FOS), and inulooligosaccharides
(IOS), are already recognized as nutraceuticals and are
frequently used in synbiotic pharmaceutical preparations.
Hemicellulose-derived oligosaccharides (HDOs) such as XOS
and mannooligosaccharides (MOS) are rapidly emerging
prebiotics, which fall in this category and have similar bioactive
properties as conventionally used oligos (FOS) (6). XOS and
MOS are easily produced from different low-value substrates
(locust bean gum, guar gum, and konjac gum), as well as different
agro-wastes (corn cob, copra meal, palm kernel cake, and corn
cob), by enzymatic hydrolysis using hemicellulases such as
endo-β-(1→ 4)-xylanase and endo-β-(1→ 4)-mannanase (7, 8).
These oligosaccharides contribute to the important physiological
functions of dietary fibers: (1) Their consumption does not
increase the blood glucose level or spike the secretion of insulin
because of the formation of a gel in the gut through which it
dissolves, (2) their nature is non-cariogenic and low calorific
(0–3 kcal/g of sugar), (3) they stimulate the growth of specific
microorganisms that enrich the gut environment by decreasing
pH, and (4) they ameliorate the absorption of the minerals
(mainly calcium) through the intestinal cells. Thus, HDOs work
as a silent health promoter, thus lowering the risk of different
complex health issues (9, 10).

From a commercial point of view, the oligosaccharide market
is increasing rapidly and is expected to reach a total turnover
of 7.37 billion USD by 2023. In the case of XOS, the market
is growing at a rate of ∼4.1% per annum and is expected to
reach a projected value of 130 million USD by 2025 from 94
million USD in 2018 (11). This high growth is mainly because
of the advanced scientific research and continuous development
in the field of oligosaccharides and their product development.
These oligosaccharides are also being utilized in pharmaceuticals,
feeds, cosmetics, and as immunostimulating agents and bulking
agents (12). Some of the commercially produced oligosaccharides
and their uses are indicated in Table 1. The nutritional
significance of oligosaccharides (including HDOs) has been
indicated in various diseases, like heart infections, autoimmune
diseases, osteoporosis, and many chronic diseases. Conventional
oligosaccharides such as FOS are well-documented, while

HDOs are emerging and scientists are trying to establish their
role in the amelioration of diseases. This review summarizes
the biochemical properties of HDOs and their impact in
reducing the development of diseases through the modulation of
gut microbiota.

GUT MICROBIOTA AND HDOs

Gut microbiota are a collective environment of microorganisms,
like bacteria, fungi, viruses, and protozoans present in the
gastrointestinal tract (GIT) (13). These microorganisms act
as regulators of the metabolism of the host. The role of gut
microbiota in disease control has drawn a significant attention
over the past few decades, which were kept hidden for a long
time in the absence of metagenomic techniques and suitable
cultivation media. Currently, an analysis of the collective genome
of the gut microbiota through the next-generation sequencing
has helped us in unraveling complex gut ecosystem (14). Gut
microbiota of humans start developing in the fetus itself and are
strongly influenced by themicrobiome of the mother. Alterations
in the microbiome completely depend upon several factors, such
as the process of parturition, surrounding environment,
infant feeding method, lifestyle, stress, and diet. The key taxa
involved in the gut microbial diversity of individuals include
Lactobacillus, Ruminococcus, Bifidobacterium, Clostridium,
Eubacterium, Akkermansia, Butyrivibrio, Roseburia, Prevotella,
Faecalibacterium, Bacillus, Oxalobacter, Lachnospiraceae,
and Blautia (15). Breast milk contains higher amounts of
Bifidobacterium and Lactobacillus; therefore, infants on high-
breast-milk diet tend to have a greater preponderance of the two
probiotic species (16). In addition, the Firmicutes/Bacteroidetes
ratio may be an important biomarker in the case of humans
that exhibit morbidity (17, 18). Thus, it may be concluded that
gut microbiota play a pivotal role in human physiology and
have an impact on the alleviation of diseases for better health.
The gut microbiota can be modulated favorably using prebiotic
oligosaccharides. Apart from the frequently used FOS, and more
recently, HDOs have been found to confer a selective advantage
to gut microbiota (Table 2). The intake of HDOs was found to
diversify the human gastrointestinal microbiota and increase the
defense against different chronic non-communicable diseases
(28). XOS were found to reduce gut disturbance, as well as gut
inflammation, by lowering the Firmicutes/Bacteroidetes ratio
and Enterobacteriaceae in obese rats (20). XOS have also been
indicated in resisting weight gain by increasing the population
of Bifidobacteria and Lachnospiraceae in cecum microbiota (29),
while MOS have been found to reduce the gut inflammation
by decreasing the Clostridium content in gut microbiota of
piglets (30).

TYPES OF HDOs

The two major plant hemicelluloses are xylan and mannan,
and accordingly, XOS and MOS make up most of the potential
HDOs. Due to the diverse and heteropolymeric nature of xylans
and mannans, the nature of derived oligosaccharides varies. In

Frontiers in Nutrition | www.frontiersin.org 2 July 2021 | Volume 8 | Article 670817

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Jana et al. Oligosaccharides in Disease Alleviation

TABLE 1 | Some of the commercially produced prebiotic oligosaccharides and their uses.

Oligosaccharides/commercial name Specifications/composition Commercial producer Application(s)

Frutalose® Fructooligosaccharide Sensus, United States Better sweetener and helps to restore and

maintain a balanced microflora

Orafti®P95 Fructooligosaccharide Beneo GmbH, Germany Applied as a natural sugar replacer

Frutafit® Inulin, fructose, glucose Sensus, United States Probiotic effect and microbiome

modulation

Oligomate 55 Galactooligosaccharides, lactose,

glucose, galactose

Yakult Honsha Tokyo, Japan Functional sweetener and probiotic effect

XOS Prebiotic (XOS) Xylooligosaccharide Van Wankum Ingredients, the

Netherlands

Serve as a food supplement

PreneXOSTM Xylooligosaccharide Prenexus Health, United States Minimize side effects of bloating and

improve the overall gut health

XOS95P Xylooligosaccharide Shandong Longlive Bio-Tech

Co., Ltd, China

Use as a functional sugar

Bio-Mos® Mannooligosaccharides Alltech, United States Upgrade animal feed

ActiveMOS® Mannooligosaccharides Orffa, the Netherlands Use as an animal feed additive

AgriMOS Mannooligosaccharides Lallemand Inc., Canada Use as a feed ingredient

TABLE 2 | Role of HDOs in health promotion and gut microbiota modulation.

HDOs Health benefits or Disease alleviation Gut microbiota modulation References

XOS Reduce the visceral fat cells Lowering the population ratio of Firmicutes and Bacteroidetes (19)

Decrease the metabolic endotoxemia Reduce the population ratio of Firmicutes and Bacteroidetes (20)

Reduce development of diabetes Increase the abundance of Blautia hydrogenotrophica (21)

Reduce the antibiotic-associated diarrhea Increase the population of Bifidobacteria (22)

Make unfavorable conditions for colorectal

cancer-risking pathogen

Induce the major genera, mainly Bifidobacterium spp.,

Lactobacillus spp.,

(23)

MOS Reduce inflammation of dextran sulfate

sodium-induced colitis

Induce the growth of coliform bacteria (24)

Reverse high-fat-diet-induced disorder Lowering the population ratio of Firmicutes and Bacteroidetes (25)

Ameliorate insulin resistance and glucose

tolerance

Increase Akkermansia muciniphila and Bifidobacterium

pseudolongum population and decrease Rikenellaceae and

Clostridiales density

(26)

AXOS Decreased insulin resistance Induced the population of Bifidobacterium spp., Lactobacillus

spp., Bacteroides-Prevotella spp.

(27)

general, a repertoire of hydrolyzing enzymes is employed to
achieve the controlled degradation of the hemicelluloses.

Xylooligosaccharides
Xylooligosaccharides are short oligomers composed of xylose
moieties and are commonly derived from corn cob, bamboo
shoots, wheat straw, sugarcane bagasse, and hardwood xylan.
Among these, corn cob contains the highest amount of xylan (35–
38%), and hence, it can be exploited as a cheap and renewable
source of XOS (31). Based on the sugar units and linkages
present, the exact composition and the quantity of the produced
XOS vary from one plant source to another. XOS generated
after the hydrolysis of xylan are short-chain XOS and consist
of xylobiose, xylotriose, and xylotetraose. XOS can be produced
by the action of xylan-degrading enzymes such as endo-β-1,4-
xylanase (EC 3.2.1.8) and xylan 1, 4-β-xylosidase (EC 3.2.1.37),
with the help of other side chain-degrading enzymes, like α-
glucuronidase (EC 3.2.1.139), acetyl xylan esterase (EC 3.1.1.72),

α-L-feruloyl esterase (EC 3.1.1.73), and arabinofuranosidase (EC
3.2.1.55) (32). The sources and structural details of xylan-derived
MOS are presented in Figure 1.

Mannooligosaccharides
Mannooligosaccharides are short chains of repeating units of
mannose linked by glycosidic bonds. Based on the source, the
MOS are divided into two major groups, namely, α- and β-
MOS. α-MOS are commonly obtained from the physicochemical
hydrolysis of the cell wall of the yeast (Saccharomyces cerevisiae).
α-MOS are commonly used in the animal agriculture sector
as a feed additive. β-MOS are plant-derived MOS obtained
after enzymatic, alkaline, or acidic hydrolysis of plant β-
mannan and are commonly found in locust bean gum,
konjac gum, and guar gum. β-MOS can be generated by
applying a combination of β-1, 4-mannanase (EC 3.2.1.78),
β-mannosidase (EC3.2.1.25), α-galactosidase (EC 3.2.1.22),
and β-glucosidase (EC 3.2.1.21) for the hydrolysis of plant
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FIGURE 1 | Sources and structure of hemicelluloses-derived oligosaccharides (HDOs). (A) Mannan containing substrates (locust bean gum, palm kernel cake)

produce different mannooligomers after mannanase treatment. (B) Xylan containing substrates (corn cob, birchwood) produce xylooligomers after xylanase treatment.

mannans such as LBG, GG, and KG (33, 34). The sources
and structural details of mannan-derived MOS are given in
Figure 1.

MECHANISM OF TRANSPORT OF
OLIGOSACCHARIDES

Probiotic bacteria supplemented with prebiotic oligosaccharides
are reported to impart several health benefits, including
improved immunity and relief in gastrointestinal disorders,
but the precise route of specific oligosaccharide uptake is
yet to be determined. According to reports available thus
far, three main transport systems, such as ATP-binding
cassette (ABC) transporters, major facilitator superfamily (MFS)
transporters, and the phosphoenolpyruvate (PEP): carbohydrate
phosphotransferase system (PTS) (Figure 2), are used to

transport these oligosaccharides (35). ABC transporters import
oligosaccharides by utilizing energy from ATP hydrolysis and
are regulated by the two-component systems (TCSs), alongside
the involvement of a different gene cluster for polymer
hydrolysis (Table 3) (43). The drivers of ABC transporters
are the nucleotide-binding domains (NBDs) that conduct the
transport of substrates across cell membranes by ATP binding
and hydrolysis. The xyloside ABC transporter functions as
a membrane permease that promotes the transport of XOS
across the cell membrane (36). The ATPase present in the
ABC transporter has several domains that interact with more
than one ABC transporter, and it simultaneously functions with
transporters that form a complex network of ABC transporters
(44). Streptomyces thermoviolaceus has been shown to have two
integral ABC transporters in the cell membrane containing a
conserved EAA (glutamic acid-alanine-alanine) domain. These
two proteins are regulated by a transcriptional regulator protein
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FIGURE 2 | Different oligosaccharide transporters present in the plasma membrane of bacteria. Major facilitator superfamily (MFS) transporters function as a

symporter that transport oligosaccharide alongside with Na+/H+ as a proton motive factor. Phosphoenolpyruvate (PEP): carbohydrate phosphotransferase system

(PTS) transports the oligosaccharide and transported oligosaccharides are further phosphorylated to diffuse back from the cell. ATP binding cassette transporters

(ABC) have nucleotide binding domains (NBDs) as these power the transport of substrates across cell membranes by ATP-binding and hydrolysis.

that directs the uptake of XOS along with the degradation the
xylan polymer (45). A MFS transporter acts as a symporter
like XOS in bacteria and performs the transport through
xyloside/Na+ (H+) symporters. Xyloside/Na+ (H+) symporters
are the multipass transmembrane proteins in the cell membrane
that transport XOS alongside with sodium as a proton motive
force (36). The PTS operates through a facilitated diffusion
where imported sugar is phosphorylated and the modification
does not allow these sugars to diffuse back from the cell.
During evolution, the PTS has emerged in the late bacterial
evolution stage and, therefore, could not be found in many early
bacterial lineages. It is found mainly in lactic acid bacteria and
enterobacteria. In particular, homo-fermentative lactobacilli have
significant PTS transporters compared to hetero-fermentative
lactobacilli (46).

The β-MOS ABC transporter in Bifidobacterium animalis has
two oligosaccharide-specific extracellular lipid-anchored solute-
binding protein (SBP) genes. This transporter recognizes the
mannosyl unit of MOS at position 2 through the asparagine and
glycine amino acids, respectively (38). La Rosa et al. (37) reported
that the Firmicute, Roseburia intestinalis, has an ABC transporter

containing three subunits that transported the smaller MOS
from all types of mannans (glucomannan, galactomannan,
acetyl-galactoglucomannan, and undecorated mannan), which
were further completely hydrolyzed by the intracellular enzyme
cocktail. Unlike the sugar/cation symporters, mannoside/Na+

(H+) symporters were also noticed in Bacteroides fragilis that
transferred MOS into the bacterial cell (47).

MODE OF ACTION OF
OLIGOSACCHARIDES THROUGH SCFAs

Different studies have concluded that oligosaccharides prevent
gut damage caused by pathogenic bacteria or a diet containing
harmful chemicals such as lectin (48). The oligosaccharides
enhance the population of probiotic bacteria and increase
the production of short chain fatty acids (SCFA’s), including
acetate, propionate, and butyrate (7, 49). These acids have an
important role in increasing the transepithelial fluid transport
and epithelial defense barrier and in decreasing mucosal
inflammation and oxidative stress. They play a significant role
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TABLE 3 | Gene clusters and enzymes involved in polysaccharide utilization by microorganisms present in the gut.

Organism Gene cluster/locus* Type of transporter Enzymes involved Types of oligosaccharide References

Corynebacterium alkanolyticum xylEFGD ABC transporter β-Xylosidase

α-L-Arabinofuranosidase

XOS

AXOS

(36)

Roseburia intestinalis MUL ABC transporter Acetyl esterases

α-Galactosidase

β-Glucosidases

Exo-oligomannosidase

β-MOS (37)

Bifidobacterium animalis subsp. lactis

ATCC27673

MUL ABC transporter β-Mannosidase

β-Glucosidase

β-MOS (38)

Faecalibacterium prausnitzii MUL ABC transporter α-Galactosidase

Carbohydrate esterases

Epimerase

β-1,4-Mannooligosaccharide

phosphorylase

Mannosylglucose phosphorylase

Phosphomutase

Isomerase

β-MOS (39)

Bacteroides ovatus ATCC 8483 PUL – β-Mannanase β-MOS (40)

Prevotella copri DSM18205 PUL10

PUL15

– β-1,4-Xylanase

α-L-Arabinofuranosidase

β-1,4-Xylosidase

α-Glucuronidase

β-Galactosidase

XOS (41)

Bacteroides xylanisolvens XB1AT PUL43

PUL70

ABC transporter Endo-xylanase XOS (42)

*PUL, polymer-utilizing locus; MUL, mannan-utilizing locus.

in hypercholesterolemia, insulin resistance, hemoglobinopathies,
and genetic metabolic diseases. SCFAs are absorbed and utilized
by the enteric cells as the main source of energy (50). The
transportation of the SCFAs in the colonic epithelium and
mucosal immune cells is directed through different transporters
like monocarboxylate transporters, G-protein-coupled receptors
(GPCRs), intracellular receptors, and several other enzymes.
The main transporters involved in SCFA transportation are
monocarboxylate transporters 1 and 4 (MCT-1 and MCT4),
which are basically proton-coupled transporters, e.g., sodium-
coupled monocarboxylate transporter 1 (SMCT-1) (Figure 3).
The MCT-1 is expressed in both the apical and basolateral sides
of the colonic cells, while MCT-4 is found at the basolateral side
(Figure 3). SCFAs are used as ligands by many GPCRs, mainly
GPR41, GPR43, and GPR109A for initially different signaling
cascades. Other two less explored transportation mechanisms
are through the ABC superfamily G member 2 (ABCG2) and
SCFA−/HCO−

3 exchanger. ABCG2 is expressed in the apical
colonic cells where it binds with butyrate as a substrate for
efflux in the intestinal cells. The SCFA−/HCO−

3 exchanger is
present in the small intestine and colon, and the secretion
of HCO−

3 leads to an increased uptake of SCFA− into the
vesicles (51, 52). Butyrate has an inhibitory effect on histone
deacetylase (HDAC), which leads to the modulation of different
oncogenic signaling pathways such as the JAK2/STAT3 and
VEGF pathways, and it can also influence the extrinsic apoptotic
and mitochondrial apoptotic pathways. Butyrate is shown to
relieve gut inflammation by regulating the Treg cell differentiation
and NF-κB and STAT3 pathways (53, 54).

ROLE OF HDOs IN DISEASE ALLEVIATION

Cardiovascular Diseases
Cardiovascular diseases are a major health concern in low-
and middle-income countries causing an estimated 31% of all
the global deaths (https://www.who.int/news-room/fact-sheets/
detail/cardiovascular-diseases-(cvds). The abnormality of lipid
content in serum is a biomarker of cardiovascular risk, which
is influenced by daily diet components. Diets with plant-based
food such as “Mediterranean diet” and “Prudent diet” have been
shown to be protective compared to the “Western diet” (55).
The high-fat diet and low fiber intake result in the Western
diet higher growth of Firmicutes and lowering of Bacteroidetes
in the gut, which is an important marker of obesity (56).
Different studies using different model organisms showed that
plant-derived, non-digestible oligosaccharides, such as XOS and
MOS, have a high impact on serum lipoprotein and cholesterol
levels, which compensate for the higher risk of cardiovascular

disease (57). XOS supplementation reduced lipogenesis by

decreasing the activity of different lipogenic enzymes such as

fatty acid synthetase, malic enzyme, and others (58). On the

other hand, it also upregulated the lipoprotein lipase, which was
responsible for breaking down fat in the form of triglycerides

(lipolysis) (59). Moreover, the XOS diet mainly reduced the

visceral fat cells by downregulating the Mcp 1 gene, rather
than the blood and liver fat cells, by lowering the population
ratio of obesity-related microbiota Firmicutes and Bacteroidetes
(19). XOS, especially xylobiose, was able to downregulate the
lipogenic and adipogenic genes in mesenteric fat and liver
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FIGURE 3 | Different transporter proteins expressed in colonic epithelium cells for transport of short chain fatty acids (SCFA). Luminal side expressed transporters are

HCO−

3 /SCFA
− exchangers which secrete HCO−

3 that result in SCFA− transport across the apical membrane, monocarboxylate transporter 1 (MCT1) binds a proton

first followed by monocarboxylates such as lactate, pyruvate, and transport to the cell where basolateral side expressed monocarboxylate transporter 4 (MCT4)

functions similarly by exporting SCFA− from the basolateral membrane. ATP binding cassette transporters G family Member 2 (ABCG2) is expressed in apical colonic

cells where they bind with butyrate as a substrate for efflux in intestinal cells.

in case of a high-fat-diet-supplemented mice (60). A high-fat
diet induced macrophage infiltration in adipose tissue, insulin
resistance, metabolic endotoxemia, inflammatory stress, and
other biochemical issues in the body system. AXOS treatment in
diet-induced obese mice altered the gut microbiota, resulting in
higher levels of appetite suppressing satietogenic peptides, which
reduced macrophage infiltration in the adipose tissues (27).

Obesity
Obesity is a metabolic disorder that occurs due to excessive
fat accumulation in the body after being fed a high-fat diet.
This lifestyle disease is a result of energy-balance dysregulation,
an unhealthy sedentary routine, and also individual genetic
traits (25). According to the WHO, 1.9 billion adults were
found to be overweight, and among these, over 650 million
adults were obese. In 2016, data showed that 13% of the adult
populations (11% of men and 15% of women) of the world
were obese. The increase in obesity nearly tripled between
1975 and 2016, which is not only a problem in high-income
countries but also a rising problem in low- and middle-
income countries (https://www.who.int/news-room/fact-sheets/
detail/obesity-and-overweight). A healthy diet could modulate
the gut microbiota, which supported a loss in body weight. It
was reported that an abundance of a particular bacterial group
like Firmicutes/Bacteroidetes had a positive effect in overcoming
obesity in mice. Different studies have indicated that the gut

microbiota can be modulated by different oligosaccharides,
which have a preventive effect on obesity. MOS intake could
reverse the high-fat-diet-induced disorder by restructuring the
overall composition of the gut microbiota, including lowering the
Firmicutes/Bacteroidetes ratio (25). Coffee-based MOS, either
as a mixture or in the pure form, had a different effect
on the fat deposition in the tissue. The MOS mixture was
reported to decrease the gain in body weight, body fat, and
visceral adipose tissue, whereas, purified MOS had no such
effect on these parameters (61). Prebiotic oligosaccharides were
shown to have gender-specific activity in the reduction of
fat. In a study, men consuming an MOS containing beverage
experienced a greater weight loss than their female counterparts,
which signified the importance of MOS for strategic weight
management and improvement in adipose tissue distribution
(62). MOS can also control excess appetite-causing genes and
modulate the expression of appetite-related hormones like leptin,
proopiomelanocortin (POMC), cocaine- and amphetamine-
regulated transcript (CART), and neuropeptide Y (NPY)
(63). XOS consumption decreased metabolic endotoxemia and
reduced the Firmicutes/Bacteroidetes ratio in the obese rat (20).
Monocyte chemoattractant protein 1 (MCP-1) is one of themajor
proteins found in white adipose tissue that is overexpressed in the
obese compared to those persons of proper weight. MCP-1 helps
to differentiate the adipocyte, which decreases insulin-stimulated
glucose uptake (64). XOS significantly reduced the plasma levels
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of MCP-1 by lowering the mRNA expression in high-fat diet-
induced obesity (65).

Type 2 Diabetes
Type 2 diabetes is a chronic metabolic condition that arises
when pancreatic β-cells lose their function (66, 67). According
to the IDF (International Diabetes Federation) Diabetes Atlas
(9th edition, 2019), ∼463 million adults aged between 20 and
79 years have diabetes, and it will increase to 700 million by
2045. Among these, 374 million people will have the risk of
developing Type 2 diabetes (https://www.idf.org/aboutdiabetes/
what-is-diabetes/facts-figures.html). There is a significant role
of the gut microbiota in managing Type 2 diabetes. Previous
reports suggested that members of the genera Roseburia,
Faecalibacterium, Bacteroides, and Akkermansia reduced T2D,
whereas, Fusobacterium, Ruminococcus, and Blautia had a
positive association with T2D (68). XOS derived from rice
husk reduced insulin resistance and signaling and enhanced
glucose uptake by altering the gut microbiota and mitigating
endotoxemia. Glucose transporter 4 (GLUT-4) is known as
the major glucose-transporting protein that promotes glucose
uptake into the skeletal muscles and also controls glucose
homeostasis in the body. XOS administration decreased the
expression of GLUT-4 and transferred it from the cytosolic
compartment to the plasma membrane by Akt (protein kinase
B) activation through phosphorylation (69). Prediabetic adults
had a higher percentage of Howardella, Enterorhabdus, and
Slackia populations in their stools. XOS treatment increased the
abundance of positively associated microflora species such as
Blautia hydrogenotrophica (21). Similarly, MOS obtained from
konjac glucomannanmodulated the gut microbiota by increasing
the population of Akkermansia muciniphila and Bifidobacterium
pseudolongum, while decreasing Rikenellaceae and Clostridiales
density (26). At the molecular level, MOS improved glucose and
insulin tolerance by modulating the insulin signaling pathway
through the activation of GLUT-2 and its translocation into
the membrane. MOS also upregulated the expression of leptin-
associated protein and downregulated the negative regulators
of the insulin signaling pathway proteins, protein tyrosine
phosphatase 1B, and suppressor of cytokine signaling 3 (70).

Autoimmune Diseases [Inflammatory
Bowel Disease]
Inflammatory bowel disease covers two major diseases [Crohn’s
disease (CD) and ulcerative colitis (UC)], which severely affect
the GI tract, resulting in chronic and relapsing conditions. In
the diseased state, patients with CD face intense inflammation in
the GI tract, whereas, UC results in tissue damage of the deep
areas of the colon and rectum (71). According to the Center
for Disease Control and Prevention, 3 million (1.3%) US adults
were diagnosed with IBD in 2015 (https://www.cdc.gov/ibd/data-
statistics.htm). The main etiology in dysbiosis of gut microbiota
is the reduction in community of commensal microorganisms
due to an abnormal T-cell-mediated immune response (72).
Several studies have demonstrated that supplements such
as non-digestible carbohydrate fibers in a diet can enhance
the growth of selective commensal microorganisms through

anaerobic fermentation and attenuate the disease complications
by alleviating gut inflammation. The fiber supplementation also
improved the disrupted cell morphology, which developed due
to the diseased state of the colon. Hemicellulose-derived XOS
not only reduced the inflammation, but also helped to maintain
the colon crypt cell integrity in attenuated chronic colitis in
rats (73). These oligomers are fermented with varied efficiency
depending upon the gut microbiota diversity. β-Diversity of
the gut microbiota in patients with UC was significantly
promoted by XOS treatment, whereas, α-diversity could not
utilize and ferment XOS (74). In CD, different related genes
and proteins like nucleotide-binding oligomerization domain-
containing protein 2 (NOD2), immunity-related GTPase family
M (IRGM), autophagy-related 16 Like 1 (ATG16L1), the toll-
like receptor 4 (TLR4), and proinflammatory cytokines (IL-10,
IL-1a, IL-1b) were found to be present, while the deterioration
of α- and β-diversity of gut microbiota was also recorded (72).
Treatment with synbiotic XOS and Bifidobacterium infantis
downregulated the proinflammatory cytokines (TNF-α and IL-
1β) and upregulated the anti-inflammatory cytokines (IL-10)
in the colon cells of a dextran sodium sulfate-induced mouse.
XOS supplementation significantly enhanced the expression of
different junction proteins, including claudin-1 tight junction
(TJ), zonula occludens-1 (ZO-1), and occluding junction in the
colon tissue (75). Apart from XOS, MOS have also been found to
alleviate IBD symptoms. MOS administration to dextran sulfate
sodium-induced colitis mice enhanced the growth of coliform
bacteria and lowered the expression of different proinflammatory
cytokines (IL-5, IL-1a, IL-1b, G-CSF, and MCP-1). Also, MOS
normalized the expression of muc2 (intestinal mucin) in the
goblet cells of the colon and small intestine (24).

Colorectal Cancer
Cancer is an abnormal growth of normal cells in any site of the
body. It is the cause of most deaths globally with an estimate
of 9.6 million in 2018 (https://www.who.int/news-room/fact-
sheets/detail/cancer). CRC is one of the major causes of death
and arises due to an increased intake of animal-based food diet
rather than a plant-based diet (76). A plant-based diet contains
high amounts of non-digestible short-chain carbohydrates that
retard the growth of CRC by either fermenting it with the
help of gut microbiota or directly binding to the cell surface
receptor (77). XOS reduced 1, 2-dimethylhydrazine (DMH)-
induced artificial colon cancer by activating glutathione-S-
transferase and catalase present in the liver and colonic mucosa
(78). The fermentation of oligosaccharides resulted in the
production of metabolites such as SCFAs, which lowered the
pH of the gut and produced the unfavorable condition of CRC-
risking pathogens by enhancing the growth of lactobacilli and
bifidobacteria. SCFAs also lowered the carcinogenic products
and suppressed the bacterial conversion of pro-carcinogens to
carcinogens (23). Among the SCFAs, butyrate was more lethal
to CRC cells and inhibited their growth by inducing histone
hyperacetylation and blocking the histone deacetylase (79). The
synbiotic approach was useful in this case—a XOS andWeissella
cibaria combination acted differently, where XOS significantly
increased the acidification rate, while W. cibaria reduced cancer
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cell proliferation by inhibiting the different proteins, namely,
TLR4, MyD88, MD2, and NF-κb (80). It was also reported
that in some instances, XOS had a more pronounced inhibitory
effect on the precancerous colon lesions than conventional
oligosaccharides such as FOS and decreased the amount of
aberrant crypt foci in the colon (81).

Diarrhea
Diarrhea is a diseased state when colon cells are unable to
absorb fluid sufficiently. Secretory diarrhea mainly results
in lower absorption of essential ions due to infection and
the release of toxins by pathogenic microorganisms and the
depletion of beneficial microflora (82). Approximately 88% of
diarrheal patients die because of insufficient hygiene, unsafe
water, and inadequate medication. Among these patients,
rotavirus infections in children below 5 years cause about 40% of
hospitalizations for diarrhea (https://www.cdc.gov/healthywater/
pdf/global/programs/globaldiarrhea508c.pdf). Nutraceuticals
such as oligosaccharides may play an important role in alleviating
diarrhea by selectively enhancing the population of favorable
microorganisms (9). XOS lead to a significant increase in the
Bifidobacterium population and also enhance the total counts
of anaerobic bacteria and Bacteroides fragilis (83). Similarly,
a synbiotic containing Lactobacillus paracasei with XOS and
arabinogalactan significantly reduced diarrhea compared to the
placebo group in children (84). A healthy human gut usually
has a low bacterial translocation (BT) but extensive pathogen
invasion increases the BT, which leads to a disruption of the gut
barrier function (85). Consumption of AXOS not only increased
the population of bifidobacteria in the gut but also decreased the
disorders linked with antibiotic-associated diarrhea. In addition,
AXOS intake enhanced the butyrate production in the colon,
which further maintained the gut biological barrier function (22).
In addition, a high intake of fermentable but poorly digestible
carbohydrates has also been shown to confer negative effects to
humans and animals. A high intake of XOS induced diarrhea
due to subchronic oral toxicity and carbotoxicity (86). In general,
high XOS consumption in human subjects was responsible for
transient gastrointestinal discomfort (87).

Urinary Tract Infections
Urinary tract infections are the most common infections
occurring in the urinary system, including the urethra, bladder,
ureters, or kidneys. UTIs are diagnosed in over 150million people
worldwide each year. UTIs are significantly more common
in infants, older men, and women of all ages (88). Among
these, it has been reported that women are most affected
with a 12.6% annual incidence of this disease, compared
to men showing only 3% annual incidence (89). The main
causative agent for the disease is uropathogenic Escherichia coli
(UPEC), and 70–80% cases of UTIs also showed the presence
of Staphylococcus, Klebsiella, and Enterococcus species (90, 91).
These pathogens make up the first line of infection through
binding of the oligosaccharides present on the epithelial layer
with the help of their own carbohydrate-binding proteins,
and therefore, the presence of external oligosaccharides will

be the first-line defense (92). Among all the HDOs, arabino-
xyloglucan oligosaccharides have been found to be effective in
the prevention of UTIs. Cranberry (Vaccinium macrocarpon)
juice containing arabino-xyloglucan oligosaccharides showed an
anti-adhesion effect against P-fimbriated E. coli in swine (93).
The oligosaccharides have an adverse effect on different surface
proteins which are involved in substrate translocation, including
sugar across the bacterial cell membrane (94). In another study,
highmannose-containing glycoprotein oligosaccharides attached
to the pathogenic fimbriated E. coli were found to be the reason
for mannose-inhibited hemagglutination (95).

Antimicrobial Resistance
Antimicrobial resistance is acquired when pathogenic
microorganisms develop the ability to overcome drug treatment.
AMR is also frequently termed as antibiotic-resistant infection.
According to the CDC, every year about 2.8 million people are
diagnosed with infection of antibiotic-resistant bacteria. The
first case of AMR was identified in 1942 with penicillin-resistant
Staphylococcus aureus as the causal organism. There are three
ways a microorganism can develop AMR: (1) selective pressure,
where selective antimicrobial gene carrying survivors dominate
the population after sudden treatment with antimicrobial agents;
(2) mutations in different genes help a microorganism to survive
against antimicrobial agents; and (3) horizontal gene transfer,
where a drug resistance gene gets transferred to the non-drug-
resistant microorganism. Salmonella enteritidis is one of the
major causal agents of salmonellosis in birds and mammals.
Multidrug-resistant phenotypes of S. enteritidis enter the human
body via animal food consumption through the food chain.
For this reason, poultry animals infected with S. enteritidis are
a major source of infection in humans. Feed supplementation
with MOS and XOS reduces S. enteritidis in poultry animals
by increasing specific health-promoting microorganisms
(96). MOS increased the population of Bifidobacterium
spp., while decreasing the populations of Enterobacteriaceae
members and Enterococcus spp. The increased population
of Bifidobacteria produces SCFAs that reduce the pH. XOS
promoted the growth of diverse groups of commensals like
Lactiplantibacillus and Levilactobacillus, to produce high
amounts of organic acids, which had an antimicrobial effect on
both pathogenic bacteria and fungi (97). It has been shown that
the antimicrobial activity of XOS is limited to the gastrointestinal
digestion tract and that its effects are greatly reduced in later
stages (98). Corncob XOS exhibited an increased digestion
and lowering of lipid vacuolization in fish, Dicentrarchus
labrax, challenged with the pathogen Aeromonas hydrophila.
Dietary supplementation with XOS also enhanced the serum
immunoglobulin level, serum protein content, and lysozyme
activity (99). The high intake of these oligosaccharides induces
the production of the antimicrobial peptides (AMPs). AMPs are
short, positively charged, defense peptides that kill pathogenic
microorganisms directly or indirectly. MOS supplementation
induced higher transcriptional levels of antimicrobial peptides
in the head-kidney and spleen of Ctenopharyngodon idella
(100, 101).
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CONCLUSION AND FUTURE PROSPECTS

Hemicellulose-derived oligosaccharides offer themselves as
a viable and cost-effective alternative to the conventional
prebiotics, such as FOS, GOS, and trans-galactooligosaccharides
(TOS). Information on the modulation of microbiota and
disease recovery of the host upon the ingestion of HDOs is
rapidly emerging. The dynamics of microbial diversity and
gut environment upon the consumption of HDOs, under both
normal and diseased conditions, is being explored at a faster pace.
Noteworthy mechanisms delineating the utilization of HDOs,
leading to the favorable modulation of gut microbiota, are being
unraveled. Knowledge of their interaction with commensal and
pathogenic bacteria will lead to the development of a more
efficient HDO-based prebiotic formulation that would target the
specific gut microbiota for better health.

In spite of a large number of biochemical investigations,
well-designed clinical trials are necessary for establishing the
specific alteration in gut microbiota at the taxa level by the
HDOs. Clinical trials are usually limited to animal models, but
can be utilized for deciphering the particular mechanism of
action of HDOs in health-promoting activities. In vitro studies
with particular groups of microorganisms will also be helpful

in revealing information about the gut environment. Statistical
approaches and machine learning with multi-omics will provide
further details and unravel the interactions between the host,
microbes, and HDOs.
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