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The importance of zinc (Zn) for cardiovascular health continuously gains recognition. As

shown earlier, compromised Zn homeostasis and prolonged inflammation are common

features in various cardiovascular diseases (CVDs). Similarly, Zn biochemistry alters

several vascular processes, and Zn status is an important feature of cardiovascular

health. Zn deficiency contributes to the development of CVDs; thus, Zn manipulations,

including Zn supplementation, are beneficial for preventing and treating numerous

cardiovascular (CV) disorders. Finally, additional long-term, well-designed studies,

performed in various population groups, should be pursued to further clarify significant

relationships between Zn and CVDs.
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INTRODUCTION

Zinc (Zn) is one of the most essential micronutrients involved in numerous crucial biological
functions, i.e., cell differentiation and proliferation, cellular transport, DNA synthesis, endocrine,
immune, and central nervous system functioning, reproduction, gene expression, and homeostasis
(1). With the capacity to bind more than 300 enzymes and over 2,000 transcriptional factors, it is
often regarded as a multipurpose trace element (2). Zn is a major antioxidant mineral responsible
for inhibiting expansion and negative effects of free radicals and regulating the oxidant-antioxidant
balance of cells (3). Zn deficiency significantly affects the functioning of biological systems, creates
dysfunctions in humoral and cell-mediated immunity, consequently, increases the vulnerability to
infections—predisposing people to disturbances in gut microbiota activity, increases the incidence
of bacterial, viral, and fungal infections, and leads to the progression of chronic and degenerative
diseases, i.e., type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVDs), and cancers (3).
CVDs are the leading cause of morbidity and mortality worldwide, and 17.9 million people died
from CVDs in 2016, representing 31% of global deaths (4). CVD-related deaths are projected to
reach 23.6 million annually by 2030 (1). Three-quarters of these deaths occur in low-income and
middle-income countries (4). The deficiency of Zn affects 17% of the global population, up to 35%
in low-income populations, i.e., South Asia and Africa (1). An association between Zn intake and
Zn status with the pathogenesis of CVDs is demonstrated by several experimental and clinical
studies (5, 6). Imbalances in Zn homeostasis contribute significantly to the development of CVDs,
such as coronary heart disease (CHD), congestive heart failure (HF), ischemic cardiomyopathy
(CM), myocardial infarction (MI), sudden cardiac death (SCD), and CVDmortality, in general (5).
Antioxidant and prooxidant functions of Zn may have various positive effects on CV health and
could prevent the development of CVDs (6).
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This study provides a concise and thorough overview of the
relationship between Zn homeostasis and CVDs. The importance
and potential suitability of Zn status as a biomarker of CV health
are discussed, highlighting present controversies and research
gaps that entail further research studies.

ZINC DEFICIENCY—A CONTRIBUTING

FACTOR FOR DEVELOPING CVDs

Zinc is a major component of numerous enzymes within the
human body. It controls the functioning of metalloenzymes,
transcription factors, angiotensin-converting enzymes,
desaturases, superoxide dismutases, and many others (1).
Consequently, deficiency of Zn leads to apoptosis, inflammation,
and oxidative stress, all well-acknowledged risk factors for the
development of CVDs (7). Perturbations in Zn homeostasis
affect the vascular endothelium (8). Zn deficiency weakens
vascular health, impairs appropriate fatty acid and carbohydrate
metabolism, and negatively impacts the cell structure of the
aorta (9). Impaired Zn homeostasis is associated with common
genomic and proteomic modifications that relate to CVDs
(10). Zn controls the arteriosclerotic process, and inadequate
Zn intake leads to increased oxidative stress, disrupted nitric
oxide (NO), and nuclear factor kappa-light-chain-enhancer of
activated B-cell (NF-kB) signaling and contributes considerably
to endothelial damage and development of arteriosclerosis
(ARS) (6). The rate of ARS, ischemic injuries, ischemic CM,
and ischemic HF amplifies in line with decreasing plasma Zn
levels (11, 12). Likewise, dietary Zn intake and Zn deficiency are
adversely linked to subclinical ARS as demonstrated through
carotid intima-media thickness (13, 14). Heart development is
sensitive to Zn deficiency, and maternal Zn deficiency is linked to
a high incidence of fetal heart abnormalities (15). Furthermore,
Zn inadequacy prevents adequate development of cardiac tissues
and increases blood pressure in fetuses and infants (16). Excessive
embryonic cell death occurs after episodes of Zn deficiency (15).
Proatherogenic factors, released during Zn deficiency, increase
the incidence of arrhythmias, strokes, CM, and many other
CV system pathologies (5, 17). There is an inverse relation
between the serum Zn concentrations and the risk of CVDs in
high-risk populations (18). Besides, lower serum Zn levels are
associated with a higher risk of CVDs, with the greatest relations
reported in most vulnerable populations, i.e., patients with
diabetes and coronary angiography (18). Stimulated expression
of inflammatory cytokines, i.e., interleukin 6 (IL-6), interleukin
2 (IL-2), interleukin 1 beta (IL-1β), tumor necrosis factor
alpha (TNF-α), and increased oxidative stress are aggravated
under Zn deficiency conditions (19). Similarly, cytokines can
upregulate or downregulate the expression of particular cellular
Zn transporters (20). Twenty-four Zn transporters are found
within the human heart muscle tissue, so disturbances in
Zn homeostasis may lead to CVDs (21). Turbulences in Zn
homeostasis contribute to the development of hypertension
(HT) (22). Through the renin-angiotensin-aldosterone system,
Zn regulates arterial pressure and plays an important role in the
etiopathogenesis of arterial HT (23).

Adequate Zn levels are a critical component in peroxisome
proliferator-activated receptor signaling during atherosclerosis
(ATS) (23). Furthermore, patients with coronary heart disease
have poor Zn status (17). Zn deficiency contributes to the
thickening of the vascular wall due to enhanced proliferation
and hypertrophy (24). Low serum Zn levels are measured in
people with HF (25, 26). Zn also has a role in redox signaling
pathways, and it improves antiapoptotic, anti-inflammatory, and
antioxidant activities (27). Deficiency of Zn can degenerate
essential proteins like protein creatine kinase (C kinase),
stimulate the production of inflammatory cytokines and C-
reactive proteins, and may trap constituents in monocytes and
macrophages (19). Serum Zn levels are considerably diminished
in patients with left ventricular hypertrophy (LVH), and a
significant inverse relation is seen between Zn status and LVH
(5). Patients with ischemic stroke have lower serumZn levels than
healthy subjects (13). Similarly, lower serum Zn levels are seen
in patients with HF and patients with left ventricular diastolic
function (28). Besides, serum Zn levels are inversely associated
with diminished glucose homeostasis and insulin resistance (29).
Low serum Zn concentration predicts mortality in patients that
need coronary angiography (30). What is more, serum Zn levels
could be a valid diagnostic indicator for acute MI (31). According
to the meta-analysis data, an increased prevalence of coronary
artery disease (CAD) is linked to a lower dietary Zn intake, with
a direct association between Zn status and MI (31).

ZINC INTERVENTIONS ALLEVIATE RISK

FACTORS FOR CVDs

Cohort studies, randomized trials, and meta-analyses of these
studies propose that higher consumption of dietary Zn is linked
to reduced risk of CVDs. Administration of Zn stimulates
myocardial healing and improves arrhythmias (32). Besides, Zn is
a wound-healing agent that supports cardiac steam cell survival,
a critical element of cardiac healing (12). Zn supplementation
has an atheroprotective effect (20) and contributes to a higher
concentration of high-density lipoprotein cholesterol (HDL-C)
and apoproteins, and lower total cholesterol (TC) levels (33).
Higher serum Zn concentrations are associated with a decline
in relative risk of death of CVDs (12). Reduced prevalence of
CAD and T2DM is correlated with higher dietary Zn intakes (34,
35). Additionally, higher plasma Zn concentration is associated
with a diminished risk of mortality of vascular disease (VD)
(30, 36). Zn supplementation could potentially increase the
effectiveness of currently used therapeutic drugs for managing
CVDs (37). Finally, recently presented data of a systematic review
and meta-analysis point out that low-dose and long-duration
Zn interventions are of identical or in some instances of even
larger magnitude and with even more beneficial effects compared
to high-dose and short-duration interventions. Long-duration
Zn studies, for 12 weeks or longer, alleviated risk factors for
T2DM and CVDs, such as blood glucose, total fats, triglycerides
(TGs), and low-density lipoprotein cholesterol (LDL-C), while
the longer duration of low Zn doses affected a larger number of
risk factors (38).
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LIMITED KNOWLEDGE ON VASCULAR

ROLES OF ZINC TRANSPORTER

PROTEINS

Twenty-four Zip transporters are present within human heart
muscle tissues, so disturbances in Zn homeostasis are strongly
related to CVDs (21). Zrt, Irt-like protein2 (Zip2), Zip12, Zip14,
and Zn transporter1 (ZnT1) and ZnT2 are linked to the vascular
biology of CVDs (37).

For example, Zip2 has a beneficial role in the post-
conditioning cardioprotective process (32). Zip2 polymorphism
is associated with human carotid artery disease in the
elderly (39). In addition, Zip12 is involved in the uptake
of Zn into the vascular wall (22). Yet, limited information
is available on vascular roles of Zip14, ZnT1, and
ZnT4 (37).

Furthermore, ZnT1 is involved in cardiac electrophysiological
effects of Zn and increased ZnT1 expression is seen in patients
with atrial fibrillation (40, 41). Zn has a central role in the
generation of NO and actions that have multiple implications
for vascular endothelial and smooth muscle functions, i.e.,
vascular smooth muscle relaxation, antiplatelet properties, and
protection of vascular endothelium against oxidative damage
(42). The availability and function of NO are disturbed in
Zn deficiency (37). The action of NO is controlled by both
Zn and metallothionein (MT), so an insufficient supply of
endothelial Zn will make NO ineffective as a CVD therapeutic
agent (37).

Investigation of the genetic polymorphism of Zn transporters
gains more and more attention. The polymorphism of Zn
transporters confers a predisposition to various chronic and age-
related diseases, such as chronic CVDs (43, 44). A common
polymorphism in the ZnT8 gene, on the C allele, is associated
with a higher risk of developing T2DM and metabolic syndrome
(45, 46). Several single-nucleotide polymorphisms modulate
Zn intake and status (47). There is an interaction between
certain dietary components (i.e., omega three fatty acid intake)
with Zn transporters in relation to the risk factors for CVD
development (48). MT polymorphisms, MT1A, MT1B, MT2,
and MT4, are often associated with dietetic neuropathy, blood
pressure, inflammatory cytokine levels, DM, and CVDs (49–
51). Similarly, there is an indirect involvement of uncoupling
proteins in the MT-dependent reduction in the free radical-
induced cardiac toxicity (52). Finally, ZnT1, ZnT4, ZnT5,
ZnT6, ZnT7, and ZnT9 polymorphisms are linked to T2DM,
dyslipidemia, and insulin resistance, all well-known CVD risk
factors (53, 54).

ZINC AND INDEPENDENT RISK FACTORS

OF CVDs

Several risk factors (i.e., T2DM, obesity, and HT) that
predispose to VD are linked to irregularities in Zn
homeostasis in individual organs or the whole body (55).
A direct association between serum Zn and metabolic risk
factors for the development of CVD, i.e., serum lipids,

T2DM, and obesity, is shown (35, 55, 56). Zn plays an
important role in insulin synthesis, crystallization, storage,
and secretion in the pancreatic β-cells (57). Oxidative stress,
a key risk factor in the pathogenesis of diabetes mellitus
(DM), is aggravated under Zn deficiency states (58). Zn
has insulin-mimicking properties, stimulates glucose uptake
in insulin-dependent tissues, and regulates gluconeogenic
enzymes (59).

ZnT8, located on dense core vesicles in β-cells, has
a central role in the transportation of Zn into insulin
secretory granules of β-cells and is identified as a novel
therapeutic target in patients with diabetes (18, 60). Diabetes
is often accompanied by hypozincemia and hyperzincuria
(33, 61). Furthermore, Zn stimulates insulin binding to
hepatocyte membranes and low Zn status considerably
decreases the reaction of tissues to insulin (62). There is an
inverse correlation between femur Zn and serum glucose
concentrations (63).

Interestingly, a moderately high Zn intake could reduce
the risk of diabetes by 13%, up to 40% in people living in
rural areas (64). Zn supplementation improves glycemic
control and reduces hemoglobin A1c (HbA1c) levels in
patients with T2DM (63, 65). Besides, Zn improves glucose
metabolism and contributes to glucose uptake into the relevant
tissues (66). By inhibiting the activation of cytokines, Zn
deficiency contributes to apoptosis and insulin resistance of
β-pancreatic cells (57). The highest amount of Zn within
the human body is stored in the pancreatic β-cells, so
Zn ameliorates the consequences of immune-mediated
free radicals in pancreatic islet cells (67). In addition, Zn
stimulates phosphorylation of insulin receptor substrates
and improves insulin sensitivity (68). Insulin resistance
of adipocytes increases the release of fatty acids into the
circulation and consequently improves fatty acid flux to
the liver leading to hypertriglyceridemia (63). Similarly, Zn
affects lipid metabolism directly. Zn maintains adipose tissue
functioning via the activity of Zn finger proteins involved in
the regulation of lipid metabolism (69). Zn-α2-glycoprotein
inactivates hormone-sensitive lipase and accordingly reduces
lipogenesis and increases lipolysis in adipose tissues (66). Zn
modulates postprandial lipemia, and Zn deficiency markedly
reduces the absorption rate of TGs, brings compositional
alterations of chylomicrons, and reduces their production
rates and uptake by the liver (70). Thus, Zn deficiency is often
linked to obesity, due to chronic inflammation and oxidative
stress. Zn levels in obese subjects are lower than in controls
(71–73), and supplementation of Zn reduces plasma insulin
resistance, leptin, and inflammatory biomarkers in obese
individuals (74, 75).

ZINC HOMEOSTASIS AND CVDs—THE

EXISTING CONTROVERSIES

The link between HT and Zn status is not decisive, and
contradictory findings are reported over the years. Some studies
demonstrate an inverse association (76, 77), while others found
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a direct positive link between serum Zn levels and blood
pressure (57, 78). There are also data signifying no association
between the two variables (74–81). Similarly, discrepancies
in findings are reported for the risk of developing ARS in
relation to serum Zn levels, and certain data reveal a direct
link (6, 82), while others show no association between the
serum Zn concentrations and ARS (83). The first randomized
controlled trial (RCT) in humans shows adverse effects of Zn
supplementation on HDL-C in healthy subjects (20). However,
opposite findings exist, and a positive relation between serum
Zn and HDL-C and LDL-C concentrations is observed (79).
Lower consumption of dietary Zn is related to low HDL-C
levels (31).

In addition, Zn supplementation has a beneficial effect
on plasma lipid parameters, and it noticeably reduces TC,
LDL-C, and TG levels in healthy individuals (10, 33). The
benefits of Zn supplementation are more evident in non-
healthy population groups. The meta-analysis data show that
Zn supplementation leads to a significant reduction in LDL-C,
TC, and TG levels in non-healthy patients, while in healthy
people a noteworthy decline in TC levels is seen (33).
HDL-C levels increase under Zn supplementation (20, 33,
77). Large longitudinal prospective cohort studies provide
inconsistent findings on the association between supplementary
Zn intake and risk of T2DM, showing both a direct, beneficial
(34, 49, 83, 84), an inverse (85), and no relation (86,
87).

Likewise, there are no definitive conclusions on the
relationship between Zn status and T2DM: no association
(88) and an inverse link are reported (89) but, lower serum Zn
levels are generally associated with an increased risk of T2DM
(43, 90).

Different health status of participants, dissimilarities in
the design, assessed outcomes across studies and influence
of confounding factors and their appropriate adjustments,
(i.e., medication, duration of the disease, dietary habits, and
physical activity), differences in Zn assessment methods, lack
of distinction in dietary Zn sources, variations in dietary data
collection, and the inconsistency in utilized statistical models
may all be potential reasons for observed discrepancies in
findings among studies.

RESEARCH GAPS AND

RECOMMENDATIONS FOR FURTHER

RESEARCH STUDIES

The precise role of Zn deficiencymechanisms in the pathogenesis
of CVDs is still not known. The biological properties of Zn,
playing a role in the physiology and pathology of CVDs, should
be examined further. Additional community-based observational
cohort studies may be useful for obtaining more precise and
evidence-based conclusions on the relation between Zn and
CVDs. It is essential to clarify the instances when inadequate
dietary Zn intake and low Zn status are a result rather than a
cause of CVDs. Particular attention should be paid to exclude
the negative effects of medications of CVDs, i.e., diuretic

furosemide, angiotensin receptor blockers, and angiotensin-
converting enzyme inhibitors, on Zn status. Larger, well-
designed randomized clinical trials are necessary to thoroughly
examine the effect of Zn intake on CV health. Potential
interactions with other dietary factors and micronutrients that
could modulate Zn intake should be considered. Benefits,
clinical applications, risks, and contraindications of dietary
and supplemental Zn intake on main CV events should be
examined further. The impact of the baseline Zn status on
the efficacy of Zn interventions on CVD risk factors is of
great importance and should be appropriately assessed and
reported. Risk factors related to CVDs should be examined
as primary outcomes of these interventions, and they should
aim to examine the development and progression of these
conditions. Further research studies should investigate the
interaction between Zn intake and Zn status data with
present preventative schemes and currently employed treatment
methods that could help in the prevention and management of
many ensuing CVDs.

As Zn status is affected by various factors, a careful
selection of confounders should be made. Zn deficiency
may not only be caused by an inappropriate dietary intake
and/or bioavailability but also by factors such as age, physical
activity, and alcohol or drug addictions. Further research
studies should explore molecular mechanisms that support
the sensing and distribution of Zn in various tissues. The
interaction between Zn and inflammation deserves further
research studies. The limitations of biomarkers of Zn status
should be taken into consideration. Circulating plasma/serum
Zn concentrations are affected by inflammation, time of the last
meal, infections, and some other factors. All these elements have
to be suitably deliberated. Newly proposed biomarkers of Zn
status should be taken into consideration and investigated to
CVD-related factors.

The mechanisms of action of Zn transporter proteins require
additional research studies. Detailed and careful analysis of
the activities of these transporters is required to improve
our knowledge on the pathogenesis of CVDs. The transfer
of information from Zn intake/status to cellular functions
needs further extrapolation. New studies are needed to provide
a more thorough understanding of MT and ZnT roles and
the effects of their common genetic variations. Additional
studies are required to explain the interactions between specific
genetic profiles and zinc status. Further research studies should
clarify gene-nutrient interactions and their relationship with Zn
status and CVDs. It would be beneficial to develop suitable
methods for measuring endothelial Zn as a biomarker of
vascular Zn deficiency. The interplay between Zn and NO
levels should be further investigated. The expression and
functions/dysfunctions of Zn transporters in vascular tissues
and genetic risk factors associated with Zn transporters should
be additionally tested. Zn homeostasis is altered early in
CVDs, so an intervention with Zn-related therapy could
provide significant benefits. Preventative CVD actions should
include programmed Zn nutrition approaches. The possibility
of therapeutic manipulations of CVDs by Zn-based treatments
exists; however, further low-dose short- and/or long-duration
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well-designed studies, across a variety of populations, are needed.
The role of Zn supplementation in the process of recovery
from CVDs should be more intensively investigated to find safe
and desirable levels of Zn supplementation and, additionally,
to determine the dose and duration that would be most
beneficial primarily for the prevention of and, if need be,
for the treatment of various ensuing CVD-related pathologies.
Appropriate dietary recommendations, food fortification, and
agronomic biofortification strategies should all be investigated
and employed so that majority of people, both in developing and
developed countries, can attain sufficient levels of dietary Zn in
daily diets and potentially diminish the risk of developing CVDs.
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