
REVIEW
published: 05 August 2021

doi: 10.3389/fnut.2021.688086

Frontiers in Nutrition | www.frontiersin.org 1 August 2021 | Volume 8 | Article 688086

Edited by:

Lizelle Zandberg,

North-West University, South Africa

Reviewed by:

Daniela Caporossi,

Foro Italico University of Rome, Italy

Andrea Stoccoro,

University of Pisa, Italy

*Correspondence:

Vesna Vučić
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Healthcare systems worldwide are seriously challenged by a rising prevalence of

neurodegenerative diseases (NDDs), which mostly, but not exclusively, affect the

ever-growing population of the elderly. The most known neurodegenerative diseases

are Alzheimer’s (AD) and Parkinson’s disease, multiple sclerosis, and amyotrophic lateral

sclerosis, but some viral infections of the brain and traumatic brain injury may also

cause NDD. Typical for NDD are the malfunctioning of neurons and their irreversible

loss, which often progress irreversibly to dementia and ultimately to death. Numerous

factors are involved in the pathogenesis of NDD: genetic variability, epigenetic changes,

extent of oxidative/nitrosative stress, mitochondrial dysfunction, and DNA damage.

The complex interplay of all the above-mentioned factors may be a fingerprint of

neurodegeneration, with different diseases being affected to different extents by particular

factors. There is a voluminous body of evidence showing the benefits of regular

exercise to brain health and cognitive functions. Moreover, the importance of a healthy

diet, balanced in macro- and micro-nutrients, in preventing neurodegeneration and

slowing down a progression to full-blown disease is evident. Individuals affected by

NDD almost inevitably have low-grade inflammation and anomalies in lipid metabolism.

Metabolic and lipid profiles in NDD can be improved by the Mediterranean diet. Many

studies have associated the Mediterranean diet with a decreased risk of dementia and

AD, but a cause-and-effect relationship has not been deduced. Studies with caloric

restriction showed neuroprotective effects in animal models, but the results in humans

are inconsistent. The pathologies of NDD are complex and there is a great inter-individual

(epi)genetic variance within any population. Furthermore, the gut microbiome, being

deeply involved in nutrient uptake and lipid metabolism, also represents a pillar of the gut

microbiome–brain axis and is linked with the pathogenesis of NDD. Numerous studies

on the role of different micronutrients (omega-3 fatty acids, bioactive polyphenols from

fruit and medicinal plants) in the prevention, prediction, and treatment of NDD have

been conducted, but we are still far away from a personalized diet plan for individual

NDD patients. For this to be realized, large-scale cohorts that would include the precise

monitoring of food intake, mapping of genetic variants, epigenetic data, microbiome

studies, and metabolome, lipidome, and transcriptome data are needed.
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INTRODUCTION

Because of increasing life expectancy and decreasing birth
rates, the world’s population aged 60 years and older is
expected to total 2 billion by the year 2050, and 80% of the
elderly will be living in low- and middle-income countries,
according to a World Health Organization report (1). Healthcare
systems all over the world are seriously challenged by a
rising prevalence of disabling chronic diseases, including cancer,
cardiovascular disease and neurodegenerative disease (NDD),
which affect mostly, but not exclusively, the ever-growing
population of the elderly. Gradual and progressive severe
damage in neuronal cells lead to severe memory and behavioral
impairment (dementia) and loss of movement control (ataxia
and paralysis) making NDD the major cause of disability
and morbidity among older people worldwide. The most
common NDDs are Alzheimer’s disease (AD), Parkinson’s
disease (PD), multiple sclerosis (MS), and amyotrophic lateral
sclerosis (ALS), but some viral infections of the brain and
traumatic brain injury may also cause NDD. Moreover, a
significant proportion of the older population is affected by “age-
related cognitive decline,” which is independent of dementia
and has an incidence 70% higher than dementia alone (2).
These patients experience increasing deficits in daily living
activities, productivity losses, and subsequently need constant
and long-term care, which is connected with overwhelming
economic and societal cost (3, 4). Thus, healthy aging and
the prevention of neurodegeneration is emerging as a global
ultimate goal.

Several cellular and molecular determinants of aging
have been identified so far, including loss of protein
homeostasis (proteostasis), stem-cell exhaustion, mitochondrial
dysfunction, genomic instability, epigenetic alterations,
telomere attrition, cellular senescence (i.e., permanent
proliferation arrest), deregulated nutrient sensing, altered
intracellular signaling, and synaptic dysfunction (5–
7). The complex interplay of all the above-mentioned
factors is a fingerprint of neurodegeneration, with
different diseases being affected to different extents by
specific factors.

The phenotypes of aging can be modified to increase
longevity and to prevent or to delay the onset and/or to
ameliorate the clinical course of neurodegeneration. Besides
drugs approved by the Food and Drug Administration (FDA),
such as acetylcholine esterase and levodopa for PD, that
ameliorate the symptoms and slow down the progression
of NDD, many other medications, such as rapamycin,
senolytics, metformin, acarbose, spermidine, and NAD+

enhancers, may improve the quality of life by preserving
functional capacity and decreasing disease burden in the
elderly and are currently being intensively investigated (8).
There is increasing evidence that regular exercise and healthier
dietary patterns, balanced in macro- and micro-nutrients,
can also have beneficial effects on brain health and cognitive
functions by modifying the above-mentioned age-related
molecular determinants.

ROLE OF DIET IN NEURODEGENERATION

The important role of deleterious dietary behavior (overfeeding,
a high caloric/low dietary fiber diet, or the low consumption of
antioxidant nutrients), environmental factors (smoking, alcohol,
stress, drugs, and exposure to pesticides), and a sedentary lifestyle
throughout the entire life span, including early life, in the
development of neurodegeneration is now well-recognized (9).
The unbalanced diet during pre-conception, pregnancy, and
the first 2 years of life is associated with the inheritance of
epigenetic alterations that promote neurodegeneration and are
transmissible to offspring and to subsequent generations (10).
In addition, an unhealthy diet may alter the gut microbiota,
including the neonate’s microbiota via breastfeeding as a result
of the mother’s diet, and promote the development of NDD (11).
Generally, the consumption of diets rich in antioxidants and
anti-inflammatory components and reduced caloric intake may
lower age-related cognitive decline and the risk of NDD (12).
Fruits, vegetables, beverages, green tea, coffee, spices, nuts, and
cereal products aremajor sources of plant-derived antioxidants—
polyphenols (phenolic acids, flavonoids, anthocyanins, lignans,
and stilbenes), carotenoids (xanthophylls and carotenes), and
vitamins (vitamins E and C)—and their beneficial effect in
NDD has been previously reviewed (13). In vitro and in vivo
studies have proposed the neuroprotective properties of vitamin
D (14), B vitamins (B12, B6 and riboflavin) (15), vitamin K
(16), and trace elements such as selenium, copper, magnesium,
iron, lithium, and zinc (17) on neurocognitive disorders,
mitochondrial dysfunction, immune dysfunction, inflammatory
conditions, cognition, and memory. The neuroprotective role of
polyunsaturated fatty acids (PUFAs) and their positive effect in
prevention and treatment in NDD is documented in nutritional
epidemiology studies, prospective population-based surveys and
clinical trials (18, 19). Metabolic and lipid profiles in NDD
can be improved by healthy dietary patterns, such as the
Mediterranean diet.

The traditional diet consumed in Mediterranean countries
is characterized by a high intake of vegetables, legumes, fruits,
nuts, and wholegrains, a moderate intake of fish, poultry, and
red wine (with meals), and a low intake of red and processed
meats, with olive oil used as the main fat source; as a whole
the diet has a positive effect on diabetes, cardiovascular disease,
and many other chronic conditions (20), as well as aging (5).
The nutritional value of this diet implies the consumption of
antioxidants, vitamins, trace elements, and PUFAs, in particular
ω-3 PUFA. It has been reported that an increased adherence to
the Mediterranean diet over a longer period (above 4–6 years)
contributes to neuronal integrity (increases cortical thickness and
brain volume, slows down the rate of hippocampal atrophy and
amyloid accumulation, and improves structural connectivity), as
well as cognition, memory, and executive function (21).

As such findings are fragmented and sometimes inconsistent,
the optimal daily doses of particular macro- and micro-nutrients
in preventing, slowing, and reversing neurodegeneration are still
to be established in different population subgroups. Precision
nutrition and precision medicine, based on the phenotype of
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aging, food preferences, clinical history, and lifestyle patterns, are
becoming important issues with regard to neurodegeneration.
The mechanisms by which neurodegeneration can be fought
through “memorable” food, with a focus on epigenetic mediation,
intervening in the gut microbiota’s composition, the reversal of
low-grade inflammation and anomalies in lipid metabolism, and
caloric restriction, are further discussed.

EPIGENETICS IN NEURODEGENERATION

An increasing body of evidence suggests the role of epigenetic
modifications in the development of NDD. Epigenetics
encompasses a wide range of stable inheritable and reversible
modifications that result in changes in gene expression and
function, without affecting the DNA sequence (22). The
epigenome constantly changes during the lifespan of an
individual. Some of the epigenetic modifications are intrinsically
programmed and essential for normal development, growth,
and differentiation. The others result in inappropriate epigenetic
reprogramming. Although epigenetic modifications are quite
stable, they can be modulated by physiological and pathological
conditions as well as by the environment (23).

Thesemodifications typically arise owing to DNAmethylation
or hydroxymethylation, histone post-translational modifications,
synthesis of microRNA (miRNAs) and long non-coding RNAs
(lncRNAs), and changes in nucleosome positioning, thereby
regulating patterns of gene expression. In normal cells these
changes are well-balanced and affected by genetic factors
(24), environmental factors (25), and stochastic (undetermined)
factors. The influence of hereditary factors in epigenetic
changes over time has been shown in studies of monozygotic
twins (26), dizygotic twins (27), as well as by the familial
clustering of DNA methylation found in longitudinal studies
(28). In addition, the epigenetic process can also be affected
by nutritional and environmental factors and thereby be
dynamically changed during the lifespan of an organism
(29, 30). Although methylation was originally thought to
serve as a stable mark of gene silencing, nowadays it
is known that these changes in DNA methylation can
be both rapid and reversible (31). Several studies have
shown that nutrition- and environment-induced epigenetic
modifications can occur at any stage of life, from the in
utero period throughout adult life and aging, and they can
be maintained through multiple offspring generations (32).
Epigenetic changes may lead to mutations, and, conversely,
mutations are frequently observed in genes that modify the
epigenome (33).

DNA METHYLATION

Among all epigenetics processes, the most common and
investigated is the methylation of DNA.

As presented in Figure 1, the mechanism of DNAmethylation
implies the presence of S-adenosyl methionine (SAM) as the
universal methyl donor for DNA and histone proteins.
SAM donates the methyl group to the C5 atom of the

cytosine moieties followed by guanines, the so-called CpG
dinucleotide. This conversion involves the action of DNA
methyltransferases (DNMTs). In turn, SAM becomes S-
adenosylhomocysteine (SAH), which acts as a competitive
inhibitor of methyltransferases, including DNMTs (34)
(Figure 1). The inhibition is limited as SAH is rapidly
hydrolyzed to adenosine and homocysteine. The main role
of DNA methylation is to reduce or impair the binding
of transcription factors to the regulatory regions, i.e.,
promoters of genes. Moreover, DNA methylation results
in the recruitment of methyl-binding proteins (MBPs)
and histone deacetylases (HDACs) at the methylated site
of promoter regions, thereby repressing the expression
of genes. In line with this, actively transcribed genes
have hypomethylated promoters, whereas hypermethylated
promoters are normally associated with silenced, non-expressed
genes (35).

There is growing evidence that altered DNA methylation
contributes to the occurrence of several diseases (36). Different
types of cancers and allergic, immunological, and inflammatory
diseases are closely associated with the epigenetic changes
of DNA (37–39). Besides tumors, the main class of diseases
associated with epigenetic modifications is neurodegenerative
disease (40). The association between DNA methylation and
NDD is confirmed in Parkinson’s disease (41), Alzheimer’s
disease (42), amyotrophic lateral sclerosis (43), and multiple
sclerosis (44). In these diseases, some of the genes are
hypermethylated while others are hypomethylated. Thus, in
AD, several genes are hypermethylated (APOE, MTHFR, MAPT,
SORB3), while others included in Aβ peptide production (PSEN1,
APP, PP2A, CREB5, S100A2, BACE) are hypomethylated (45).
Studies have indicated a positive effect of SAM donors on
cognitive function and AD in animals and humans through
downregulation of the PSEN1 gene (46, 47). Thus, in a
few animal studies conducted in the mice model for AD,
supplementation with SAM as the methyl donor modulates the
methylation in PSEN1, which leads to not only restoring the
methylation potential but also losing the symptoms linked with
AD (48, 49).

Besides DNA methylation, histone acetylation is a reversible
epigenetic modification controlled by histone acetyltransferases
and deacetylases. The acetylation of lysine residues on
histones decreases the electrostatic attraction between the
histones and the DNA backbone and consequently increases
transcription. In NDD, histone acetylation homeostasis
is markedly impaired, shifting toward hypoacetylation.
Enhanced histone acetylation, promoted by HDAC inhibitors,
improves learning and memory and has a neuroprotective
effect (50).

Many different environmental stressors, such as
diet, pollutants, pesticides, chemical species, drugs,
physical exercise, and stress, are known to be causative
of epigenetic changes (35). They can switch on/off
corresponding genes either by direct interaction with
DNA, RNA, or chromatin receptors or indirectly
using various enzymes or other epigenomic-associated
pathways (51–53).
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FIGURE 1 | Schematic presentation of DNA methylation. SAM, S-adenosyl methionine; SAH, S-adenosylhomocysteine; DNMTs, DNA methyltransferases; MBPs,

methyl-binding proteins; HDACs, histone deacetylases. Created with BioRender.com.

NUTRIEPIGENOMICS

Many nutrients from food interact with the DNA, and these
interactions are studied by nutriepigenomics. Nutrients affect
human health via epigenetics without alterations in the DNA
sequence in two ways—by promoting epigenetic modifications
and by reversing the previous or inherited changes. With regard
to food, there are differences between synthetic xenobiotics
(bisphenol and glyphosate), which are consumed with food and
have an epigenomic effect, and diet and its many micro- and
macro-nutrients that have also demonstrated epigenetic effects
in in vitro and in vivo studies, as well as in clinical trials. Toxic
xenobiotics may induce DNA methylation in different ways:
directly via the inhibition of DNA methyltransferases, which
leads to hypomethylation, or by subtracting methyl groups from
the physiological reactions in which they are included (53).

On the other hand, some nutrients can not only prevent the
hypermethylation of DNA but also promote demethylation and
the reversal of genes silenced by previous DNA methylation.
Thus, molecules such as B vitamins act as methyl donors and
might avert the loss of DNAmethylation induced by air pollution
or some other cause (54). In addition, some bioactive compounds
can reverse the epigenome dysregulation induced by bisphenol
A (55), while dietary folic acid supplementation can prevent the
adverse effects caused by heavy metals (56).

In general, vegetables and fruits and their active molecules
have epigenetics potential, and they can modulate DNA

methylation. To date, many bioactive components, such as
lycopene, hesperidin, phloretin, genistein, coumaric acid, caffeic
acid, isothiocyanates, and epigallocatechin gallate, have been
identified as those with strong epigenetic potential (Table 1).
These molecules exert different effects on the levels of DNA
methylation. While some of them show hypermethylating
activity, there are those with hypomethylating effects. Thus,
tea flavonoids, such as catechin, epicatechin, epicatechin 3-
gallate, epigallocatechin, and quercetin, or parsley’s apigenin
inhibit DNA methylation, leading to demethylation and the
reactivation of genes previously silenced by methylation (57).
Many of them inhibit DNA methylation in a direct manner
by forming hydrogen bonds between different residues in the
active site of DNMT (34) or indirectly by decreasing the level of
SAM and increasing the levels of both SAH and homocysteine,
which subsequently leads to the inhibition of DNA methylation
(58). Similarly, resveratrol, found in grapes and red wine and
also in peanuts, mulberries, and cranberries, modulates DNA
methylation and histone modification via the inhibition of
DNMTs and histone deacetylase activities (59). In addition,
several studies indicate that caffeic acid, present in coffee and
barley grain (60), and polyphenols from olive oil can induce the
inhibition of DNA methylation (61). In addition, some bioactive
molecules, such as curcumin, have both hyper- and hypo-
methylating effects on different genes in different cancers, with
the same outcome on the tumor (62–64). They can activate some
tumor suppressor genes and inactivate oncogenes. Although the
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protective effects of Ginkgo biloba extract and its flavonoid
kaempferol ellagitannin have been widely investigated in AD, its
role in the epigenetic alterations related to AD pathogenesis has
not been fully finalized. Namely, the inhibition of HDAC activity
by kaempferol is confirmed in human-derived hepatoma and
colon cancer cells but not in NDD (65).

EPIGENETIC EFFECTS OF FATTY ACIDS

Apart from polyphenols, fatty acids may also be involved in
epigenetics transformation. Dietary PUFAs play a significant
role in regulating the epigenome, especially in modifying DNA
methylation (66). On other hand, there is an opposite correlation,
i.e., epigenetic processes can be involved in PUFA biosynthesis
processes. However, like polyphenols, the epigenetics roles of
PUFAs have been mostly investigated in tumor cells, but not
in NDD. Thus, Huang et al. demonstrated that treatment with
ω-3 PUFA induced decreased tumor incidence and tumor size
in a colorectal cancer rat model (67). They showed that there
was a close correlation between the anticancer effects of ω-3
PUFA and increased genomic DNA hydroxymethylation, leading
to the silencing of some genes. On the other hand, Sarrabi
et al. indicated that PUFA treatment caused the decreased
methylation of different oncogenes and suggested that PUFAs
can alter both DNA methylation and the expression of DNMTs
in colorectal cancer cells (68). Similarly, Ceccarelli et al. showed
that ω-3 PUFA directly regulates and demethylates DNA in
hepatocarcinoma cell lines (69). Thus, dietary supplementation
with bioactive compounds and PUFA may lead to better
prognoses for diseases that are associated with epigenetics
modulation, including NDD.

Epigenetics development and the identification of highly
sensitive, specific, and easily accessible epigenetic biomarkers
and applying them, along with genetic biomarkers, is a key
step toward successful personalized treatment. Besides personal
genetic and epigenetic information, other data, including gender,
age, gut microbiota, and presence of diseases, should be
taken into account for personalizing prevention and treatment
(70). These differences among individuals result in different
responses to similar treatments and suggest the need for a
personalized approach.

MICROBIOTA AND GUT–BRAIN AXIS

Apart from (nutri)epigenetics, the latest research has shown that
the gut microbiota affects the brain’s physiological, behavioral,
and cognitive functions, although the exact mechanisms have
not been fully clarified. The intestinal microbiota represents
about 1014 microbial cells including bacteria, archaea, viruses,
fungi, and protozoa populating the gastrointestinal tract and
maintaining a symbiotic relationship with the host. Most
of the microbial species in the human gut belong to five
phyla: Firmicutes and Bacteroidetes are dominant, whereas
Actinobacteria, Proteobacteria, and Verrucomicrobia represent
minor constituents. Dysbiosis, the imbalance in the composition
and function of the gut microbiota, has been implicated in

the development of chronic diseases, including gastrointestinal,
autoimmune, metabolic, and neurodegenerative diseases (71).

Numerous factors may have harmful effects on the
microbiome such as diet, food additives, pesticides, antibiotics,
and stress. The balance of and symbioses with the gut
microbiome that have been established during human
evolution and the rapid change of diet in the last 100 years
may outpace the time necessary for the adaptation of the
digestive system, resulting in increased occurrence of chronic
diseases. Ultra-processed food and excessive energy intake are
dominating hallmarks of the Western diet. This diet, abundant
in saturated fat and refined carbohydrates, negatively impacts
on gut microbiome composition and consequently on the
immune system and brain health (72). On the other hand,
epidemiological data suggest that caloric restriction and dietary
intervention using certain macronutrients (fish), micronutrients
(B vitamins, vitamins C, E, and D, flavonoids, and omega-3
PUFA), probiotics, and prebiotics may prevent cognitive decline
and/or delay age-related neurodegeneration (73). Such a type of
diet is the Mediterranean diet.

The gut microbiota communicates with distant organs and
the brain through a complex neuro-humoral connection called
the gut–brain axis, which includes: the central nervous system
(CNS), the autonomic nervous system, the enteric nervous
system (ENS), the hypothalamic–pituitary–adrenal axis, and the
immune system. The ENS is the largest part of the peripheral
nervous system, consisting of ∼200 million neurons and enteric
glial cells (the digestive equivalent of brain astrocytes) located
along the gastrointestinal tract and often referred to as the
“second brain” due to its ability to control gut behavior with
and without input from the CNS. Important players in the
gut–brain axis are the enteroendocrine cells (EECs). They are
specialized cells localized within the intestinal epithelium and
represent the sensors of the gut microbiota and its metabolites.
In response to luminal content, the EECs secrete hormones and
cytokines that can act in a paracrine manner on the ENS or
send information via the vagus nerve to the CNS (Figure 2). In
addition, they are involved in the motility of the gastrointestinal
tract, the gut barrier, and mucosal immunity. The vagus nerve,
as the main component of the parasympathetic nervous system,
establishes one of the connections between the gut, the brain,
and inflammation and represents an important link between
nutrition and diseases. The CNS affects digestion by regulating
gut motility, secretion, and immunity via the sympathetic and
parasympathetic nervous systems. Neurotransmitters, hormones,
and peptides released by the ENS and transported through
the bloodstream cross the blood–brain barrier and can act
synergistically with the signals sent “down” from the brain
through the efferent vagus nerve to regulate food intake and
appetite (74). The gut microbiota reacts to these changes
by producing neurotransmitters and microbial metabolites,
such as short-chain fatty acids (SCFAs), secondary bile acids,
and tryptophan- and polyphenol-derived products, which all
affect the host’s CNS. These processes and connections are
schematically presented in Figure 2.

The major metabolites secreted by the colon microbiota,
after anaerobic degradation of non-digestible carbohydrates
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FIGURE 2 | Pathways of communication along the gut microbiome–brain axis. In the state of symbiosis, the gut microbiota produces SCFAs, tryptophan metabolites,

and neurotransmitters that exert neuroprotective effects on the brain via circulation and the vagus nerve (green arrows). In the state of dysbiosis, TMA/TMAO,

pro-inflammatory cytokines, and LPSs are formed, inducing cognitive impairment (red arrows). ECCs, enteroendocrine cells; SCFAs, short-chain fatty acids; LPSs,

lipopolysaccharides; TMA, trimethylamine; TMAO, trimethylamine N-oxide. Created with BioRender.com.

(dietary fibers), are SCFAs: mainly butyric, propionic, and
acetic acids (75). Acetate and propionate are produced by the
Bacteroidetes phylum, while species of the Firmicutes phylum
preferentially produce butyrate. Different sources of fibers, such
as resistant starches (from whole grains and legumes) or fructo-
oligosaccharides from bananas, onions, and asparagus, yield
different levels of butyrate and other SCFAs. Some prebiotic
fibers, such as inulin and fructo-oligosaccharides, promote the
growth of commensal bacteria that produce high amounts
of butyrate in the gut (76). SCFAs contribute to gut health
by regulating the integrity of the intestinal barrier, mucus

production, and controlling inflammation by inducing Treg
differentiation. Butyrate is used as an energy source by the
colonocytes, while the liver clears the majority of propionate
and butyrate from the portal circulation (77). However, a minor
fraction of colon-derived SCFAs reaches the bloodstream and
can be transported to the brain by passing through the blood–
brain barrier to exhibit a neuroprotective effect (78). SCFAs are
involved in maintaining blood–brain barrier permeability and
the CNS immune system by regulating microglial function. The
epigenetic effects of butyrate have also been documented, as it
is a well-known inhibitor of HDAC, affecting gene expression in
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Milošević et al. Memorable Food

the gut and associated immune tissue, as well as in the nervous
system. Treatment with sodium butyrate in animal models of
Parkinson’s disease has been shown to prevent neuronal cell
death, while in Alzheimer’s disease and traumatic brain injury
models memory and learning improved (79). However, chronic,
slightly elevated blood propionate and concomitant increased
ammonia levels in the circulation may play a role in cognitive
impairment and dementia (80).

Gut microbiota species also produce other bioactive
compounds, such as folate (vitamin B9), and neurotransmitters,
such as serotonin (5-hydroxytryptamine; 5-HT), dopamine,
and γ -aminobutyric acid (GABA), as summarized in a recent
review (81). The tryptophan microbial metabolite indole also
represents an important link between the microbiota and the
host, playing a role in the modulation of intestinal epithelial
integrity and intestinal inflammation, and it positively correlates
with longevity (82). A reduced level of the neurotransmitter
serotonin, found in dysbiosis, is related to cognitive impairment
(Figure 2).

DYSBIOSIS—A LINK BETWEEN DIET,
AGING, AND NDD

Dysbiosis is a state of imbalanced abundance and composition in
the gut microbiota with changes in microbial-derived products.
It often leads to the overgrowth of otherwise low-abundance
and/or harmful bacteria. A family of Gram-negative bacteria,
Enterobacteriaceae, are the most commonly overgrown gut
microbes in a wide range of pathologic conditions, including
inflammation. Gut inflammation, on the other hand, causes
damage to and the death of mucosal epithelium cells. This results
in an increase in phospholipids from the membrane lipids of
dead cells, which can be used as a source of carbon and/or
nitrogen by a variety of species in the Firmicutes, Actinobacteria,
and Proteobacteria phyla, as well as pathogenic species such as
Salmonella and Pseudomonas. An inflamed gut favors the growth
of anaerobic bacteria (such as E. coli) and mucin-degrading
bacteria (Akkermansia musiniphila and B. acidifaciens), leading
to a depletion of commensal bacteria (Bacteroidetes and
Clostridia phyla) and favoring a growth of Enterobacteriaceae
and pathogens such as S. Typhimurium and Clostridium difficile
(83). Inflammation results in increased intestinal permeability,
referred to as “leaky gut,” allowing the translocation of
microorganisms and/or their components and metabolites from
the gut to the bloodstream. Endotoxins (lipopolysaccharides;
LPSs), a major component of the outer membrane of Gram-
negative bacteria, after entering the bloodstream and binding
with LPS-binding protein (LBP) and CD14 receptor, launch
the secretion of pro-inflammatory cytokines. In this way LPSs
induce neuroinflammation, which triggers and perpetuates
the neurodegenerative process (Figure 2). Although small
concentrations of LPSs are detectable in healthy individuals
(endotoxemia), elevated postprandial LPS levels after fat-rich
meals, referred to as “metabolic endotoxemia,” have been
proposed as a major cause of inflammation, including chronic
low-grade inflammation (84). Several studies have demonstrated

that chronic gastrointestinal syndromes, such as inflammatory
bowel syndrome (85), small intestinal bacterial overgrowth (86),
and celiac disease, are associated with neurological disease
development (87). Dysbiosis has been implicated in worsened
outcomes after traumatic brain injury, which has been considered
as a non-genetic risk factor for several NDDs, including ALS, AD,
and PD (88).

Aging is concomitant with changes in gut physiology,
including lower levels of stomach acid and changes in
gastric motility and in the ENS, that consequently affect
the composition and function of the gut microbiota. The most
prominent feature in the microbiota of elderly individuals is
a reduced Firmicutes-to-Bacteroidetes ratio compared with
young adults (89) and decreased beneficial Lactobacillus
and Bifidobacterium. Decreased microbial diversity in
elderly individuals is associated with increased frailty, blood
inflammatory markers, and decreased nutritional diversity.
Perturbations in the gut microbiota, such as decreased
abundance of bacteria involved in SCFA production and an
enrichment of low-abundance pathobionts, further promote and
sustain pro-inflammatory conditions (90). Low-grade chronic
systemic inflammation accompanied with physiological aging
is defined as “inflammaging.” Altered, aged gut microbiota
compositions have been proposed to contribute to this
heightened pro-inflammatory status characterized with increases
in pro-inflammatory cytokines (IL-6 and TNF-α), acute-phase
reactants (C-reactive protein), and decreases in IL-10 (91).
Inflammaging contributes to the development of age-related
diseases: metabolic, cardiovascular, and neurodegenerative (92).

Some recent metabolomic investigations have shown that
individual gut microbiomes become increasingly more unique
with age, and uniqueness is positively associated with health
and longevity. Although, healthy elderly individuals showed a
decline in core taxa (dominant genera) and replacement by
less common taxa, their gut microbiome continued to show
a distinct composition (82). Metabolomic studies correlated
three markers of longevity (phenylacetylglutamine—PAG; p-
cresol sulfate—PCS; 2-hydroxybenzoate-−2-HB) from the urine
of elderly individuals and centenarians with the gut microbiome.
PAG and PCS are formed by the microbial catabolism of proteins
(phenylalanine and tyrosine metabolites), while 2-HB originates
from fruits and vegetables. PAG was positively correlated with
Proteobacteria species, both PCS and PAG correlated to Vibrio et.
rel., and 2-HB was found to be positively correlated with Proteus
et. rel. (93).

Emerging evidence suggests that changes in the function and
composition of the gut microbiota contribute to the pathogenesis
of NDD by the induction of epigenetic modifications. Epigenetic
changes associated with NDD mostly include DNA methylation
and histone modifications, which are controlled by several
enzymes, such as acetylases and methylases (94). These enzymes
are regulated by the metabolites generated by the host’s gut
microbiota. Such metabolites are short-chain fatty acids, folates,
biotin, and trimethylamine-N-oxide (11). The bidirectional
interaction between the gut microbiota and epigenetics has
been documented, although the nature and significance of this
relationship has not been fully elucidated. They may act in
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TABLE 1 | Bioactive compounds from food with effects on NDD.

Food Compound Action Role in NDD References

Nuts Ellagic acids Inhibit HATs; Activate HDACs Reverse brain atrophy in AD (123, 124)

Fish oil ω-3 PUFA Activates or inhibits DNMTs in

different cells

Prevents age-associated

cognitive decline

(18, 68, 69)

Olive oil Gallic acid Inhibits HATs Potential prevention of AD (123, 125)

Ginkgo biloba extract Kaempferol Inhibits HDACs Improves cognitive function in

patients with mild dementia

during long-term administration

(65, 126)

Red wine Resveratrol Activates HATs; Inhibits DNMTs

and HDACs

Reduces the risk of AD (59, 115, 127)

Berries Gallic and ellagic acids Inhibit HATs; Activate HDACs

and DNMTs

Delay the development of

age-related cognitive decline

(123, 128)

Tea Epigallocatechin-3-

gallate

Inhibits DNMTs and HATs Low prevalence of AD (57, 129, 130)

Turmeric Curcumin Activates HDACs; Inhibits HATs,

DNMTs, and miRNA

Corrects the dysregulation of

several pathways in NDD

(62–64, 131, 132)

Alters the relative abundances of

bacterial species

Gut microbiota produces

neuroprotective metabolites from

curcumin

(117)

Cocoa Epicatechin Inhibits HATs; Activates HDACs;

Increases the presence of

“healthy” bacteria

Decreases cerebral inflammation (119, 133)

Pomegranate Ellagitannins Inhibits HATs Protective effects against AD (122, 123)

Morinda officinalis Oligosaccharides Not determined Regulates the synthesis and

secretion of neurotransmitters in

rats

(120)

Algae Oligomannate Not determined Inhibits AD progression in AD

mouse models

(121)

AD, Alzheimer’s disease; NDD, neurodegenerative disease; HATs, histone acetyltransferases; HDACs, histone deacetylases; HMTs, histone methyltransferases; miRNA, microRNA.

synchrony to modulate the pathogenesis and progression of
NDD (94, 95). On the other hand, metabolites produced by
the gut microbiota may also reverse some of the previously
induced epigenetic modifications (96) and thereby prevent the
development or progression of NDD.

MICROBIOTA IN DIFFERENT NDDS

Recent studies have shown decreased intestinal microbial
diversity in AD patients, with increased abundance of the
Bacteroides phylum and decreased abundance in Firmicutes
(97). Such conditions favored the growth of pro-inflammatory
Gram-negative bacteria, such as Escherichia coli, Shigella,
Helicobacter, and Odoribacter, while reducing beneficial
commensals such as Bifidobacterium and SCFA-producing
bacteria (98). This state promotes the formation of amyloid
plaques, typically found in AD patients. Another possible
mechanism involves bacteria-derived amyloids, produced by
E. coli, Salmonella spp., Pseudomonas fluorescens, Klebsiella
pneumonia, Staphylococcus aureus, Bacillus subtilis, Streptomyces
coelicolorcan, that can function as initiators to cross-seed and
through molecular mimicry aggregate host amyloids (99). In
addition, a chronic H. pylori infection could trigger the release
of both inflammatory mediators and amyloids in AD patients

(100), while the eradication of H. pylori has been shown to
be associated with a decreased progression of AD symptoms
(101). As Aβ plaques have been detected in the intestinal
mucosa of both AD animal models and human patients, it
is hypothesized that endogenous Aβ production starts in the
gut and subsequently spreads to the CNS. Another possible
mechanism that causes cognitive deterioration is a release of
certain microbial-derived metabolites, such as trimethylamine
N-oxide—a product of the metabolic transformation of
dietary choline by the gut microbiota to trimethylamine,
which is then oxidized by the host’s liver (Figure 2) (102).
Both trimethylamine and its oxide are involved in aging
and neurodegeneration.

Parkinson’s disease (PD) is characterized by a loss of
movement control due to a decrease in brain dopamine
production as a result of the degeneration of substantia nigra
neurons. Non-motor symptoms are also present, such as
constipation, which may precede the onset of motor deficits
years or decades before. A hallmark of PD pathology is
an aggregation of misfolded α-synuclein (αSYN), so-called
Lewy bodies, in the brain; although it has been found that
αSYN aggregates can be present in the ENS of clinically
healthy individuals years before they develop PD. Misfolded
α-synuclein has also been shown to spread from cell-to-
cell and, in a prion-like fashion, from the periphery to the
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Milošević et al. Memorable Food

CNS via the vagus nerve (103, 104). A large number of
studies have shown diversity and abundance in the microbial
species present in the gut of PD patients (105). Moreover,
a positive correlation between the increased abundance of
Lactobacillaceae and Enterobacteraceae and disease severity has
been shown. In PD, observed decreases in the fecal amounts
of Prevotella spp. and Clostridium spp., major producers of
SCFAs, folate (vitamin B9), and thiamine (vitamin B1), may
have an impact on intestinal epithelial barrier permeability.
Furthermore, studies indicate alterations of the bacteriophage
community in people with PD (106). Epidemiological data
indicate that PD is associated with a variety of enteral
dysfunctions: inflammatory bowel disease, H. pylori infection,
and constipation (105). Recent studies have revealed changes
in the gut microbiome as a result of usual PD treatments
(107). On the other hand, Enterococcous faecalis has been
found to metabolize levodopa, a commonly used drug for PD,
suggesting that the gut microbiome may reduce the peripheral
availability of levodopa and thereby affect the efficacy of the PD
treatment (108, 109).

Amyotrophic lateral sclerosis affects the brain and spinal
cord neurons, leading to paralysis, respiratory failure, and death.
In ALS patients, reduced relative microbial abundances have
been found in butyrate-producing Anaerostipes, Oscillibacter,
and Lachnospira, while that of glucose-metabolizing Dorea
has been found to be significantly increased. ALS patients
also have elevated LPS levels in plasma (110), which support
neuroinflammation through microglia activation. Multiple
sclerosis is an autoimmune NDD, which also appears to be
associated with an altered gut microbiota. An increased relative
abundance of Akkermansia has been shown to be correlated
with symptom expression. In addition, MS patients have
been shown to exhibit decreased levels of Parabacteroides
distasonis, a species associated with anti-inflammatory
activity (111).

PRECISION NUTRITION IN NDD

Studies with caloric restriction have shown neuroprotective
effects in animal models, but the results in humans are
inconsistent. However, the Mediterranean diet (112) and
the Mediterranean–ketogenic diet (113) improved cognitive
function in older people by altering intestinal microbiota and
their metabolites.

In addition to the effects on the gut microbiota, diets
rich in olives, nuts, or ω-3 PUFA affected genes associated
with infection and inflammation. The Mediterranean diet
downregulates transcriptional repressorNFIL3, which is involved
in the regulation of cytokine expression, the development of
immune cells, and the circadian clock. Olive oil and nuts
have been found to downregulate IL-8, a key mediator of
inflammation, and a coagulation factor (SERPINB2) involved in
adipose tissue development. Moreover, they downregulate the
expression of RGS1, a regulator of the G-protein superfamily,
which is linked to chronic inflammatory diseases such as celiac
disease, MS, and AD. However, the supplementation of a diet

with olives, nuts, or ω-3 PUFA dysregulated different genes in
AD patients (114).

Numerous nutraceuticals such as curcumin, epigallocatechin-
3-gallate, resveratrol, Ginkgo biloba extract, genistein, flavonoids
from berries, and polyphenols from extra virgin olive oil and red
wine are able to delay neurodegeneration (115). Besides their
role in epigenetics, as discussed above, the health benefits of
these nutraceuticals in the prevention and alleviation of NDD
are due to their ability to change the gut microbiota. Moreover,
the bioavailability of polyphenols, PUFAs, and antioxidants with
neuroprotective effects depends on the colon microbiota. The
differences in gut microbiota composition may explain the inter-
individual variability in the outcome of supplementation in
clinical trials, emphasizing the need for precision nutrition.

The relationship between microbiota and nutraceuticals
is bidirectional. This has been shown for curcumin (116).
Curcumin was found to significantly alter the relative abundances
of bacterial species, several of which have been associated with the
development of AD, while the biotransformation of curcumin by
gut bacteria produces neuroprotective metabolites (117). Further,
turmeric and curcumin have been shown to exert potential to
alter the gut microbiota but with significant variation over time
and an individualized response to treatment (118). Flavanols
from red wine and cocoa have a positive effect on the gut
microbiota by increasing the presence of “healthy” bacteria,
such as Firmicutes and Bacteroidetes, which have been found
decreased in cerebral inflammation (119). Probiotic and prebiotic
supplementation have shown moderate beneficial effects in AD
patients, although oligosaccharides from Morinda officinalis
(120) and oligomannate from algae (121) exhibit promising
effects on animal models of AD. On the other hand, gut-
microbiota-derived metabolites from plants may have protective
effects against AD, e.g., urolithins, which are metabolites of
ellagitannin in, for example, pomegranate fruit (122).

The reversible nature of epigenetic changes has pointed
out the specific nutritional interventions aimed at reversing
epigenetic modifications to prevent or treat NDD. Although
diets rich in bioactive compounds have demonstrated beneficial
effects in preventing and modifying NDD, the application of
precision nutrition appears to be markedly more effective than
the traditional approach. The pathologies of NDD can exert
variable clinical characteristics in the patients with the same
disease. A combination of genetic and epigenetic factors, lifestyle,
and microbiome data could provide a full overview of an
individual patient and enable the stratification of patients into
specific nutritional groups in order to avoid non-responders to
a specific diet and to get a maximum response from the precision
nutrition for each patient.

CONCLUSIONS

In summary, NDDs remains an important public health
challenge because of the lack of effective prevention or treatment.
The reasons for the slow progress in both prevention and
therapy may lie in the fact that current recommendations are
designed for the general population, without taking into account
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individual genetic, epigenetic, and lifestyle factors. However,
NDDs have complex pathologies with great inter-individual
(epi)genetic variance within the population. In addition, the gut
microbiome is linked with the development and progression or
alleviation of NDDs, through the gut microbiome–brain axis.
The relationship between the gut microbiota and epigenetic
modifications in NDD is bidirectional and markedly dependent
on nutrition. These individual differences in both microbiota and
epigenetic signatures suggest the need for personalized dietary
plans for NDD patients. A possible target is the creation of
personalized dietary interventions containing specific bioactive
nutrients that can modify epigenetic changes and/or the gut
microbiota. Although numerous studies on the role of different
nutraceuticals in the prevention, prediction, and treatment of
NDDs have been conducted, we are still far away from a
personalized diet plan for individual NDD patients, which is
undoubtedly the future of NDD therapy. To achieve this goal as
soon as possible, large-scale cohort studies that would include the
precise monitoring of food intake, mapping of genetic variants,
epigenetic data, microbiome studies, and metabolome, lipidome,
and transcriptome data are urgently needed.
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