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Background: Healthy dietary patterns are related to better cognitive health in aging

populations.While levels of individual nutrients in neural tissues are individually associated

with cognitive function, the investigation of nutrient patterns in human brain tissue has

not been conducted.

Methods: Brain tissues were acquired from frontal and temporal cortices of 47

centenarians from the Georgia Centenarian Study. Fat-soluble nutrients (carotenoids,

vitamins A, E, K, and fatty acids [FA]) were measured and averaged from the two

brain regions. Nutrient patterns were constructed using principal component analysis.

Cognitive composite scores were constructed from cognitive assessment from the

time point closest to death. Dementia status was rated by Global Deterioration Scale

(GDS). Pearson’s correlation coefficients between NP scores and cognitive composite

scores were calculated controlling for sex, education, hypertension, diabetes, and APOE

ε4 allele.

Result: Among non-demented subjects (GDS = 1–3, n = 23), a nutrient pattern

higher in carotenoids was consistently associated with better performance on global

cognition (r = 0.38, p = 0.070), memory (r = 0.38, p = 0.073), language (r = 0.42, p =

0.046), and lower depression (r = −0.40, p = 0.090). The findings were confirmed with

univariate analysis.

Conclusion: Both multivariate and univariate analyses demonstrate that brain nutrient

pattern explained mainly by carotenoid concentrations is correlated with cognitive

function among subjects who had no dementia. Investigation of their synergistic roles

on the prevention of age-related cognitive impairment remains to be performed.
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INTRODUCTION

Advancing age is the number one risk factor of age-related
cognitive impairment and dementia, representing a major public
health epidemic among older Americans (1). A systematic review
of cross-sectional studies and longitudinal cohorts has identified
a relation between diet quality and cognitive health in the
aging population (2). A healthy diet covers a variety of dietary
patterns such as Mediterranean diet (MeDi) (3, 4), Healthy
Dietary Index (HDI) diet (5), Healthy Eating Index (HEI) diet (6),
Dietary Approaches to Stop Hypertension (DASH) diet (7), and
Mediterranean-DASH Intervention for Neurodegenerative Delay
(MIND) diet (8). In some studies, dietary patterns are derived
a posteriori with cluster analysis, factor analysis (e.g., principal
component analysis [PCA]), or reduced rank regression (9–13).
Though healthy dietary patterns have been diversely defined, they
share common components of high intake of fruits, vegetables,
whole grains, nuts, seeds, fish, and limited intake of added sugar,
sodium, high-fat dairy products, red, and processed meat (2).

Traditionally, habitual dietary intake has been estimated
using subjective recall data derived from food frequency
questionnaires (FFQ). This approach, despite its direct
translation for establishing dietary recommendations, does
not account for recall bias, particularly among subjects with
varied cognitive performance, and inter-individual variability in
the nutrient absorption and metabolism (14). There has been
an attempt to overcome these issues by constructing serum
nutrient patterns (NP) as a marker of intake among subjects
in the Oregon Brain Aging Study (15), and the Illinois Brain
Aging Study (16–18). However, given that cognitive processes
originate from the human brain, particularly in neocortices,
and that nutrient uptake into the central nervous system (CNS)
is strictly regulated at the blood-brain barrier (BBB) (19), we
need to expand the scope of investigation further into the
CNS for a greater apprehension of nutrition’s roles in the
aging brain.

While the evidence for relations between diet quality
and cognitive function has been largely consistent among
observational studies, the evidence from clinical trials of
dietary supplements has been mixed (20). When investigating
the relationship between nutrition and age-related diseases,
the importance of examining nutrition as dietary patterns
or NPs have been highlighted (21, 22), as most individuals
acquire nutrients predominantly from foods, rather than
supplements, throughout their lifespan. From a biochemical and
molecular perspective, the etiology of age-related dementia,
despite its heterogeneity, shares multiple mechanisms
including cardiometabolic risk factors, elevated oxidative
stress, neuroinflammation, and impaired AMP-activated
kinase signaling (23). All of these factors can potentially be
regulated by multiple dietary components. The pathology of
age-related cognitive impairment is also different from cognitive
symptoms caused by a deficiency of a single nutrient that
may manifest during a shorter period of time and may be
reversible—such as dementia caused by vitamin B12 or niacin
deficiency, and Wernicke-Korsakoff syndrome caused by a
genetic predisposition “to thiamin” deficiency (24, 25).

Therefore, the present research study was proposed based
on the rationale that many fat-soluble nutrients (carotenoids,
vitamins A, E, K, and fatty acids [FA]) are present in human
brain (26–31), and that they are a part of dietary patterns and
serum NPs previously reported to be associated with better
cognitive function in multiple aging cohorts (2, 15, 26, 28, 32,
33). This was accomplished by constructing a posteriori NPs of
fat-soluble nutrients measured in brain tissues acquired post-
mortem from a subset of centenarians (defined as ≥98 years)
who were enrolled in the Georgia Centenarian Study (GCS)—the
longest running centenarian study in the U.S. to date (34, 35).
Subsequently, the relationship between constructed NPs and
cognitive performance at the time point closest to death was
cross-sectionally investigated. Findings from this novel study
may also provide insights into the role of nutrition in cognition
in the oldest old, which may be similar or different from lesser
aged older adults.

MATERIALS AND METHODS

Subject Recruitment and Brain Collection
The design of GCS, objectives, protocols of subject recruitment,
and brain collection have been previously described in detail (34,
35). Briefly, the GCS was a population-based study conducted
in 44 counties in northern Georgia. The GCS was primarily
designed to identify biological, psychological, and social factors
contributing to survivorship and successful aging. Brain tissues
from frontal (FC) and temporal cortices (TC) were collected
from 47 subjects who were a subset of centenarians enrolled
in the phase III of the GCS (2001–2007) and gave consent
to donate brain tissue upon death. After tissue collection, all
samples were coded and stored at −80◦C until the measures of
nutrient concentration. All protocols were performed with an
approval from the University of Georgia Institutional Review
Board. Separate approval for using de-identified data for the
present analyses was obtained from the Tufts University/Tufts
Medical Center Institutional Review Board.

Nutrient Concentration Measures in Brain
Tissues
Protocols for brain lipid extraction, separation, quantification,
and concentrations have been previously and separately
described for carotenoids, vitamin A (retinol), vitamin E (α-
and γ-tocopherol [TP]), vitamin K (phylloquinone [PK] and
menaquinone-4 [MK-4]), and individual FAs (27, 28, 36–39).
In short, separation and quantification of five major dietary
carotenoids (lutein, zeaxanthin, cryptoxanthin, β-carotene,
and lycopene), retinol, and TPs were performed using high-
performance liquid chromatography (HPLC) coupled with a
photodiode array detector. The limit of detection (LOD) was
0.2 pmol for carotenoids, 2.0 pmol for retinol, 2.7 pmol for
TPs per injection. Only levels of the all-trans isomer of each
carotenoid, which is the most predominant isomer in human
brain tissues, are reported (26, 40). Separation and detection
of PK and MK-4 were performed using HPLC coupled with a
fluorescence detector. The LOD was 0.03 pmol for both vitamin
K vitamers. Separation and detection of individual FAs were
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performed using a gas chromatography coupled with a flame
ionization detector, and expressed as molar percentage (mol%).
Total saturated FAs (SFAs) represent the sum of 10:0, 12:0, 14:0,
15:0, 16:0, 18:0, 20:0, 22:0, and 24:0. Total monounsaturated FAs
(MUFAs) represent the sum of 16:1 (n-9), 16:1 (n-7), 18:1 (n-9),
18:1 (n-7), 20:1 (n-9), 22:1 (n-9), and 24:1 (n-9). Total omega-3
polyunsaturated FAs (n-3 PUFAs) represent the sum of 18:3,
18:4, 20:3, 20:5, 22:5, and 22:6. Total omega-6 polyunsaturated
FAs (n-6 PUFAs) represent the sum of 18:2, 18:3, 20:2, 20:3, 20:4,
22:2, 22:4, and 22:5. Total trans-FAs represent the sum of 16:1
(n-9), 16:1 (n-7), trans-6-octadecenoic acid (18:1, n-10 to 12),
18:1 (n-9), 18:1 (n-7), trans-9, trans-12- octadecenoic acid (18:2
TT/TCTX), and conjugated linoleic acid (18:2, CLA).

Cognitive Assessment and Cognitive
Domain Composite Scores
After enrollment in the GCS, cognitive assessment was
performed every 6 months at the subject’s residence as reported
earlier (34). Cognitive data were obtained from the visit closest
to death (<1 year for all subjects). Dementia status was assessed
by geriatric psychiatrists using Global Deterioration Scale (GDS)
and subjects were grouped based on GDS score. A score of
1–2 on GDS was clinically defined as no dementia; a score
of 3 represented mild cognitive impairment; and a score of
4–7 represented increasing severity of dementia from mild
to severe (41). Cognitive tests included Mini-Mental State
Examination (MMSE, 24–30= normal cognition; 19–23=mild;
10–18 = moderate; or ≤ 9 = severe cognitive impairment)
(42), Severe Impairment Battery (SIB, < 63 = very severely
impaired cognition) (43), Fuld Object Memory Evaluation
(FOME) (44), Controlled OralWord Association Test (COWAT)
(45), Wechsler Adult Intelligence Scale Third Edition (WAIS-III)
Similarities (46), Behavioral Dyscontrol Scale (BDS) (47), and
the Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD) battery which included Verbal Fluency (VF), Boston
Naming Test (BNT), Constructional Praxis (CP), and Word
List Memory Test (WLMT) (48, 49). Depression was assessed
using Geriatric Depression Scale Short Form (GDSSF) (50), and
activities of daily living were assessed using Direct Assessment of
Function Status (DAFS) (51). All subtests have been validated and
are considered reliable measures of cognition in normal aging
and in AD (52).

To calculate cognitive domain composite scores, scores
from each cognitive test were normalized using z-scoring as
previously reported (53). Composite scores of five cognitive
domains (memory, executive function, language, visuospatial
function, attention), depression, and activities of daily living
were then calculated by averaging the z-scores of tests based
on the method adapted from Bowman et al. (15). The
calculation method has also previously been reported and
shown in Supplementary Table 1. Global cognition composite
scores were also derived by combining total cognitive testing
z-scores, MMSE, and SIB. Missing test scores were excluded
and the denominator changed accordingly for the calculation of
composite scores.

Statistical Analysis
Values are presented as mean (SD). All statistical tests were
performed in R 3.5.1 with a significance level set at α = 0.05.
Findings with p < 0.1 but > 0.05 were reported as borderline
significant. Comparisons of subject characteristics between non-
demented (GDS 1–3, n = 23) and demented subjects (GDS
4–7, n = 24) were performed using Student’s two-sample t-
test and Fisher’s exact test for continuous and categorical
variables, respectively.

NPs were derived from concentrations of carotenoids,
vitamins A, E, K, SFAs, MUFAs, n-3 PUFAs, n-6 PUFAs, and
trans-FAs averaged from FC and TC (vitamin K only from FC due
to limited brain sample availability) using PCA with a function
pca in the R package “pcaMethods” (54). Concentrations of
all nutrients were log transformed prior to PCA. Nutrient
concentration matrix was unit-variance scaled and centered.
We chose non-linear iterative partial least squares algorithm
to calculate principal components, or NPs in our case, which
is an iterative approach for estimating independent principal
components by extracting them one at a time (55). This variation
of PCA can handle small amount of missing values, which in our
case were PK andMK-4 concentrations from two individuals due
to insufficient brain tissues for vitamin K analysis. Only NPs with
eigenvalue >1 were reported.

To investigate the relationship between brain nutrient
concentrations or NPs and cognitive domain composite scores,
Pearson’s correlation test was performed with an adjustment for
covariates sex, education, hypertension, diabetes, and presence
of APOE ε4 allele. Additional adjustment for antithrombotic
use was performed for vitamin K, and antidepressant use for
depression score. Sub-analyses in non-demented (GDS 1–3) were
also performed. Heatmaps aided the visualization of correlations.

RESULTS

Subject Characteristics
Characteristics of all 47 subjects are reported in Table 1. By
design, all subjects were ≥98 years old with an average age
at death of 102.2 (2.5) years old. Eighty-nine percent were
Caucasian and 89% were female. Subjects who did not finish high
school accounted for 51%. Seventy percent were institutionalized
at the visit closest to death. Body mass index (BMI) was 22.1 (3.9)
kg/m2 on average, excluding one double amputee whose BMI
could not be calculated. Approximately half of the subjects had
hypertension (53%) while only 3 subjects had diabetes (6%). In
terms of medication and supplement uses, while no subjects took
cholesterol-lowering medication, the majority of subjects used at
least one form of dietary supplements (72%). Twelve subjects,
ten of whom had dementia, could not provide data on history
of smoking and alcohol use through recall. Among those with
available data, 86% never smoked and 60% never used alcohol.
Only one subject was an active smoker at death.

Subject characteristics between non-demented (n = 23) and
demented (n = 24) subjects, as assessed by the GDS, were not
statistically different, except that BMI in non-demented subjects
was marginally higher than that in demented subjects [23.1 (3.5)
vs. 21.0 (3.5) kg/m2, p = 0.067] (Table 1). Although higher

Frontiers in Nutrition | www.frontiersin.org 3 June 2021 | Volume 8 | Article 704691

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Tanprasertsuk et al. Brain Nutrient Patterns and Cognition

TABLE 1 | Subject characteristics.

Characteristic All subjects (n = 47) GDS 1-3 (n = 23) GDS 4–7 (n = 24) P-valuea

Age in years, mean (SD) 102.2 (2.5) 102.2 (2.3) 102.2 (2.8) 0.946

Female, n (%) 42 (89%) 19 (83%) 23 (96%) 0.188

Race, n (%) 0.348

Caucasian 42 (89%) 22 (96%) 20 (83%)

Black 5 (11%) 1 (4%) 4 (17%)

BMI in kg/m2, mean (SD)b 22.1 (3.9) 23.1 (3.5) 21.0 (4.0) 0.067

Hypertension, n (%) 25 (53%) 12 (52%) 13 (54%) 1

Diabetes, n (%) 3 (6%) 2 (9%) 1 (4%) 0.609

Education, n (%) 0.204

< High school 23 (51%) 9 (39%) 14 (64%)

High school 12 (27%) 7 (30%) 5 (23%)

> High school 10 (22%) 7 (30%) 3 (14%)

No data 2 0 2

Living, n (%) 0.212

Community dwelling 14 (30%) 9 (39%) 5 (21%)

Institutionalized 33 (70%) 14 (61%) 19 (79%)

Dietary supplement use, n (%) 34 (72%) 14 (61%) 20 (83%) 0.111

Medications, n (%)

Antidepressants 14 (30%) 4 (17%) 10 (42%) 0.111

Antipsychotics 5 (12%) 1 (4%) 4 (17%) 0.348

Anti-inflammatory medications 5 (12%) 4 (17%) 1 (4%) 0.188

Antithrombotics 10 (21%) 5 (22%) 5 (21%) 1

Antibiotics 7 (15%) 2 (9%) 5 (21%) 0.416

Smoking, n (%) 0.570

Never 30 (86%) 18 (86%) 12 (86%)

Past 4 (11%) 3 (14%) 1 (7%)

Present 1 (3%) 0 (0%) 1 (7%)

No data 12 2 10

Alcohol use, n (%) 0.041

Never 21 (60%) 9 (43%) 12 (86%)

Past 6 (17%) 5 (24%) 1 (7%)

Present 8 (23%) 7 (33%) 1 (7%)

No data 12 2 10

APOE, n (%)c

ε2 allele carrier 8 (17%) 3 (13%) 5 (21%) 0.701

ε4 allele carrier 8 (17%) 3 (13%) 5 (21%) 0.701

aComparisons between subjects whose Global Deterioration Scale (GDS)= 1–3 (non-demented) and GDS= 4–7 (demented) using Student’s t-test for continuous variables and Fisher’s

exact test for categorical variables.
bBody mass index (BMI) cannot be calculated for a double amputee whose GDS = 5.
cAll subjects who carried an ε2 or ε4 allele were ε2/ε3 or ε3/ε4 except one subject with GDS = 4 who was an ε2/ε4.

proportion of subjects without dementia reported a history of
alcohol use (p= 0.041), the data were only available for only 58%
of demented participants.

Nutrient Concentrations in FC and TC, and
Establishing NPs
Concentrations of nutrients averaged from the FC and TC are
reported in Table 2 (vitamin K only from FC). These data have
also been previously reported separately for FC and TC (27,
31, 40). Lutein was the most predominant carotenoid in all FC
and TC tissues with a concentration of 79.50 (52.57) pmol/g.

On the contrary, lycopene, at an average concentration of 20.41
(21.38) pmol/g, was not detected in both FC and TC in 20
subjects (43% of all subjects). Retinol, which included both free

retinol, retinal, and retinyl esters before hydrolyzation during
lipid extraction, had a concentration of 691.97 (305.56) pmol/g.

Concentrations of α-TP and γ-TP were 66,917 (13,676) and 1,742

(1,018) pmol/g, respectively. While MK-4 was detectable in all

brain tissues at 4.96 (2.32) pmol/g, PK was not detected in 17

subjects (38%). The predominant class of FA in the brain samples

was SFA, which accounted for 15.36 (2.30) nmol/mg or 47.93
(1.68) mol%. Concentrations of individual FAs are shown in

Frontiers in Nutrition | www.frontiersin.org 4 June 2021 | Volume 8 | Article 704691

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Tanprasertsuk et al. Brain Nutrient Patterns and Cognition

TABLE 2 | Mean (SD) of nutrient concentrations averaged from the frontal and temporal cortices (vitamin K only in the frontal cortex).

Nutrient All subjects (n = 47) GDS 1–3 (n = 23) GDS 4-7 (n = 24) P-valuea

Carotenoids (pmol/g)

Lutein 79.50 (52.57) 76.34 (43.72) 82.52 (60.65) 0.828

Zeaxanthin 26.97 (12.73) 28.36 (14.06) 25.63 (11.44) 0.404

Cryptoxanthin (α + β) 62.06 (67.97) 57.15 (47.61) 66.76 (83.81) 0.787

β-Carotene 55.86 (35.56) 46.22 (24.20) 65.09 (42.27) 0.130

Lycopene 20.41 (21.38) 21.63 (21.57) 19.25 (21.59) 0.901

Retinol (pmol/g) 691.97 (305.56) 674.11 (286.94) 709.10 (327.65) 0.688

Vitamin E (pmol/g)

α-Tocopherol 66,917 (13,676) 68,303 (13,732) 65,588 (13,782) 0.526

γ-Tocopherol 1,742 (1,018) 1,891 (1,049) 1,600 (989) 0.208

Vitamin K (pmol/g)b

Phylloquinone 0.40 (0.39) 0.35 (0.42) 0.45 (0.36) 0.276

Menaquinone-4 4.96 (2.32) 5.05 (2.82) 4.88 (1.82) 0.772

Fatty acid (nmol/mg)

Total SFA 15.36 (2.30) 15.04 (2.40) 15.66 (2.21) 0.333

Total MUFA 7.00 (2.41) 6.83 (1.93) 7.17 (2.83) 0.723

Total n-3 PUFA 4.20 (0.67) 4.11 (0.73) 4.29 (0.60) 0.321

Total n-6 PUFA 5.53 (1.26) 5.41 (1.04) 5.63 (1.45) 0.569

Total trans-FA 0.25 (0.09) 0.22 (0.06) 0.28 (0.10) 0.020

aComparisons between Global Deterioration Scale (GDS) 1–3 and GDS 4–7 using Student’s t-test. Log (x+1) transformation was applied prior to comparisons.
bBrain tissue from two subjects was not available for vitamin K measures.

SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; trans-FA, trans-fatty acid.

Supplementary Table 2. Docosahexaenoic acid (DHA, 22:6 n-3)
and arachidonic acid (AA, 20:4 n-6) were the most predominant
n-3 PUFA (11.90 (1.60) mol% or 90.22% of total n-3 PUFAs)
and n-6 PUFA (8.54 (0.57) mol% or 66.36% of total n-6 PUFAs),
respectively, in all brain tissues. Concentrations of each nutrient
were not significantly different among demented and demented
subjects. However, total trans-FA concentration was significantly
higher among demented subjects (p= 0.020).

As shown in Figure 1, significant correlations were identified
among concentrations of carotenoids, and among FAs (blue
represents positive and red represents negative correlations). For
others that also reached statistical significance, lycopene was
also positively correlated with γ-TP (r = 0.32, p = 0.027) and
negatively correlated with vitamin A (r = −0.49, p < 0.001),
while α-TP was positively correlated with PK (r = 0.46, p =

0.002) and negatively associated with total trans-FAs (r = −0.32,
p = 0.030). MK-4, but not PK, was also associated with FA
concentrations including total SFA (r = 0.45, p = 0.002), n-3
PUFA (r = 0.52, p < 0.001), and n-6 PUFA (r = 0.34, p =

0.023). These correlations among nutrient concentrations further
warranted the investigation of nutrients as NPs.

Next, PCA was used to derive NPs from brain nutrient
concentrations. The first five NPs that explain the highest
variance (each of which had an eigenvalue >1.0) among the
47 subjects are described in Table 3. No obvious outlier was
detected in a PCA plot (data not shown). NP1 which has the
highest variance accounted for 26.20% of the total variance. NP1
is described as higher concentrations of SFAs, MUFAs, and n-3
and n-6 PUFAs (all loading coefficients >0.40). NP2 is described

by high concentrations of carotenoids (all loading coefficients
≥0.30), and NP3 is described by high concentrations of retinol,
α-TP, and PK (all loading coefficients ≥0.40). The correlations of
these nutrients in each NP are as depicted in Figure 1. The first
five NPs accounted for 75.92% of the total variance of the original
nutrient dataset.

Composite Scores on Cognitive Domains,
Depression, and Activities of Daily Living
The time interval between the cognitive assessment at the
time point closest to death and the autopsy was <1 year
for all subjects with an average of 156 (93) days for those
whose data could be accurately calculated (81%). Subjects
with GDS 1–3 had significantly higher MMSE scores than
those with GDS 4–7 (p < 0.001). Similarly, SIB score was
higher in subjects with GDS 1–3 (p < 0.001). Therefore, GDS
effectively separated subjects based on their performance on
global cognition as also previously reported in the original
GCS cohort (n = 244) (56). Further, the composite scores for
cognitive domains, depression, and activities of daily living had
been calculated (Supplementary Table 3). Subjects with GDS 1–
3 had significantly higher composite scores on all six cognitive
domains and activities of daily living, and significantly lower
scores on depression (less depression). Of note, while composite
scores for other cognitive domains were available for all subjects,
visuospatial function score was available for 87% of participants
without dementia and 50% of participants with dementia, and
attention score was available for 70% of participants without
demented and 46% of participants with dementia.
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FIGURE 1 | Heat map of Pearson’s correlation coefficients of concentrations of carotenoids, retinol, tocopherols, phylloquinone, menaquinone-4, and fatty acids

averaged from frontal and temporal cortices (except vitamin K only in the frontal cortex, n = 47, *p < 0.05). Log transformation has been applied to all nutrient

concentrations. SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; trans-FA, trans-fatty acid.

TABLE 3 | Construction of nutrient patterns (NPs), NP structure and variance

explained (n = 47).

Nutrient NP1 NP2 NP3 NP4 NP5

Carotenoids

Lutein 0.02 0.45 −0.14 0.23 0.12

Zeaxanthin 0.09 0.44 −0.13 0.14 0.27

Cryptoxanthin 0.16 0.30 0.14 0.11 0.06

β-Carotene 0.01 0.37 0.08 0.43 0.11

Lycopene 0.02 0.32 −0.41 −0.31 0.03

Retinol (Vitamin A) 0.06 −0.09 0.61 0.18 0.40

Vitamin E

α-TP 0.11 0.23 0.40 −0.42 −0.04

γ-TP 0.19 0.05 −0.16 −0.54 0.52

Vitamin K

PK 0.07 0.23 0.41 −0.28 −0.11

MK-4 0.26 0.19 0.12 −0.04 −0.50

Fatty acids

Total SFAs 0.50 −0.05 −0.05 0.07 −0.03

Total MUFAs 0.41 −0.13 0.02 0.04 0.08

Total n-3 PUFAs 0.41 0.03 −0.13 0.12 −0.23

Total n-6 PUFAs 0.46 −0.15 −0.06 0.01 −0.05

Total trans–FAs 0.22 −0.27 −0.08 0.15 0.37

Eigenvalue 3.89 3.39 1.68 1.27 1.06

% Variance 26.2 22.76 11.28 8.53 7.15

Cumulative % variance 26.2 48.96 60.24 68.77 75.92

SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty

acid; trans-FA, trans-fatty acid; TP, tocopherol; PK, phylloquinone; MK-4, menaquinone-4.

Relationship Between Brain Nutrient
Concentrations and Cognition
Scores of the first five NPs were not statistically different
between demented and non-demented subjects (data not shown).

However, among non-demented subjects, subjects who had mild
cognitive impairment (GDS 3, n = 11) had significantly lower
NP2 score than that of cognitively intact subjects (GDS 1–2,
n = 12, p = 0.002), but not for other NPs. The difference
remained statistically significant after an adjustment for sex,
education, hypertension, diabetes, and presence ofAPOE ε4 allele
(p= 0.004).

A heat map was constructed to provide Pearson’s partial
correlation coefficients between NP scores or nutrient
concentrations and scores on cognitive domains, depression,
and activities of daily living in all subjects (Figure 2A, p-
values provided in Supplementary Table 4A). Pearson’s
partial correlations were adjusted for sex, education, diabetes,
hypertension, and presence of APOE ε4 allele. No consistent
relationship between NPs and cognitive domain scores that
reached statistical significance was observed.

A subset analysis among non-demented subjects (GDS 1–3)

was performed and Pearson’s coefficients are illustrated in a heat
map (Figure 2B, p-values provided in Supplementary Table 4B).

In the models adjusted for covariates among the five NPs

representing the highest variances, NP2 was consistently

associated with higher scores on global cognition (r = 0.38,
p = 0.070), memory (r = 0.38, p = 0.073), language (r =

0.42, p = 0.046), and lower depression score (r = −0.40, p =

0.090) (Figure 3). After additional adjustment for antidepressant

use, the correlation with lower depression score remained
borderline significant (r = −0.35, p = 0.100). Since NP2
is mainly described by carotenoids, significant correlations
were also consistently observed between lutein, zeaxanthin, β-
carotene and scores on global cognition, memory, language, and
depression. Other notable associations included NP3 and NP5
and higher depression. Additional adjustment for antithrombotic
use was performed for PK and MK-4 and their correlations
with different cognitive domain composite scores remained
statistically non-significant (p > 0.05) for all six cognitive
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FIGURE 2 | Heat map of Pearson’s correlation coefficients between nutrient pattern (NP) scores or nutrient concentrations and scores on cognitive domains,

depression, and activities of daily livings in (A) all subjects (n = 47) and (B) non-demented subjects (Global Deterioration Scale = 1–3, n = 23). Correlations are

adjusted for sex, education, diabetes, hypertension, and APOE ε4 allele (#p < 0.10, *p < 0.05). SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA,

polyunsaturated fatty acid; trans-FA, trans-fatty acid.

domains and activities of daily living, while the correlation
between MK-4, but not PK, and depression remained statistically
significant (Supplementary Table 4B).

DISCUSSION

This study documents that brain NP high in carotenoids was
consistently associated with better performance on multiple
cognitive domains, activities of daily living, and lower depression
among non-demented older adults in the GCS. Results also
confirm previously established positive relationships between
serum and brain concentrations of carotenoids in this group
of subjects independent of their cognitive status (27). Given
that serum concentrations of carotenoids likely reflect their
habitual intake in the oldest old as previously discussed (27),
our findings in the present study underscore the timing of
intervention with diet high in carotenoid content before the onset
of age-related dementia. This is further supported by the fact
that nutrient concentrations and NP scores were not different
between demented and non-demented subjects. Our exploratory
findings also corroborate previous findings where serum levels
of carotenoids are positively associated with better cognition
in aging subjects (26, 32, 57–60). Specifically, higher serum
lutein concentration was reported to be associated with better
performance on language (32), which is similar to the correlation
between NP2 and language score in this study.

The present analysis investigated concentrations of nutrients

in the brain, the organ most relevant to cognition, as compared
to previous studies that have established dietary or serum NPs

with similar exploratory approaches (10, 11, 13, 15). Although the

relationship between better adherence to a priori hypothesized

intake patterns (such as MeDi, HDI, HEI, DASH, MIND) and
lower risk of cognitive decline have been established (2), a

priori hypothesized NPs are difficult with brain concentrations

since little is known regarding nutrient uptake across the BBB
and nutrient metabolism in neural tissue. For instance, SFAs

and MUFAs can be de novo synthesized in the liver and CNS

and may not reflect intake levels (61), and among n-3 PUFAs,
DHA preferentially accumulates in neural tissue (62, 63). While
substitution of SFA and trans-FA intakes with MUFAs and
PUFAs decreases risk of age-related cognitive impairment in
many prospective cohorts (64), our findings with brain content
cannot be directly compared with intake levels of SFAs and
MUFAs. It has also been reported that higher SFA content in
membranes is usually associated with higher PUFA content to
maintain membrane stability (65, 66), which likely explains the
high correlation between SFA and unsaturated FA observed in
the GCS brain tissues. Similarly, retinol is thought to be either
taken up into the brain by STRA6, a retinol-binding protein-
receptor detected at the BBB or derived directly from the cleavage
of provitamin A carotenoids (β-carotene and β-cryptoxanthin)
by the enzyme BCO1 detected in human brain (67, 68). It
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FIGURE 3 | The relationship between nutrient pattern 2 (NP2) score and composite scores of (A) global cognition, (B) memory, (C) language, and (D) depression

among non-demented subjects (Global Deterioration Scale = 1–3, n = 23). Pearson’s correlation coefficients are adjusted for sex, education, diabetes, hypertension,

and APOE ε4 allele.

remains unknown how much each source contributes to vitamin
A content in the brain. Moreover, a previous report on vitamin
K metabolism in rat cerebellum also suggests that neural MK-
4 content is regulated by the enzyme UBIAD1 (69). Overall,
findings of nutrient levels in neural tissue need to be cautiously
interpreted for dietary recommendations, especially for nutrients
that can be derived from other substrates and nutrients whose
levels are tightly regulated in the brain. Data on dietary intake in
the GCS have been previously reported (70). However, the dietary
assessment was subjective and might have overestimated or
underestimated food intake, particularly in this population with
varying degrees of cognitive performance. As a result, dietary
intake data were not incorporated into the present analysis.

Age-related cognitive impairment, notwithstanding mixed
clinical pathologies, shares molecular signatures of increased
oxidative stress and neuroinflammation (71, 72). Both
carotenoids and n-3 PUFAs, especially lutein and DHA
both of which are selectively accumulated in the brain, have
been proposed to interfere with the progression of cognitive
impairment in aging, presumably owing to their antioxidative
and anti-inflammatory properties (73, 74). Consistent with

previous studies investigating neural concentrations of
individual nutrients, a significant relationship was observed
with lower carotenoids (mainly lutein and zeaxanthin) among
cognitively impaired or demented subjects (26, 75–78). However,
as previously discussed by Zamroziewicz and Barbey (22),
univariate analytical approach with individual nutrients may
be confounded by the effect of NPs and does not address the
potentially interactive effects of multiple nutrients on cognitive
health. An exploratory trial demonstrates that a combination of
lutein and DHA supplements statistically improved performance
on memory and learning in cognitively unimpaired elder
women after 4 months whereas lutein or DHA supplement
alone did not (79). Moreover, most individuals predominantly
acquire nutrients from dietary sources that consist of a complex
combination of nutrients. While a 6-month intervention with a
lutein and zeaxanthin supplement failed to improve cognitive
outcomes in subjects with or without Alzheimer’s disease (80),
a daily intervention with an avocado (a highly bioavailable
source of 0.5mg lutein and zeaxanthin, along with being a good
source of potassium, B vitamins, vitamins C, E, K, MUFAs, and
other non-essential phytochemicals) for 6 months has shown
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to improve cognitive performance on the Spatial Working
Memory and the Stockings of Cambridge in non-demented
subjects with low baseline intake of lutein-rich foods (81, 82).
In the present analysis, a multivariate analysis approach (PCA)
has been adopted to address correlations among nutrients
and inspect the nutrition variable as NPs which reflect how
multiple nutrients may synergistically function in the context
of cognitive functioning and age-related cognitive impairment.
This is an important step in the field of nutritional cognitive
neuroscience toward the application of emerging technologies
(such as metabolomics and brain magnetic resonance imaging)
to systematically identify underlying mechanisms that mediate
the effect that a combination of nutrients have on clinical
outcomes (22, 32).

We acknowledge that this exploratory study is limited by
a relatively small sample size (which is reflected by borderline
significant p-values in Supplementary Table 4B) of mostly
Caucasian women, and the inability to control for other
covariates that may affect cognitive function such as alcohol
and smoking history, physical activity, social interactions, and
genetics (83). However, nutrient profiles and concentrations in
this current analysis are similar to those of other cohorts of
older adults (29–31, 84–88). NP1, described mostly by high fat
content, was not associated with cognition in this population.
Previous studies have reported benefits of diets high in n-3
PUFAs, especially DHA, on cognitive health (33, 89). While it
is more appropriate to use absolute concentrations of FAs in
the PCA, relative concentrations of FAs (i.e., FA composition)
may be more relevant to the biological function of the brain.
Additionally, it is unclear if the FA compositions in the brain
of this cohort of the oldest old were in the normal range, since
altered fatty acid compositions among cognitively impaired or
demented subjects were reported (29–31), but no difference
were observed between those with and without dementia
in this study.

Other nutrients and dietary compounds such as B vitamins,
vitamin D, minerals, and polyphenols that may be beneficial to
cognitive health were also not examined in this study (90), but
propose the opportunity to expand the scope of investigation.
Nutrients that are not present in the brain but sharing
common dietary sources with carotenoids and n-3 PUFAs, such
as fibers in fruits, vegetables, nuts and seeds, may provide
additional benefits to the central nervous system by functioning
systemically through the regulation of reverse cholesterol
transport, gut microbiota, and gut-brain axis signaling (91,
92). Finally, a cross-sectional study does not address a causal
and longitudinal relationship between nutrition and cognition.
A reverse causation where cognitive impairment leads to
changes in nutrient uptake and metabolism—for example
through BBB breakdown—is possible (23). However, dietary
intervention in human trials and animal studies have indicated
a significant impact that nutrition has on cognitive health in
aging (93–95).

In summary, this report is the first to adopt a multivariate
analysis approach to address the co-existence of nutrients
and dietary compounds in the brain when investigating the

relationship between nutrition and cognitive function in an aging
population. Our findings support beneficial effects of a NP higher
in carotenoids potentially derived from a diet rich in fruits and
vegetables similar to the MeDi and DASH diets, on lowering the
risk of age-related cognitive impairment and dementia previously
reported (2, 93, 94). As compared to symptoms of nutritional
deficiency which could be caused by an inadequate intake of one
single nutrient and manifest within a short period of time, we
are aware of the need to assess diet as a dietary pattern or NP
in a context of complex outcomes such as age-related cognitive
impairment (20–22). The synergistic and cumulative effect of
nutrients on a person’s risk of chronic diseases have recently been
highlighted in the Dietary Guidelines for Americans 2015–2020
and 2020–2025 (96, 97).
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