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The healing of any injury requires a dynamic balance of initiation and resolution of

inflammation. This hypothesis-generating review presents an overview of the various

nutrients that can act as signaling agents to modify the metabolic responses essential

for the optimal healing of injury-induced inflammation. In this hypothesis-generating

review, we describe a defined nutritional program consisting of an integrated interaction

of a calorie-restricted anti-inflammatory diet coupled with adequate levels of omega-3

fatty acids and sufficient levels of dietary polyphenols that can be used in clinical trials

to treat conditions associated with insulin resistance. Each dietary intervention works

in an orchestrated systems-based approach to reduce, resolve, and repair the tissue

damage caused by any inflammation-inducing injury. The orchestration of these specific

nutrients and their signaling metabolites to facilitate healing is termed the Resolution

Response. The final stage of the Resolution Response is the activation of intracellular

5’ adenosine monophosphate-activated protein kinase (AMPK), which is necessary to

repair tissue damaged by the initial injury-induced inflammation. The dietary optimization

of the Resolution Response can be personalized to the individual by using standard

blood markers. Once each of those markers is in their appropriate ranges, activation

of intracellular AMPK will be facilitated. Finally, we outline how the resulting activation of

AMPK will affect a diverse number of other intercellular signaling systems leading to an

extended healthspan.

Keywords: 5’ adenosine monophosphate-activated protein kinase, SPMs, calorie-restriction, anti-inflammatory

diet, omega-3 fatty acids, resolution response, polyphenols, inflammation

INTRODUCTION

There are two distinct phases to the body’s response to any injury: the initiation of inflammation
and its resolution. Although the molecular biology of the initiation of inflammation is
well-understood, the detailed knowledge of themolecular biology of the resolution of inflammation
remains an emerging field (1). Successful healing of any inflammation-induced injury requires the
coordinated reduction of the initial acute inflammation, followed by resolution of any residual
inflammation, and finally repairing the damaged tissue leading to a return to homeostasis. We term
this complex process that leads to healing as the Resolution Response (2).

If the Resolution Response is not sufficiently robust to address the initial acute inflammation
induced by an injury, there will be a build-up of chronic low-level unresolved inflammation.
Although this type of resulting unresolved inflammation is below the perception of pain, it is
also a major driving factor for developing a wide variety of age-related chronic diseases, including
diabetes, cardiovascular disease, cancer, auto-immune and neurological conditions (2).
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TABLE 1 | Causes of injury induced inflammation.

Microbial invasions

Physical injuries (internal and external)

Diet-induced

Oxidative stress-induced

Surgery-induced

Drug-induced (cancer drugs in particular)

Stressor-induced (physical, emotional, and environmental)

The Resolution Response is an evolutionarily conserved
mechanism to protect the organism from unresolved
injury-induced inflammation. Although microbial invasions
will generate an inflammatory response, there are a far
greater number of other potential causes of injury-induced
inflammation, as shown in Table 1.

While there are diverse types of injuries that can induce an
initial inflammatory response, the individual components of the
Resolution Response that control the healing of the damage are
governed by ancient and highly conserved mechanisms under
robust dietary control.

The Resolution Response’s molecular components that can
be directly affected by the diet can be divided into two
separate broad classes of signaling agents. One class of signaling
agents is hormones consisting of eicosanoids and specialized
pro-resolving mediators or SPMs. Eicosanoids would include
prostaglandins and leukotrienes, whereas SPMs would include
resolvins, protectins, and maresins. The other class of signaling
agents is gene modulators. These gene modulators include
NF-κB, the gene transcription factor central to the initiation
of inflammation, and 5’-adenosine monophosphate-activated
protein kinase (AMPK), the master switch of metabolism. AMPK
reduces not only NF-κB activity but also is essential to repair
damaged tissue.

A graphical depiction of these signaling agents is shown in
Figure 1.

These signaling agents of the Resolution Response represent
on-demand responses and must be continually balanced to
maintain homeostasis. We use the image of a gyroscope to reflect
this need for dynamic balance to maintain dynamic flexibility
to switch from inflammation to resolution. Over activation or
excessive inhibition of one particular signaling system in Figure 1
may have unintended consequences for the other linked systems.
As described later, the ranges of specific blood markers can be
altered by the diet to maintain these cellular signaling systems
in equilibrium.

Furthermore, acute inflammation is only activated by injury,
and it is the onset of inflammation that triggers the start of
resolution. The initial acute inflammatory response is protective
as it alerts the immune system to respond to the injury. However,
if the initial inflammatory response is unresolved, this leads to
chronic low-level inflammation. This unresolved inflammation
results in tissue damage that transforms the otherwise protective
initial inflammatory response associated with many chronic
disease conditions. To successfully heal from any injury-induced

inflammation, one must increase those diet-controlled nutrients
or their metabolites to activate AMPK and enhance SPM
formation to address unresolved inflammation. Simultaneously,
one also has to decrease the intake of those diet-controlled
nutrients that can promote excessive NF-κB activity and
increased eicosanoid formation. Thus, rather than concentrating
on any single dietary component of the Resolution Response,
one must focus on the broader vision of maintaining all of
the diet-controlled factors of the Resolution Response within
appropriate operating ranges. Thus, the Resolution Response
can be best understood from a dynamic systems-based biology
viewpoint consisting of complex, interrelated systems necessary
for successful healing.

It should be pointed out that the role of vitamins and
minerals in the immune response is relatively minor (3, 4). The
Resolution Response is dependent on how specific dietary factors
are important in the generation of either signaling hormones
(eicosanoids and SPMs) or the control of intracellular factors
(NF-κB and AMPK) are far more critical in controlling the
immune response.

General Description of the Dietary Impact
on Each Phase of the Resolution Response
The three distinct phases of the Resolution Response can be
summarized as (a) reducing injury-induced inflammation, (b)
resolving residual inflammation, and (c) repairing the tissue
damage caused by injury-induced inflammation, as shown in
Figure 2.

It should be noted that both acute inflammation and the
Resolution Response are quiescence systems that are only
activated by injuries that induce inflammation.

Acute inflammation is critical for proper immunological
function. However, an equally robust Resolution Response
must counter acute inflammation to prevent the build-up of
unresolved inflammation that can lead to either fibrosis or
cellular senescence, as shown in Figure 3.

Reducing Inflammation
A highly effective way to reduce existing inflammation is
following a highly defined anti-inflammatory diet. The problem
is how to describe such a diet.

The most important consideration for any anti-inflammatory
diet is calorie restriction. Any reduction of excess calorie
intake will lead to a decrease in systemic oxidative stress.
Calorie restriction has been the most successful therapeutic
intervention to improve healthspan (defined as longevity minus
years of disability) in virtually every species studied (5).
Significant metabolic benefits have been achieved by calorie
restriction in healthy overweight and normal-weight individuals
who participated in the various CALERIE (Comprehensive
Assessment of the Long-Term Effects of Reducing Intake of
Energy) studies (6, 7).

Successful lifetime calorie restriction depends on the ability of
such a diet to increase satiety. From this perspective, consuming
adequate protein levels at each meal may represent a necessary
first step. This concept is known as protein leveraging (8, 9).
Potential protein leveraging mechanisms may include increasing
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FIGURE 1 | Illustration of the balancing of the signaling agents involved in the Resolution Response. AMPK, 5’ adenosine monophosphate-activated protein kinase;

NF-κB, Nuclear factor kappa-B; SPMs, Specialized pro-resolving meditators.

FIGURE 2 | A graphic illustration of the sequential events for a successful Resolution Response to injury-induced inflammation. AMPK, 5’ adenosine

monophosphate-activated protein kinase; SPMs, Specialized pro-resolving meditators.
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FIGURE 3 | A graphic illustration of the consequences of a blocked Resolution Response preventing healing of an injury-induced inflammation.

glucagon levels to stabilize blood glucose levels in the blood (10)
and the increased release of satiety hormones such as PYY and
GLP-1 from the gut (11). In addition, the intake of fermentable
fiber in a calorie-restricted diet is also essential for generating
short-chain fatty acids (SCFA) that further enhance the signaling
intensity of PYY and GLP-1 generated by the protein intake at a
meal (12).

An anti-inflammatory diet should also substantially reduce the
omega-6 fatty acid arachidonic acid (AA) levels in the plasma
membrane. AA is the primary building block of eicosanoids.
The vast majority of eicosanoids derived from AA are pro-
inflammatory hormones that can significantly intensify any
initial inflammatory response, making it more challenging to
resolve the initial acute inflammation. However, a specific AA
level in the plasma membrane is necessary to generate the
eicosanoids required to create an acute inflammatory response.
This process begins with the activation of phospholipase A2

that releases AA from the plasma membrane phospholipids.
This free AA is immediately metabolized into eicosanoids.
However, excess AA levels in the plasma membrane will cause
increased amplification of the initial inflammatory response.
Although reducing the dietary intake of AA is one possible
way to achieve this goal, it should be emphasized that much of
the AA in the body (and especially in the plasma membrane)
comes from the metabolism of the linoleic acid into AA (13).
The metabolic conversion of linoleic acid to AA is accelerated
by elevated insulin levels generated either by a consistently
high glycemic load of the diet or by existing insulin resistance.

In either case, elevated insulin levels will activate the rate-
limiting enzymes (delta-6-desaturase and delta-5-desaturase),
leading to increased AA formation from dietary intake of linoleic
acid (14).

On the other hand, the hormone glucagon, induced by the
diet’s protein content, will inhibit the same desaturase enzymes
(14, 15). Thus, the balance of the protein-to-glycemic load
of an anti-inflammatory diet is essential in reducing excess
formation of AA that can result in excessive eicosanoid-driven
inflammation (13). Thus, a primary requirement of an anti-
inflammatory diet is to be low in linoleic acid, which will further
decrease AA levels by the above-mentioned metabolic pathways.

The development of insulin resistance can also increase AA
formation. Insulin resistance appears to be strongly influenced
by cytokine levels (especially TNFα) induced by activation of
NF-κB (16–18).

NF-κB is activated by high levels of saturated fatty acids
(primarily palmitic acid) in the blood that can interact with
the toll-like receptors TLR-2 and TLR-4. Activation of NF-κB
results in the increased production of cytokines (19, 20). Thus,
an additional dietary requirement for an anti-inflammatory diet
is a low intake of saturated fats, especially palmitic acid.

Increased insulin resistance eventually leads to elevated blood
glucose levels that cause beta-cell function in the pancreas
to begin to fail (21). The combination of high blood glucose
levels and oxidative stress generated by excess calorie intake
can increase Advanced Glycosylated End products or AGE
(22). These glycosylated proteins can interact with specific
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receptors (RAGE) on the cell surface, providing another diet-
related pathway to increase cytokine production by activating
NF-κB (23).

Just as it is necessary to reduce the dietary intake of omega-
6 and saturated fatty acids, it is also essential to increase the
omega-3 fatty acid intake, especially of the long-chain omega-
3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA). EPA is a feedback inhibitor of the delta-5-desaturase
enzyme that is the rate-limiting step in the production of AA
(24). Thus, the higher the levels of EPA in the diet, the less AA
is generated.

Eicosanoids can be generated from EPA, but not DHA. The
eicosanoids generated from the EPA are∼100–1,000 times lower
in their inflammatory intensity than the same eicosanoids derived
from AA (25). Thus, the eicosanoids derived from EPA are not
strictly anti-inflammatory hormones, but they are far weaker pro-
inflammatory hormones than those derived from AA. The net
result is a reduction in the intensity of the inflammatory response.

Another reason for increasing the omega-3 levels in an anti-
inflammatory diet is the reduction of inflammasome activation.
Inflammasomes are intracellular structures formed in response
to microbe-derived pathogen-associated molecular patterns
(PAMPs) or danger-associated molecular patterns (DAMPs)
sensed within the cell (26). Once activated, inflammasomes
will cause the generation of pro-inflammatory cytokines
such as IL-1β and IL-18 (27). The NLRP3 inflammasome
is the most investigated of the various inflammasomes
(28). Omega-3 fatty acids such as EPA and DHA can
inhibit the activation of inflammasomes (29). However, it
appears that DHA may be more effective than EPA in this
regard (30).

Finally, an anti-inflammatory diet should reduce the
inflammatory effects of metabolic endotoxemia by strengthening
the mucosal barrier in the gut (31). Improvement in the integrity
of the gut’s tight junctions can result from the increased levels of
the bacterium Akkermansia muciniphila. The population of this
bacterium in the gut can be enhanced with an increased intake of
fermentable fiber, omega-3 fatty acids, and polyphenols (32, 33).

The dietary foundation for reducing diet-induced
inflammation would consist of the following nutritional
composition: calorie restriction with adequate protein coupled
with a moderate level of low glycemic-load carbohydrates to
reduce excess glucose intake. Furthermore, the diet should be
low in total fat (especially omega-6 and saturated fatty acids), yet
with sufficient levels of fermentable fiber, omega-3 fatty acids,
and polyphenols.

Increasing Resolution
Reducing the inflammation caused by an injury is only the
first step toward the ultimate healing of any tissue damage.
The second obligatory step of the Resolution Response is
resolving any residual inflammation (34). Unlike the variety of
dietary interventions that help reduce inflammation, increasing
resolution of any residual inflammation is purely a function of
omega-3 fatty acids in the diet that are the building blocks to
produce levels of adequate Specialized Pro-Resolving Mediators
(SPMs). SPMs are hormones that control the resolution of

residual inflammation. SPMs represent a diverse superfamily
of hormones consisting of three primary subfamilies: resolvins,
maresins, and protectins. These SPMs are biosynthesized from
EPA, DHA, and docosapentaenoic acid (DPA) (35, 36).

SPMs are critical for several distinct stages of resolution,
including (a) stopping neutrophil swarming to the injury site, (b)
causing the transition of pro-inflammatory macrophages (M1) to
pro-resolution macrophages (M2) to remove cell debris from the
injury site, and (c) increasing efferocytosis to remove apoptotic
cells (37). In addition, the production of SPMs may also be a
critical factor in preventing the priming of the inflammasome
(38, 39).

The levels of omega-3 fatty acids required to achieve these
goals can be estimated by the ratio of leukotrienes to SPMs
(40, 41). Unfortunately, such a determination requires highly
sophisticated instrumentation. However, leukotrienes are derived
from AA, and many SPMs (such as the E-series resolvins) are
derived from EPA. Consequently, the ratio of AA/EPA in the
blood can serve as an upstream surrogate marker to determine
whether therapeutic levels of omega-3 fatty acids are present
to generate sufficient levels of SPMs to complete the resolution
phase of the Resolution Response.

Altering Gene Expression
The final and most complex phase of the Resolution Response
is activating the master switch of metabolism, AMPK (2, 42).
AMPK is a highly conserved energy sensor controlled by the
balance of AMP and ATP levels in a cell. As the AMP/ATP ratio
increases as occurs with calorie restriction, AMPK is activated,
which sets in motion the phosphorylation of a broad cascade of
gene transcription factors that switch metabolism from anabolic
to catabolic to restore ATP levels (43–46).

Figure 4 indicates just a few of the many metabolic effects that
take place once AMPK is activated.

While all these actions will significantly affect metabolism,
perhaps the most critical benefit of AMPK activation is inhibiting
NF-κB activity (47–49). The inhibition of NF-κB leads to a
substantial reduction of both excess eicosanoid and cytokine
levels. The activation of AMPK thus reduces inflammation
induced by NF-κB activation. This metabolic control of NF-κB
by AMPK is critical for the successful repair of damaged tissue.

This repair process starts with increased autophagy to supply
the molecular building blocks for tissue repair and increased
mitophagy to replace damaged mitochondria to provide the
energy required for tissue repair (50). These processes are
controlled by AMPK via activation of ULK-1, which is the first
step to increase mitophagy (50).

A potential link between increased SPM formation and
increased AMPK activity appears to be mediated by receptors
for various SPMs. One well-characterized receptor is FPR2/ALX,
a receptor for lipoxin A4 and the anti-inflammatory/pro-
resolution protein annexin (51). FPR2/ALX is also a receptor
for the Resolvin D1 (RvD1) derived from DHA (52). Thus, it
is very likely that RvD1 and other SPMs, signaling through
similar receptors, may also be instrumental for increased AMPK
activation (53–55).
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FIGURE 4 | Metabolic effects of AMPK activation. Green arrows on the “spokes” indicate activation, red lines with a bar at the end indicate inhibition. ACC 1 and

ACC2, -Acetyl-CoA carboxylase 1 and 2; AMPK, 5’ adenosine monophosphate-activated protein kinase; Glut, Glucose transporter protein; GS, Glycogen synthetase;

mTOR, mammalian target of rapamycin; NF-κB, Nuclear factor kappa-B; NOS, Nitrogen oxide synthetase; PGC-1α, Peroxisome proliferator-activated receptor

gamma coactivator 1-alpha; SREBP-1c, Sterol regulatory element-binding protein 1c.

However, the most potent dietary effector of AMPK may
be polyphenols. Polyphenols activate AMPK indirectly by
binding to various sirtuins (SIRT) which are deacetylating
enzymes dependent on NAD+ (56, 57). One of the multiple
targets for SIRT is liver kinase B1 (LKB1). Once LKB1
is deacetylated, it activates AMPK, which inhibits NF-
κB (58, 59). In addition, AMPK activates the rate-limiting
enzyme (nicotinamide phosphoribosyltransferase or NAMPT)
of the salvage pathway that regenerates NAD+, needed
for the deacetylating activity of various SIRT proteins.
This crosstalk between SIRT and AMPK creates a positive
feedback loop for AMPK activation (60–64). This is shown
in Figure 5.

The only problem with dietary polyphenols as AMPK
activators is their limited water-solubility. However, specific
subclasses of polyphenols such as anthocyanins (particularly
delphinidins) have high water-solubility making it possible to
obtain adequate blood levels to increase AMPK activity (65–69).

AMPK activity is under robust dietary control activated by
calorie restriction, SPMs, and polyphenols. On the other hand,
AMPK activity is inhibited by excess calorie intake and elevated
blood glucose levels (70, 71). Thus, one can obtain the maximum
dietary activation of AMPK activity by following a calorie-
restricted diet with a low glycemic index with adequate omega-3
fatty acids and water-soluble polyphenols such as anthocyanins,
especially bioavailable delphinidins (72, 73).
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FIGURE 5 | Crosstalk between SIRT and AMPK. Any decrease in the cell’s energy state measured by an increased AMP/ATP ratio will activate AMPK. This activation

of AMPK leads to increasing NAMPT activity that produces NAD+ required for SIRT deacetylation activity. SIRT then deacetylates LKB1, which activates AMPK.

AMPK, 5’ adenosine monophosphate-activated protein kinase; LKB1, Liver kinase B1; NAMPT, Nicotinamide phosphoribosyltransferase; SIRT, Sirtuins.

TABLE 2 | Dietary nutrients and their signaling agents in the resolution response.

Nutrient Signaling agent

Protein Glucagon, PYY, and GLP-1

Carbohydrates Insulin

Fats Eicosanoids and SPMs

Fermentable fiber Short-chain fatty acids

Polyphenols AMPK

Specific Dietary Guidelines to Optimize the
Resolution Response
Optimizing the Resolution Response requires viewing dietary
nutrients as signaling agents, as shown in Table 2.

Protein
Adequate protein intake plays a critical role in the long-term
adherence of calorie restriction to activate AMPK. Sufficient
protein levels at every meal are necessary to control satiety via
protein leveraging (9, 74). Protein leveraging is based upon the
hypothesis that the protein levels at each meal determine the
level of appetite suppression of that meal. Without adequate
appetite suppression betweenmeals, long-term success for calorie
restriction is highly unlikely. There are two potential mechanisms
of protein leveraging. The first mechanism is to have adequate
dietary protein at anymeal to release sufficient levels of hormones
such as PYY and GLP-1 from the small intestine that goes directly
to the brain via the vagal nerve to reach the hypothalamus to
reduce hunger (75, 76). Thus, the less protein consumed in a
meal, the more likely additional calories will be needed to be
consumed at that meal to cause sufficient appetite suppression
by alternative pathways. The second mechanism is the increase
in glucagon levels in the blood stimulated by dietary protein
(10). Glucagon will release stored glycogen from the liver to

maintain stable blood glucose levels, thereby reducing hunger.
This outcome of improved hunger control is also suggested by
a recent study demonstrating that the postprandial glycemic dip
at 2–3 h predicted future appetite and energy intake (77).

Clinical data suggest that weight regain after controlled
purposeful weight loss is reduced with a higher protein
percentage in the diet. It appears that ∼25% of the total calories
as protein at each meal may be a threshold for this effect (10, 78).
For a 400-calorie meal, this would mean consuming ∼25 g of
protein. However, the daily dietary protein required is based
on the individual’s lean body mass and physical activity (13).
For the average female, this will be ∼75 g of protein per day. For
the average male, the protein level will be about 100 g of protein
per day.

It should be noted that these protein intake levels for an
anti-inflammatory diet are typical for the US population (79).
Although these recommended daily protein levels are slightly
higher than the generally recommended minimum daily protein
intake, they are necessary because calorie restriction for an anti-
inflammatory diet can reduce lean body mass (80). Furthermore,
the total protein should be spread evenly throughout the day for
improved hormonal control (13, 81).

Another nuance of protein leveraging is the timing of protein
consumption during a meal. Eating protein before consuming
carbohydrates generates more significant glycemic control in
type 2 diabetic subjects than consuming carbohydrates first
before protein (82, 83). One potential reason may be that protein
requires a longer transit time in the small intestine to reach the L-
cells that secrete PYY and GLP-1. These gut hormones stimulated
by protein go directly via the vagal nerve to the brain’s appetite
center in the hypothalamus to generate satiety. This timing factor
suggests that the blood levels of amino acids needed to stimulate
glucagon will rise more slowly than glucose levels (especially
high-glycemic load carbohydrates rich in glucose) required to
stimulate insulin release. Thus, consuming protein first in a
meal should generate a more favorable postprandial glucagon-to
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insulin balance after the meal. Clinical data suggests an improved
balance of glucagon-to-insulin leads to a substantial reduction in
consumed calories under ad libitum conditions after consuming
two consecutive balanced meals compared to isocaloric meals
with a lower protein-to-carbohydrate ratio (10).

Carbohydrates
Since excess dietary glucose is an inhibitor of AMPK, the glucose
content in a meal and its entry rate into the bloodstream
will be essential for optimizing the Resolution Response. The
glycemic index measures the rate of entry of glucose in the
blood of a defined amount of particular carbohydrate-containing
food. However, a more relevant metabolic parameter is the
glycemic load. The glycemic load considers how rapidly the total
carbohydrate of a meal raises blood glucose levels (84). Meals
consisting of a high glycemic load will inhibit AMPK activity. The
highest glycemic load comes from having grains and starches as
the primary carbohydrates in a meal. Therefore, for minimum
inhibition of AMPK, the carbohydrate content of a meal should
consist primarily of carbohydrates with a low glycemic impact.
These carbohydrates would mainly consist of primarily non-
starchy vegetables and limited amounts of fruits (mostly berries).
Epidemiology studies have indicated that individuals consuming
10 servings per day of non-starchy vegetables and fruits have
lower mortality and morbidity than those consuming fewer
servings of these low glycemic impact carbohydrates (85). This
epidemiological observation would be consistent with decreased
inhibition of AMPK activity.

Fats
Total fat content should remain low for maintaining calorie
restriction. However, one must also consider the composition
of that total fat intake. The balance of omega-6 to omega-3
fatty acids should be no >2:1. A lower omega-6 to omega-3
fatty acid ratio will ensure a better balance of their bioactive
biosynthetic products (eicosanoids coming from omega-6 fatty
acids and SPMs from omega-3 fatty acids) help improve the
resolution of any injury-induced inflammation. The omega-6 to
omega-3 fatty acid balance in the United States was∼10:1 in 1999
(86, 87). The levels of saturated fats (principally palmitic acid)
should also remain low because of their potential generation of
inflammation in the hypothalamus (88). Increased hypothalamic
inflammation can also potentially attenuate satiety signals from
the gut and the blood (89). As discussed earlier, high levels of
palmitic acid can interact with the TLR-2 and TLR-4 receptors
to activate NF-κB to generate cytokines (19, 20). Thus, the bulk
of the limited fat content for an anti-inflammatory diet should
come from monounsaturated fatty acids.

Macronutrient Balance
The macronutrient balance of the diet at every meal can also
further control hormonal responses. Ideally, the level of low-
glycemic-load carbohydrates should be approximately one-third
more than the protein content in a meal (13). Such a protein-
to-carbohydrate balance is very similar to that estimated for a
Paleolithic diet (90). Furthermore, this balance of protein-to-
carbohydrate should be consistent for each meal. It is known

from clinical experiments that the protein-to-carbohydrate ratio
profoundly affects the blood’s resulting insulin-to-glucagon
balance under isocaloric conditions (10). This hormonal balance
is essential since the delta-6 and delta-5 desaturase enzymes that
convert the omega-6 fatty acid linoleic acid into arachidonic acid
(AA) are activated by insulin (14). In contrast, glucagon inhibits
these same enzymes, decreasing the potential excess formation
of AA, thereby reducing possible excess eicosanoid formation
(14, 15).

Finally, to maintain appropriate calorie restriction, the total
fat content of the diet should be <50 g per day. Thus,
the macronutrient composition of an anti-inflammatory diet
should be ∼1 g of fat for every 2 g of protein and every
3 g of carbohydrate at every meal. This total macronutrient
balance is also consistent with estimates of Paleolithic diets
(90). Placebo-controlled trials using calorie-restricted diets have
demonstrated that the macronutrient balance described above
appears to reduce inflammation (91–93) significantly. These
differences in the reduction of inflammation based on the
protein-to-carbohydrate ratio may be related to the change in the
balance of insulin and glucagon observed in different protein-to-
carbohydrate ratios seen in cross-over diet studies (10). Changes
in the insulin-glucagon balance can affect the activity of various
desaturases are critical for preventing excess arachidonic acid
production (14). These initial results suggest that the protein-to-
carbohydrate balance of a calorie-restricted diet may significantly
improve its anti-inflammatory effects.

Fermentable Fiber
Gut bacteria require the dietary intake of fermentable fiber to
generate short-chain fatty acids (SCFA). SCFA act as signaling
agents to maintain the gut barrier’s integrity by decreasing
inflammation in the gut wall (94, 95).

Improving the integrity of the gut wall will reduce metabolic
endotoxemia as a significant source of gut-induced inflammation
(96). SCFA produced in the gut can also significantly affect
neurological function via the vagus nerve (97). Finally, SCFA
have a significant role in maintaining satiety by enhancing the
secretion of PYY and GLP-1 from the gut (98, 99).

Polyphenols
Polyphenols constitute a large group of more than 8,000
compounds that can be potentially metabolized into less complex
phenolic compounds that can also act as signaling agents (100).
It is challenging to measure polyphenols in the blood. However,
the metabolites of those polyphenols that are absorbed can be
found in the urine. Studies have suggested that the increased
levels of polyphenols in the urine are associated with reduced
frailty and mortality compared to the estimated dietary intake
of polyphenols from food diaries (101, 102). Furthermore,
only specific polyphenol structures appear maximally active as
allosteric agents to increase the sirtuins’ deacetylating activity,
as described earlier. The polyphenols with the most significant
potential to cause an allosteric activation of sirtuins appear to
require an intact flavonoid structure and a net positive charge to
enhance their water solubility (57). The subgroup of polyphenols
that has both structural characteristics is anthocyanins. Berries
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are a rich source of anthocyanins. It should be noted that
increased anthocyanin intake is associated with decreased
incidence of cardiovascular disease, although the effect appears
to be stronger in women than men (103, 104).

Vitamins and Minerals
Compared to the above-mentioned dietary factors, the role of
vitamins and minerals will have a relatively minor effect on
inflammation and resolution and the immune response (3, 4).
Furthermore, it has been calculated that a calorie-restricted
anti-inflammatory diet described earlier is rich in non-starchy
vegetables and limited amounts of fruits and would supply
adequate levels of vitamins and minerals (105).

Clinical Markers to Determine an Optimal
Resolution Response
The ultimate approach to healing is to optimize the Resolution
Response. Success requires reducing, resolving, and repairing
inflammatory damage caused by any injury. This goal can
be achieved by reducing the stresses on lipid, glycemic, and
inflammatory responses. These various metabolic responses are
under significant dietary control. Therefore, the more the stress
levels of each of these three metabolic responses are maintained
within appropriate ranges, the greater the degree to which the
Resolution Response becomes optimized.

Successful dietary management of the Resolution Response
can be determined by the extent to which each of the clinical
markers of metabolic stress is maintained within their desired
ranges. Such blood markers must be highly validated, easily
obtained, and provide clear guidelines for personalizing the
individual’s diet.

The three clinical markers that meet these criteria are
the following:

(a) Reducing lipid stress: A primary factor is causing lipid
stress is insulin resistance. Therefore, the TG/HDL ratio
(measured in mg/dL) should be <1 for controlling insulin
resistance (106–113).

(b) Reducing inflammatory stress: Inflammatory stress is caused
by an imbalance in the production of eicosanoids and
SPMs. The AA/EPA ratio should be maintained between
1.5 and 3 to maintain an appropriate ratio of precursors
for a balanced formation of both eicosanoids and SPMs. A
significant reduction of various cytokines is observed when
this range of the AA/EPA ratio is achieved by appropriate
supplementation with omega-3 fatty acids (114–116). The
average AA/EPA ratio in the US is >20 (117, 118), indicating
the existence of an unfavorable balance of eicosanoids
to SPMs.

(c) Reducing glycemic stress: The HbA1c level should be
maintained between 4.9 and 5.1 percent, indicating the lack
of glucose inhibition of AMPK activity (70).

The recommended appropriate ranges for these markers are
lower than the typical average levels for healthy individuals, but
they are still within normal ranges. Therefore, only when all three
of these three clinical markers are in their appropriate ranges

can the Resolution Response be considered to be optimized for
an individual.

Furthermore, each of the markers can be modulated by
specific dietary interventions. For example, the level of insulin
resistance can be significantly reduced by following an anti-
inflammatory diet. In particular, the dietary intake of omega-
3 fatty acids strongly influences the AA/EPA ratio. Finally, the
dietary intake of polyphenols to activate AMPK will strongly
affect the HbA1c levels. It should be noted that AMPK can also
be activated by increased SPM synthesis and calorie restriction
that is the foundation for an anti-inflammatory diet. Thus, there
is significant crosstalk of the various dietary components as
discussed above.

Potential Need for Supplementation
In principle, an appropriate anti-inflammatory diet should be
sufficient to optimize the Resolution Response. However, the diet
will often require supplementation with omega-3 fatty acids and
polyphenols to reach the target ranges of the clinical markers
described above. This need for potential supplementation is
because the levels of omega-3 fatty acids in the blood required
to resolve the residual inflammation caused by the injury
sufficiently are often beyond the intake provided by the best anti-
inflammatory diet. This need for supplementation is also the case
for the amounts of polyphenols needed to activate AMPK to
repair damaged tissue.

In particular, supplementation with EPA and DHA
concentrates may be required to increase the biosynthesis
of the SPMs needed to resolve residual inflammation and
reduce inflammasome formation (29, 38, 39, 119–121). The best
sources of polyphenols to enhance AMPK activity will come
from polyphenol concentrates of the anthocyanin family. These
polyphenols can enhance the allosteric activation of sirtuins
to indirectly activate AMPK (55) and inhibit inflammasome
formation (122, 123). Such polyphenol concentrates should also
be devoid of glucose that would otherwise impede the activation
of AMPK.

The recommended dosage of the above supplements can
be obtained from the selected clinical trials. It has been
demonstrated that a dose of 2.5 g of EPA and DHA per day for
8 weeks can significantly reduce cytokines levels in elderly obese
individuals compared to a placebo group (115). The REDUCE-IT
study used 3.9 g of EPA over an average of 4.9-years demonstrated
a significantly reduced number of CHD events in subjects with
elevated triglycerides and already taking statins compared to the
placebo group (124). In patients with coronary artery disease, a
daily dose of 3.4 g of EPA and DHA per day for year generated
SPMs in the active group, but not the placebo group (125). Thus,
it would be recommended that an initial starting supplemental
dose of omega-3 fatty acids would be between 2.5 and 4 g per day.
The precise level of omega-3 supplementation can be determined
from the level required to reduce the AA/EPA ratio in the blood
to between 1.5 and 3.

The levels of polyphenols, and in particular anthocyanins, are
estimated to be at least −150 to 500mg per day. An open study
using 180mg of anthocyanins per day demonstrated a statistically
significant decrease in the HgA1c levels in prediabetics within
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4 weeks that continued to decrease at 12 weeks (126). A
placebo-controlled study using 450mg per day of anthocyanin
supplementation produced a statistically significant decrease in
oxidative stress after 30 days of supplementation in the smokers
in the active group compared to the control group of smokers
as measured by decreased isoprostane levels. After anthocyanin
supplementation was stopped, the level of isoprostanes in the
active group returned to their original levels after 40 days (127).

Reaching the target HbA1c ranges determines the amount
of optimal level of polyphenol supplementation that may be
required. Since individuals are not genetically identical, the
levels of potential supplementation are personalized by the blood
markers already described.

While any one of the three dietary interventions is helpful for
partial activation of AMPK, we contend that the combination
of all three nutritional interventions will be needed to have
a significant and sustained effect on AMPK activation for
meaningful therapeutic results.

This need for multiple dietary interventions for maximum
activation of AMPK is shown in Figure 6.

The Potential Relationship of the
Resolution Response to Insulin Resistance
The concept of insulin resistance has been used for more than
80 years (128). Its relationship to a larger group of chronic
conditions began to be more recognized by the work of Gerald
Reaven (129). However, it still is not clear exactly what causes
insulin resistance (130, 131). However, it is known that insulin
resistance is also associated with chronic low-level inflammation
(132–135). Furthermore, the clinical marker of insulin
resistance is hyperinsulinemia. Exactly how hyperinsulinemia
causes the wide variety of metabolic disturbances
associated with insulin resistance is still open to question
(130, 131).

An alternative hypothesis can be formulated that a deficiency
of AMPK activity may be the central factor in developing
metabolic disturbances within the cell that are associated with
insulin resistance. For example, it is known that insulin resistance
is strongly associated with reduced AMPK activity (44, 136–138).
Consequently, metabolic disorders such as obesity, metabolic
syndrome, type 2 diabetes, and non-alcoholic fatty liver disease
(NAFLD) strongly associated with insulin resistance have been
directly linked to decreased AMPK activity (43, 139, 140).
Furthermore, other chronic conditions related to increased
insulin resistance include hypertension (141), cardiovascular
disease (142), polycystic ovary syndrome (143), chronic kidney
disease (144), various types of cancer (145), depression (146), and
neurodegenerative diseases such as Alzheimer’s and Parkinson’s
(147). These diverse chronic conditions are also considered pro-
inflammatory conditions related to unresolved inflammation
caused by blocked Resolution Response leading to deficiency of
AMPK activity in target cells. Therefore, maintaining a constant
dietary optimization of the Resolution Response may offer a
fundamental central dietary approach for potentially managing
those many chronic conditions associated with insulin resistance,
as shown in Figure 7.

From this perspective, one could potentially redefine insulin
resistance as a deficiency of AMPK activation caused by a
blocked Resolution Response. It should be noted that the most
successful group of drugs for treating insulin resistance have been
thiazolidinediones (TZDs).

One hypothesized mode of action of this class of drugs
is the activation of AMPK (148–150). Therefore, we feel that
optimization of the Resolution Response by the appropriate
dietary interventions to increase the activity of AMPK within
the cell may potentially have a significant therapeutic impact on
each of the chronic conditions associated with insulin resistance
without the past toxicity problems associated with the use of
TZDs (151).

The Resolution Response as
Systems-Based Biology
Systems-based biology takes into account the interconnected
signaling pathways within the cell that are required to
maintain homeostasis. Because of these complex relationships,
pharmaceutical intervention in one pathway may adversely
affect other intracellular pathways. Our working hypothesis
is that dietary optimization of the Resolution Response will
result in the activation of AMPK that can more effectively
coordinate these pathways. Although direct measurement of
AMPK activity in any tissue is complex because it requires a
biopsy, one can use the clinical blood markers described earlier
that define optimization of the Resolution Response as surrogate
markers for themaintenance of intracellular AMPK activity. How
AMPK activity is intimately connected to many of these diverse
intracellular signaling pathways is shown in Figure 8.

As shown in Figure 8, there is significant cross-signaling
between these various metabolic systems within the cell and
potential inhibition or activation of one system by another.
In some cases, there is mutual activation, such as between
AMPK and SIRT or between PI3K/AKT, mTOR, and NF-κB. In
other cases, there can be reciprocal inhibition between systems,
such as between PI3K/AKT and AMPK. Finally, there can
also be unidirectional inhibition or activation between various
signaling pathways.

AMPK may represent the molecular link between these
diverse signaling systems and the diet. This control is possible
since AMPK is an evolutionarily conserved energy sensor that
controls metabolism. In essence, AMPK becomes the checkpoint
for metabolic control that links diet to these various intracellular
signaling systems. In particular, activation of AMPK will inhibit
the activity of NF-κB, thereby reducing the generation of pro-
inflammatory mediators such as cytokines and eicosanoids (48),
but also inhibit other intracellular systems such as mTOR and the
PI3K/AKT that can activate NF-κB (152). In addition, the repair
of damaged tissue also requires increased AMPK activity for
both the repair of damaged tissue and the prevention of fibrosis
(153, 154).

However, one can only routinely monitor the blood, not the
interior of the cell. This is why constant monitoring of the
blood markers that define the Resolution Response provides an
easily obtained insight into AMPK activity. Thus, continuous
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FIGURE 6 | A graphical description of the dietary interventions that can activate AMPK.

dietary optimization of the Resolution Response results in
the dietary control intracellular AMPK activity. In doing so,
it may be possible to maintain these other internal cellular
signaling pathways within their optimal operating parameters.
The successful result leads to improved metabolic efficacy
generating a potentially extended healthspan.

On the other hand, any reduction in AMPK activity leads
to the over-expression of pro-inflammatory signaling systems
shown in Figure 8. One of the linked systems that would
increase with a decrease in AMPK activity would include NF-
κB. Increased NF-κB activity is related to increased inflammatory
activity associated with cardiovascular disease (155) and cancer
(156). Likewise, reduced activity of AMPK would lead to
potentially excessive activity of mTOR and the PI3K/AKT
signaling pathways associated with cancer (157, 158).

How the activity of AMPK acts as the central hub linking
various other cellular signaling systems at the molecular level is
described in more detail in the following summaries.

NF-κB Signaling
One of the primary benefits of activating AMPK is the inhibition
of NF-κB, resulting in the reduction of cytokine and eicosanoid
formation. The lowering of inflammation is achieved through
several different routes orchestrated by AMPK (48). One pathway
is inhibiting NF-κB by the direct activation of AMPK (159).
Another route is through the activation of SIRT1 by increasing
NAD+ levels (63). Finally, AMPK activates the rate-limiting
enzyme in theNAD+ salvage pathway that provides the necessary

NAD+ to enable SIRT1 to deacetylate the Rel/p65 component of
NF-κB to prevent its binding to the cell’s DNA that is required to
express inflammatory mediators (160).

Additional AMPK-mediated pathways that inhibit NF-κB
activity include the activation of PGC-1α (161) and the
phosphorylation of FOXO (49).

mTOR Signaling
Activation of AMPK is the primary inhibitor of mTOR. At the
molecular level, mTOR inhibition is due to phosphorylation of
the raptor component of mTORC1 and TSC2 (162). In addition,
the association of increased SIRT1 activity with the inhibition of
mTOR (163) can be induced by the AMPK’s activation of the rate-
eliminating enzyme of the NAD+ salvage pathway (161). On the
other hand, any increase in AKT activity will up-regulate mTOR,
which activates NF-κB (164).

PI3K/AKT Signaling
The PI3K/AKT pathway is activated by insulin and results in
cellular growth activation (165). If the PI3K/AKT pathway is too
active, this will inhibit the activity of AMPK (166, 167). On the
other hand, any increase in AMPK activation will inhibit AKT
activity (166, 167).

The inhibition of AMPK and FOXO activity by AKT can
be reduced by optimization of the Resolution Response. One
way in which PI3K activity can be reduced by lowering blood
insulin levels following an anti-inflammatory diet. The reduction
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FIGURE 7 | Potential linkage of the Resolution Response to insulin resistance and related chronic disease conditions.

of PI3K activity leads to decreased activation of AKT. Long-
term studies using the previously described anti-inflammatory
diet have demonstrated success in the long-term management of
type 2 diabetes (168, 169).

FOXO Signaling
The FOXO family of gene transcription factors consisting of
FOXO1, FOXO3, FOXO4, and FOXO6. The FOXO family is
vital in controlling cellular senescence, stem cell maintenance,
and lifespan in animal models (170). FOXO upregulation can be
achieved either by phosphorylation via AMPK or deacetylation
by SIRT (171, 172). In addition to the direct effect of AMPK
activation on FOXO, any increase in AMPK activity will increase
the activity of the rate-limiting enzyme (NAMPT) in the synthesis
of NAD+, thereby activating SIRT, which also increases FOXO
activity (173).

An indirect route to activate FOXO is via the AMPK-induced
inhibition of AKT (171). On the other hand, any up-regulation
of AKT by a deficit in AMPK activity will reduce FOXO activity
(174–176). This central role of AMPK in FOXO activation may
explain why activation of AMPK has been hypothesized to
control the aging process (177).

Another inflammatory pathway that can be modulated by
AMPK is JAK-STAT, which mediates cytokine signaling (178).

Considering the complexity of these interactions with cellular
signaling mechanisms in the cell, optimizing the Resolution
Response may have a far greater potential to bring a cell
back to homeostasis than any potential drug therapy proposed
for healthspan extension (179). If so, then the continuous
optimization of the Resolution Response by the diet may play an
essential role in extending the human healthspan.

Limitations and Outstanding Questions
Our working hypothesis is that gaining control of the complex
systems biology that occurs inside a cell will require consistent
maintenance of AMPK within defined operating parameters to
respond to constantly changing metabolic needs. Furthermore,
we feel no single dietary intervention will provide that necessary
control of AMPK to be used as a therapeutic intervention
to treat the various chronic conditions associated with insulin
resistance. While there is suggestive evidence that each dietary
component of the Resolution Response (an anti-inflammatory
calorie-restricted diet, adequate intake of omega-3 fatty acids
and polyphenols) can have some health benefits in humans,
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FIGURE 8 | The potential effect of dietary optimization of the Resolution Response on various regulatory proteins and gene transcription factors. AMPK, 5’ adenosine

monophosphate-activated protein kinase; FOXO, Forkhead box transcription factors class O; mTOR, mammalian target of rapamycin; NF-κB, Nuclear factor

kappa-B; PI3K/AKT, Phosphatidylinositol 3-kinase/AKT (protein kinase B).

we believe that their synergistic interactions will result in far
more significant clinical benefits potentially mediated by their
synergistic interactions on AMPK activity.

One major limitation of our hypothesis is the difficulty of
measuring AMPK activity in humans as it requires a tissue
biopsy. On the other hand, we feel the dietary optimization of the
Resolution Response using defined blood markers can be titrated
to their appropriate ranges results allows the development of the
necessary clinical trials combining all three dietary interventions
being applied simultaneously can be undertaken today.

Another limitation is the potential genetic variations between
individuals. However, this can be overcome by titration of the
dietary components of the Resolution Response to reach the
appropriate target ranges in the blood. In essence, one would
be undertaking an “AMPK” clamp to determine if the clinical
condition being studied responds with equal, if not superior,
clinical results to this type of dietary therapy compared to
standard drug therapy.

To answer the question of the widespread clinical utility of
our hypothesis requires doing clinical trials. Since one is using
dietary interventions, clinical trials to optimize the Resolution

Response bypass the need for animal models. As demonstrated
by the CALERIE studies, calorie restriction can be maintained
for an extended period of time (6, 7). Using omega-3 fatty acids
and polyphenols at levels that have Generally Regarded as Safe
(GRAS) status set the upper limits for their supplementation to a
calorie-restricted anti-inflammatory diet with a defined protein-
carbohydrate ratio. The most likely chronic conditions that
would be applicable to such immediate clinical trials are those
associated with insulin resistance with defined clinical endpoints
such as metabolic syndrome, type 2 diabetes, and non-alcoholic
fatty liver disease. If successful, then the same dietary technology
should be applicable to other chronic diseases associated with
insulin resistance.

SUMMARY

We hypothesize that the ability to heal from any injury-
induced inflammation depends significantly on the dietary
control of the body’s internal Resolution Response. The
final result of the optimization of the Resolution Response
is the activation of AMPK. This hypothesis is based on
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the ability of AMPK to modulate internal cellular signaling
through systems-based biology. While there is no single specific
nutrient to optimize the body’s internal capacity to heal from
injury-induced inflammation, an appropriate combination of
dietary interventions can alter signaling pathways that can
lead to the molecular goal of increasing AMPK activity.
This concept of requiring a defined combination of multiple
dietary interventions to achieve the appropriate activation of
AMPK is no different from using various combinations of
discrete chemotherapeutic drugs to treat cancer. However,
unlike numerous combination drug therapies used for cancer
treatment, each dietary intervention described earlier can be
easily modulated using the clinical markers that define the
boundaries that optimize the Resolution Response for dietary
guidance. Thus, the use of bloodmarkers becomes the foundation
for precision nutrition.

In conclusion, we believe understanding the complex
interaction of highly defined dietary interventions that result in
the optimization of the Resolution Response can provide a new
appreciation of a new comprehensive nutritional strategy to treat
many chronic conditions, especially those associated with insulin

resistance. Furthermore, the dietary approach we have outlined
can be optimized on an individual basis using validated blood
markers to orchestrate a wide variety of internal cellular signaling
systems. By using such blood markers to titrate each dietary
component of the Resolution Response to their appropriate
ranges moves precision nutrition into the realm of personalized
medicine. Reaching and maintaining the appropriate ranges
of those clinical markers that define the optimization of the
Resolution Response may potentially be translated into an
increased healthspan using diet as if it were a drug that controls
the complex systems-based biology of healing.
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GLOSSARY

AA, Arachidonic acid; ACC 1 and ACC2, Acetyl-CoA
carboxylase 1 and 2; AGE, Advanced glycosylated end products;
AMPK, 5’ adenosine monophosphate-activated protein kinase;
APC, antigen-presenting cell; COX-2, Cyclooxygenase-2; DAMP,
Danger-associated molecular patterns; DHA, Docosahexaenoic
acid; DPA, Docosapentaenoic acid; ECM, Extracellular
matrix; EPA, Eicosapentaenoic acid; FOXO, Forkhead box
transcription factors class O; GLP-1, Glucagon-like peptide; Glut,
Glucose transporter protein; GS, Glycogen synthetase; HbA1c,
Hemoglobin A1c; JAK, Janus kinase; LKB1, Liver kinase B1;
mTOR, Mammalian target of rapamycin; NAMPT, Nicotinamide
phosphoribosyltransferase; NF-κB, Nuclear factor kappa-B;
NOS, Nitrogen oxide synthetase; PYY, Peptide YY; PGC-1α,
Peroxisome proliferator-activated receptor gamma coactivator
1-alpha; RAGE, Receptor for advanced glycation end products;
RvD1, Resolvin D1; SASP, Senescence associated secretory
phenotype; SCFA, Short-chain fatty acids; SIRT, Sirtuins (silent
information regulator family of proteins); SPMs, Specialized
pro-resolving meditators; SREBP-1c, Sterol regulatory element-
binding protein-1c; STAT, Signal transducer and activator of
transcription; TNFα, Tumor necrosis factor-alpha; TLR-2, Toll-
like receptor-2; TLR-4, Toll-like receptor-4; TSC2, Tuberous
sclerosis complex 2; ULK-1, Unc-51-like kinase 1.
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