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Nutrients can be considered as functional foods, which exert physiological benefits on

immune system. The seeds of Nigella sativa, which have many active constituents,

are mainly used for medicine, food spice, and nutritional supplements in Egypt.

Much attention has been paid to N. sativa seeds for their anticancer, antibacterial,

anti-inflammatory, and immune properties. However, their active constituents and

mechanisms underlying functions from N. sativa seeds is unclear. Thus, the bioactive

constituents with immune regulation in N. sativa seeds were systematically studied. A

new compound (3-methoxythymol-6-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside

1) and 11 known compounds (2–12) were separated from the N. sativa seeds by

chromatographic methods. Their structures were then elucidated by spectroscopic

analysis of MS, UV, IR, 1H-, and 13C-NMR. Furthermore, immunomodulatory effects

of those compounds in RAW 264.7 cells were evaluated by phagocytosis, nitric

oxide (NO) and cytokine release, related mRNA transcription, and key proteins

expression in vitro. Monosaccharide derivatives, Ethyl-α-D-furaarabinose (5), and

Ethyl-β-D-fructofuranoside (8) were shown to played bidirectional regulatory roles in

immunity and anti-inflammation through the regulation of nuclear factor-κB (NF-κB)

signaling pathways. The results showed the active compounds and mechanisms of

immune regulation in N. sativa, thus indicating that N. sativa seeds could be used as

dietary supplements in immunomodulation.

Keywords: Nigella sativa, monoterpene glucoside, monosaccharide derivatives, immune, anti-inflammatory,

RAW264.7

INTRODUCTION

The interaction between inflammation and the immune system is very complex (1). Inflammation
is a physiological and pathological reaction caused by the harmful stimulation of living tissue
with the vascular system by the internal and external environment (1). A moderate inflammatory
reaction can stimulate the immune system and promote the proliferation and activation of
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immune cells, while an excessive inflammatory reaction will
cause immune system dysfunction, resulting in damage to the
body (2). Inflammation is the outcome of effective immune
response actions that prevent the organism from infections (3).
Acute inflammation is the response of the immune system
microorganism and environmental stresses and is crucial to tissue
healing. On the other hand, chronic inflammation generally
refers to chronic illnesses like diabetes and neurodegenerative,
cardiovascular, and metabolic diseases (4, 5). When chronic
inflammation develops, it can cause pathological change to
signaling pathways [especially nuclear factor-κB (NF-κB)] and
the signal transducer, which cause an increased level of oxidative
stress leading to excessive release of reactive oxygen species
(ROS) (6, 7). NF-κB pathway activation leads to the expression
of genes regulating immune-regulation, inflammation, apoptosis,
and carcinogenesis, with the release of pro-inflammatory
cytokines and chemokines (8). Immunotherapy is an effective
therapeutics via activating or suppressing the immunologic
system through synthetic, natural drugs and antibodies to combat
disorders (5). Intake of immune modulators is an essential
approach to immunotherapy. Synthetic agents show typical side
effects manifested as infection, blood constipation, disorders,
and so on, while natural drugs are comparatively safe (9). Some
dietary constituents of phytochemicals are essential to the balance
and development of the immune system and in the amelioration
of chronic inflammation (10).

Diet therapy and diet health gradually became the focus of
attention. Diets rich in plants such as spices, fruits, and vegetables
were demonstrated to restrict the emergence and growth of
chronic illness via the inhibition of chronic inflammation (11,
12). Balanced healthy diets along with nutrient supplementation
are also essential tomaintain the normal physiology of the human
body as it plays an essential role in boosting up individual
immunity (13). Nutrient supplementation containing botanicals
can meet the physiological and nutritional needs of some
patients (14). The use of botanicals has drawn much attention,
particularly for minimizing adverse events on the immune
system (15).

Nigella sativa, belonging to the family Ranunculaceae, is
distributed in southwest Asia, North Africa, and Southern
Europe (16). N. sativa seeds are exhibited in time-honored
traditions through their usage as wind dispelling agents,
diuretics, insect repellents, and dietary supplements (17–19).

Abbreviations: NO, nitric oxide; COX, cyclooxygenase; IL, interleukin; NF-κB,

nuclear factor-κB; gDNA, genomic DNA; PVDF, polyvinylidene fluoride; RNA,

ribonucleic acid; PBS, phosphate buffered saline; iNOS, inducible nitric oxide

synthase; FBS, fatal bovine serum; PCR, polymerase chain reaction; IκB, inhibitor

of NF-κB; LPS, lipopolysaccharide; ELISA, enzyme-linked immunosorbent assay;

DMSO, dimethyl sulfoxide; cDNA, complementation deoxyribonucleic acid; BCA,

butyleyanoacrylate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; TNF,

tumor necrosis factor; DMEM, Dulbecco’s modification of eagle’s medium; SDS-

PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis; MTT, 3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; COVID-19, coronavirus

disease 2019; T2DM, type 2 diabetes mellitus; ROS, reactive oxygen species;

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein

cholesterol; GOT, glutamic-oxaloacetic transaminase; HMBC, heteronuclear

multiple-bond correlation; HPLC, high-pressure liquid chromatography; TLC,

thin layer chromatography.

The seeds of N. sativa have been shown to exert anti-
cancer, immunomodulative, anti-inflammatory, anti-bacterial,
antioxidant, hypoglycemic, stomach protection, liver protection,
and renal protection activities (20–22). The seeds and oil of N.
sativa are widely used in food preparation and medicine (23, 24).
In addition, literature has shown that the co-delivery of nutrient
supplements and drugs could contribute to promising results. N.
sativa components as nutritional supplements are effective for the
adjuvant treatment of COVID-19 cases (25, 26). In addition, N.
sativa seeds and oil has been shown to supplement cardiovascular
protective functions for patients with type 2 diabetes mellitus
(T2DM) (27). Like other supplements, N. sativa seeds can
strengthen the resistance of the immune system to diseases (28).
Alshatwi A A found that N. sativa seed extract could stimulate
the proliferation of human peripheral blood monocytes, which
are usually stimulated by non-phytohemagglutinin through flow
cytometry and PCR methods (29).

It is obvious that N. sativa seeds could meet the nutritional
need to improve the immune system of an organism (30).
Research on the chemical constituents of this genus began in the
middle of the 20th century (31), which showed that N. sativa
seeds contain various chemical components like essential oils,
alkaloids, phenols, saponins, and steroids (32, 33).

Our work focused on the identification of the relevant
bioactive compounds in N. sativa seeds. The ethanol extract
of N. sativa was investigated and a new monoterpene
glucoside, 3-methoxythymol-6-O-β-D-apiofuranosyl-(1→6)-
β-D-glucopyranoside, and 11 known compounds were
isolated and identified. Then, the anti-inflammatory and
immunomodulative activities of the compounds (Figure 1)
isolated from N. sativa seeds were evaluated in vitro. The
mechanism of the monosaccharide derivatives was demonstrated
on RAW264.7 macrophage.

MATERIALS AND METHODS

Reagents and Instruments
The following technologies and materials were used in this
research: UV spectra (Shimadzu, Kyoto, Japan); IR spectra
(Bruker Vector 22 spectrophotometer, Bruker Optics GmbH,
Ettlingen, Germany); Mass spectra (API QSTAR time-of-flight
spectrometer, MDS Sciqaszex, Concord, Ontario, Canada). NMR
spectra (Bruker AM-400, Bremerhaven, Germany); silica gel
(200–300 and 300–400 mesh, Qingdao Marine Chemical Inc.,
China); Rp-18 gel (40–63µm, Merck, Darmstadt, Germany);
Sephadex LH-20 (20–150µm, Amersham Biosciences, Uppsala,
Sweden); YMC∗GEL ODS-A-HG (50µm, YMC Co. Ltd., Kyoto,
Japan) (34).

The following reagents were used in this research: FBS (Gibco,
Grand Island, NE, USA); DMEM, neutral red (Solarbio, Beijing,
China); Nitric oxide kit (Nanjing Jiancheng Bioengineering
Institute); IL-6 and TNF-α ELISA kit (Beijing 4A Biotech Co.,
Ltd., Beijing, China); Primer iNOS, TNF-α, IL-6 and Cox-2
(Thermo Fisher Scientific, Shanghai, China); Reactive Oxygen
Species Assay Kit (Beyotime Biotechnology, Shanghai, China);
PrimeScriptTMRT reagent kit with gDNA Eraser kit and TB
Green TM Ex TaqTM II (Tli RNadeH Plus, Accurate Biology,
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FIGURE 1 | Structures of compounds isolated from N. sativa.

Hunan, China), Bulk kit (TaKaRa, Accurate Biology, Hunan,
China); Antibody NF-κB p65, phospho-NF-κB p65, iNOS, COX-
2, IκBα, and phospho-IκBα (Cell Signaling, Beverly, MA, USA);
LPS (Sigma-Aldrich, St. Louis, MO, USA) (35).

Extraction and Isolation
The air-dried and powderedN. sativa seeds (5 kg) were degreased
with petroleum ether and the residue was extracted by 70%
ethanol (3 × 10 L) under room temperature. The ethanol extract
(550 g) was separated by silica gel column chromatography
eluting with a gradient of CHCl3-MeOH (20:1→1:1, v/v) to
afford seven fractions 1–7 by TLC plate analysis. Fr.2 (15 g)
was subjected to Rp-18 column chromatography (MeOH-H2O,
20:80→100:0, v/v) to afford five subfractions (Fr.2-1 to Fr.2-
6). Sephadex LH-20 column chromatography (MeOH) was
performed on 2–4 (300mg) and then purified by semi-prep.
HPLC (MeOH-H2O, 40:60, v/v) was performed to obtain 3

(4mg), 4 (4mg), and 5 (25mg). Fr.3 (50 g) was then separated
by Rp-18 column chromatography (MeOH-H2O, 40:90→60:0,
v/v), performed by silica gel column chromatography, eluted
with a gradient system of EAC-MeOH (10:1→1:1, v/v), purified
by Sephadex LH-20 column chromatography (MeOH), and
further purified by semi-prep. Another HPLC (MeOH-H2O,
30:70, v/v) was also performed to afford 6 (4mg), 7 (3.5mg),
and 8 (35mg). Fraction 4 (19.5 g) was subjected to silica gel
column chromatography, eluting with a gradient system of

CHCl3-MeOH (8:1→1:1, v/v) to afford five subfractions (Fr.4-
1 to Fr.4-5). Fr.4-2 (15 g) was performed by Rp-18 column
chromatography (MeOH-H2O, 10:90→100:0, v/v), Sephadex
LH-20 column chromatography (MeOH), and further purified
by semi-prep. An additional HPLC (MeOH-H2O, 52:48, v/v)
to afford 1 (4mg) and 2 (3mg) was performed. Fr.6 (100 g)
was separated by silica gel column chromatography, eluting with
a gradient system of CHCl3-MeOH (8:1→1:1, v/v) to afford
five subfractions (Fr.6-1 to Fr.6-5). Fr.6-1 (300mg) was purified
by semi-prep. Once again, HPLC was performed (MeOH-H2O,
28:82, v/v) to afford 9 (7mg) and 10 (3mg). Fr.6-3 (150mg) was
purified by Sephadex LH-20 column chromatography (MeOH),
further by semi-prep. Another HPLC (MeOH-H2O, 15:85, v/v)
to afford 11 (2mg) was performed. Fr.7 (10 g) was separated
by silica gel column chromatography, eluting with a gradient
system of CHCl3-MeOH (5:1→1:1, v/v), then Sephadex LH-
20 column chromatography (MeOH), and further purified by
semi-prep. One more HPLC (MeOH-H2O, 52:48, v/v) was
performed to afford 12 (5mg). Spectral data was seen in
Supplementary Materials.

Plant Material
Nigella sativa seeds were provided by the Department of
Medicinal and Aromatic Plants, Horticultural Research Institute,
Egyptian Agricultural Research Center. The plants of N. sativa
were rich in local resources; thus, the collection was permitted.
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Cell Culture and Cell Viability Assay
RAW264.7 macrophages were cultured by the same assay
as Zhang H (36). Cell viability was assessed by 3-(4,5-
Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. The starting inoculum of 1 × 105 cells/ml/well was
cultured in a 96-well cell culture plate at 100 µl per well-
incubating at 37◦C with 5% carbon dioxide in an incubator
for 24 h. Cells were also exposed to 100-µl culture mediums
with different concentrations (6.25, 12.5, 25, 50, 100, 200, and
400 µmol/L) of compounds 5 and 8 for 24 h, respectively.
Lipopolysaccharide (LPS, 1µg/ml) was used as a positive control.
In addition, 10 µl/well MTT solution was added in the dark
environment, cells were cultured in an incubator for 4 h, and
dimethyl sulfoxide (DMSO, 100 µl) was added to each well to
solubilize the blue-purple crystal, with the best absorption at
490 nm.

Phagocytic Activity
RAW264.7 cells were seeded in 96-well plates (1 × 106 cells/ml)
and exposed to specified concentrations of compounds 5 and 8.
The supernatant was treated with 0.075% neutral red solution
after 24 h. Cell lysis solution containing 1% acetic acid-anhydrous
alcohol (1:1, V:V) was also added into each well, and then the
absorbance value was determined at 540 nm.

Measurement of NO
The experiment referred to normal and LPS-induced conditions
of the RAW264.7 macrophages model. RAW264.7 cells were
seeded in 24-well plates (1 × 106 cells/ml) and treated with
compounds 5 and 8 for 24 h under normal culture conditions.
The administration group was pretreated with compounds
5 and 8 for 1 h and LPS (1µg/ml) for 24 h under the
LPS-induced inflammation model. Then, supernatants were
collected for testing of the nitric oxide (NO) concentration
by the Nitric oxide kit according to the instructions of
the manufacturer.

Determination of IL-6 and TNF-α
Macrophages were treated as described above, cellular
supernatants were collected, and the cytokines [interleukin- (IL-)
6 and tumor necrosis factor- (TNF-) α] were analyzed using
corresponding ELISA kits.

qRT-PCR
Cell processing was done similarly to the above methods, and
PCR was performed by the same assay as Zhang H (36). The
sequences are listed in Table 1.

Western Blot
RAW264.7 cells were collected as described above, and then
the total proteins were extracted using the weak RIPA Lysis
Buffer. The methods of sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and Western blot were the same
as the assay done by Wang Honglin (35). The protein signals
were visualized with an ECL chemiluminescence detection
kit (Solarbio, Beijing, China) and the band gray value was
quantitatively analyzed using the Image J software (36).

TABLE 1 | Primers sequences.

Name Primer Sequence (5’→3’)

COX-2 Forward GGGCTCAGCCAGGCAGCAAAT

Reverse GCACTGTGTTTGGGGTGGGCT

iNOS Forward GCTCGCTTTGCCACGGACGA

Reverse AAGGCAGCGGGCACATGCAA

IL-6 Forward AGACAAAGCCAGAGTCCTTCAGAGA

Reverse GCCACTCCTTCTGTGACTCCAGC

TNF-α Forward CCCTCCTGGCCAACGGCATG

Reverse TCGGGGCAGCCTTGTCCCTT

GAPDH Forward ACCCCAGCAAGGACACTGAGCAAG

Reverse GGCCCCTCCTGTTATTATGGGGGT

Determination of Intracellular ROS
RAW264.7 cells were plated in 6-well plates with 5× 105 cells/ml
cells suspension and cultured at 37◦C with 5% CO2 for 24 h.
The control group, administration group (compounds 5 and 8),
and LPS group (1µg/ml) were conducted on RAW 264.7 cells,
respectively. The supernatant was discarded after 24 h, and the
cells were gently rinsed and centrifuged by adding serum-free
Dulbecco’s modification of eagle’s medium (DMEM). Each group
was added with 1ml of 10µM DCFH-DA to resuspension cells.
Cells were incubated at 37◦C for 20min and reversed every 3–
5min to allow the probe to have full contact with the cells.
Eventually, the probe was determined by flow cytometry after
using a 300-mesh nylon screen.

Statistical Analysis
Experimental data were expressed as mean± standard deviation,
and the numerical statistics were handled using a one-way
ANOVA of the SPSS 19.0 software. All column images were made
via the GraPhPad Prism 6.0 software.

RESULTS

Identification of a New Compound
Compound 1 was obtained as a colorless oil and its formula was
determined as C22H34O11 by HR-EI-MS at m/z 473.2027 [M-
H]− (calcd for C22H34O11, 473.2023). The

1H-NMR spectrum
(Table 1) indicated 2 aromatic H-atoms at δH 6.72(s) and 6.95(s),
2 anomeric H-atoms at δ(H) 4.67 (1H, t, J = 3.6Hz) and
4.96 (1H, d, J = 2.4Hz, H-1′′), and 3 Me groups at 2.14 (3H,
s) and 1.20 (6H, d, J = 7Hz). The 13C-NMR spectrum of 4
(Table 2) revealed 22 C-atom signals, corresponding to a 1,3,4,6-
substituted aromatic ring, three Me groups at δ(C) 16.2 and
23.6, a CH group at δ(C) 27.4, a β-D-glucosyl moiety, and a
terminal β-D-apiosyl moiety (9, 10). In the HMBC spectrum
(Figure 2), the key correlations from H-7/C-5, C-4 and C-3, H-
2/C-8, H-9/C-1, and C-8 and C-10, together with 1H-1H-COSY
correlations of H-9/H-8 and H-10/H-8 showed that the aglycone
of 1 was thymoquinol (11). The key correlations from H-1′ [δH
4.67] to C-6 (δC 149.6) in the HMBC spectrum indicated that
β-D-glucosyl moiety was attached to C(6). We also speculated

Frontiers in Nutrition | www.frontiersin.org 4 August 2021 | Volume 8 | Article 722813

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Niu et al. Nigella sativa: Immune-Modulator

TABLE 2 | The 1H and 13C NMR data of 1 (CD3OD, δ in ppm, J in Hz).

Position δH δC

1 138.3

2 6.72 (1H, s) 108.9

3 154.9

4 125.5

5 6.95 (1H, s) 120.8

6 149.6

7 2.14 (3H, s) 16.2

8 3.43 (1H, m) 27.4

9 1.20 (6H, d, J = 7Hz, 3H) 23.7

10 1.20 (6H, d, J = 7Hz, 3H) 23.6

OMe 3.78 (3H, m) 56.2

1′ 4.67 (1H, t, J = 3.6Hz) 104.6

2′ 3.42 (1H, m) 75.2

3′ 3.37 (1H, m) 78.2

4′ 3.35 (1H, m) 71.6

5′ 3.47 (1H, m) 76.8

6′a 3.99 (1H, m)

6′b 3.55 (1H, m) 68.7

1′′ 4.96 (1H, d, J = 2.4Hz) 110.9

2′′ 3.89 (1H, m) 78.1

3′′ 80.6

4′′a 3.91 (1H, s)

4′′b 3.73 (1H, d, J = 9.6Hz) 75.0

5′′ 3.51 (2H, s) 65.7

FIGURE 2 | Key 1H-1H COSY and HMBC correlations of compound 1.

that the β-D-apiose moiety was attached to C(6’) and the β-
D-glucosyl moiety (12). This conclusion was elucidated by the
HMBC spectrum, in which the key correlation from H-1′′ [δH
4.96] to C-6′ (δC 68.7) was observed (Figure 2) (9). Hence, the
structure of compound 1 was defined as 3-methoxythymol-6-O-
β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside.

Effects of Compounds 5 and 8 on Cell
Viability of RAW264.7 Macrophages
RAW264.7 cells were exposed to different concentrations of
compounds 5 and 8 for 24 h. Results showed that compound

5 had no significant inhibitory effect on the proliferation of
RAW264.7 cells at 6.25–400 µmol/L in Figure 3. Compound 8

did not significantly inhibit the proliferation of RAW264.7 cells
at 6.25–200 µmol/L, but significantly inhibited the activity cells
at 400 µmol/L. Therefore, the concentrations at 50, 100, and 200
µmol/L of compounds 5 and 8were selected as the concentration
gradients for subsequent experiments in Figure 3A.

Effects of Compounds 5 and 8 on
Phagocytic Activity
In Figure 3, the phagocytosis of LPS-treated cells was consistent
with the expectation, which increased nearly twicemore than that
of the blank group. Compared with the normal control group, the
phagocytic activity of RAW264.7 cells was significantly enhanced
after being exposed to compounds 5 and 8 at a concentration of
6.25–200 µmol/L for 24 h in Figure 3B. They could promote the
phagocytosis of macrophages at a certain concentration range,
which may be essential to immune-regulation.

Effects of Compounds 5 and 8 on NO
Secretion in LPS-Induced RAW264.7 Cells
There is a significant increase in the concentration of NO in
normal cells after LPS stimulation, increasing to approximately
twice as much as that in the blank group, which indicated that
the model was successful. However, the excessive expression of
NO was inhibited significantly by the high-dose and low-dose
groups of compounds 5 and 8 after LPS stimulation, while the
middle-dose group showed significant effects in Figure 3C.

Effects of Compounds 5 and 8 on Gene
and Protein Expression of iNOS and COX-2
in LPS-Induced RAW264.7 Cells
The increase of NO during inflammation was generally attributed
to the upregulation of inducible nitric oxide synthase (iNOS)
and cyclooxygenase- (COX) 2, respectively. In Figure 3D, LPS
significantly stimulated the transcription of targeted mRNA,
while compounds 5 and 8 reversed the mRNA upregulation.
Compounds 5 and 8 at 50, 100, or 200 µmol/L, significantly
reduced COX-2 and iNOS protein production in LPS-induced
macrophages, which was in accordance with the PCR results.

Effects of Compounds 5 and 8 on the
Expression of Proteins in NF-κB Signaling
Pathways in LPS-Induced RAW264.7 Cells
NF-κB signaling pathways are key cellular signaling pathways
mediated by LPS. The results showed that the protein expressions
of p-IκBα and p-NF-κB p65 were significantly upregulated in
RAW264.7 cells stimulated by LPS compared with the blank
group. These results indicated that compounds 5 and 8 could
inhibit the over-expression of key proteins p-IκBα and N-NF-
κB p65 in the NF-κB pathways of RAW264.7 cells in Figure 3E,
thereby inhibiting the over-activation of the NF-κB pathways and
playing an anti-inflammatory role.
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FIGURE 3 | Effects of compounds 5 and 8 on the nuclear factor-κB (NF-κB) pathways in lipopolysaccharide- (LPS) induced RAW264.7 Cells. (A) Cell survival rates.

(B) Phagocytic activity of RAW264.7. (C) The expression levels of nitric oxide (NO) production. (D) mRNA and protein expression of cyclooxygenase- (COX) 2 and

inducible nitric oxide synthase (iNOS). (E) Expression levels of key proteins in the NF-κB pathways. (F) Production of reactive oxygen species (ROS). β-Actin served as

a control. Data shown are means ± SEM. ***p < 0.001, **p < 0.01, *p < 0.05. ###p < 0.001, ##p < 0.01, #p < 0.05.
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Effects of Compounds 5 and 8 on
LPS-Induced Oxidative Stress
To release abundant ROS, LPS is generally used to stimulate
RAW264.7 cells. These ROS mediate inflammatory signals in
cells. As is shown in Figure 3F, compared with the blank
group, the peak shape of the LPS group shifted significantly
to the right, indicating that LPS improved the production
of oxygen, while compounds 5 and 8 at 200 µmol/L could
inhibit the excessive production of reactive oxygen in stimulated
RAW264.7 cells.

Effects of Compounds 5 and 8 on NO
Secretion in Normal Cultured RAW264.7
Cells
As shown in Figure 4A, compounds 5 and 8 in high- and
medium-dose groups significantly promoted the production of
NO in normal cultured RAW264.7 cells, while there was no
significant effect at 50 µmol/L.

Effects of Compounds 5 and 8 on the
Secretion of Cytokines and mRNA
Expression in RAW264.7 Cells in Normal
Cultured RAW264.7 Cells
In Figure 4C, compared with the blank group, the release levels
of TNF-α and IL-6 by RAW264.7 cells treated with LPS or
compounds were significantly increased. The results showed
that compounds 5 and 8 could promote the release of TNF-
α and IL-6 in RAW264.7 cells, but the optimal dose was 200
µmol/L. On this basis, the effects of compounds 5 and 8 (200
µmol/L, respectively), on themRNA levels of cytokines in normal
cultured RAW264.7 cells were determined by qRT-PCR. As
shown in Figure 4B, mRNA transcription of TNF-α and IL-6
was significantly raised following LPS treatment in the positive
control group. Furthermore, compared with the control group,
compounds 5 and 8 (200 µmol/L, respectively), significantly
increased the levels of TNF-α and IL-6. These indicated that
compounds 5 and 8 could upregulate the mRNA levels of TNF-
α and IL-6 in macrophages and promote the production of IL-6
and TNF-α.

Effects of Compounds 5 and 8 on iNOS and
COX-2 in Normal Cultured RAW264.7 Cells
To determine the effects of compounds 5 and 8 (200 µmol/L,
respectively), on the mRNA expression of iNOS and COX-2
in cells, PCR was used. Western blot was applied to measure
the effects of compounds 5 and 8 (50, 100, and 200 µmol/L,
respectively), on the expression of COX-2 and iNOS under
normal culture conditions. As shown in Figure 4D, LPS could
significantly increase the production of iNOS and COX-2mRNA.
High-dose groups of compounds 5 and 8 could significantly
upregulate the mRNA transcription levels of COX-2 and iNOS in
normal cultured cells. Moreover, compared with the blank group,
compounds 5 and 8 significantly promoted the production of
COX-2 and iNOS proteins. In summary, compounds 5 and 8

could significantly promote the production of COX-2 and iNOS
at the gene and protein levels.

Effects of Compounds 5 and 8 on the
Expression of Proteins in NF-κB Signaling
Pathway in Normal Cultured RAW264.7
Cells
The NF-κB pathway is crucial to cellular and body immunity,
inflammatory response, and apoptosis. As shown in Figure 4E,
the results showed that, compared with the blank group,
compounds 5 and 8 could promote the expression of key
proteins p-IκBα and p-p65 in the NF-κB signaling pathways of
RAW264.7 cells in normal culture, thus moderately activating
NF-κB signaling pathways and enhancing immunity.

DISCUSSION

Our immune response system is continuously conducting on
protecting the host from microbes by recognizing, answering,
and acting on antigens (37). Generally, macrophages are crucial
to innate cellular immune responses and play a significant
role in the phagocyte cell system, which is programmed to
identify, engulf, and eliminate apoptotic cells, bacteria, etc.
(10, 38). The immune system functions to maintain the
physiological health of the body and protect it from pathogens
through an increased release of inflammatory cytokines (39).
Cytokines released by different cells with specific effects on
cellular signaling through combination to their receptors
on the cell surface are essential modulators of the immune
process via a complex network engaged in various immune
processes, which include proliferation, phagocytosis, and
inflammation (40, 41).

The NF-κB pathway is crucial to cellular and body immunity,
inflammatory response, and apoptosis. The NF-κB pathway
activation leads to the expression of genes associated with
inflammation and immunoregulation and the release of pro-
inflammatory cytokines and chemokines, which eventually
results in the transcription of genes (42). It participates
in many biological processes such as apoptosis, cellular
immune regulation, inflammatory reaction, and tumorigenesis
by regulating the expression of related inflammatory factors,
chemokines, growth factors, COX-2, and nitric oxide synthase
(NOS) (43). Thus, reducing the translocation of NF-κB can
decrease the production of pro-inflammatory cytokines and
inflammatory mediators like iNOS and COX-2 (44). The NF-
κB in the cytoplasm binds to its inhibitor IκB in the resting
state to form a trimer p50-p65-IκB, which is in an inactive state.
When stimulated by LPS, IκB is phosphorylated by its kinase
IKK and under the action of the ubiquitin enzyme, p50-p65-
IκB is disintegrated and NF-κB translocation into the nucleus
is phosphorylated and activated, which mediates a series of
downstream reactions (Figure 5) (45).

In this study, monosaccharide derivatives isolated from
N. sativa seeds were studied to illustrate their effect on
RAW 264.7 macrophage. To evaluate the immunobiological
activity of these monosaccharide derivatives, studies based on
various immune responses containing cytotoxicity, phagocytosis,
transcription, and expression were used. As a result, we found
two monosaccharide derivatives (5, 8) (Figure 1) that showed
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FIGURE 4 | Effects of compounds 5 and 8 on the nuclear factor-κB (NF-κB) signaling pathways in normal cultured RAW264.7 cells. (A) Expression of nitric oxide (NO)

production. (B) Inflammatory cytokine tumor necrosis factor- (TNF-) α, interleukin- (IL-) 6 mRNA transcription. (C) Secretion of TNF-α, IL-6. (D) mRNA and protein

expression of cyclooxygenase- (COX-) 2 and inducible nitric oxide synthase (iNOS). (E) Expression of key proteins in the NF-κB signaling pathways.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) served as control. Data shown are means ± SEM. ***p < 0.001, **p < 0.01, *p < 0.05.
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FIGURE 5 | Schematic of the potential mechanisms of the effects of compounds 5 and 8 on the NF-κB signaling pathway in RAW264.7 macrophages. Compounds 5

and 8 exert anti-inflammatory and immune bidirectional regulation by promoting reactive oxygen species (ROS) generation and affecting the nuclear factor-κB (NF-κB)

signaling pathway as discussed in the text. The arrows indicate the direction of the signaling pathway.

a two-way regulation of immunity and anti-inflammation
on normal and LPS-stimulated RAW264.7 macrophages in
vitro through regulating the expression of key proteins in
the NF-κB pathway. Monosaccharide derivatives might be
possibly used in immunomodulating on the basis of their
function to affect the macrophage. In addition, investigation
has also shown that arabinoxylans with immunomodulatory
effect could be considered effective bioactive food supplements
associated with many health amelioration functions (46). In vitro
immunobiological evaluation of chitin- and chitosan-derived
oligosaccharides on RAW 264.7 cells obtained results that
indicated a beneficial immunomodulation effect referring to the
development of cytokine release, phagocytosis, cell proliferation,
and respiratory burst (10).

Nutrition plays a significant role in every stage of the immune
response. In this regard, food containing balanced nutrients
with therapeutic functions play an essential role in promoting
the immunity of individuals (46). Nutritional interventions,
particularly the beneficial constituents with special immune and
anti-inflammatory effects, show the potential to regulate and
enhance the immune system (47, 48). Since the assessment of
the efficacy of plants is laborious, conducting research on more
homogeneous populations to take the heterogeneity of the plant
preparations into account should be considered in the future (49).
Despite the fact that dietary supplements have appealing and
considerable interest to nutritionists, the safety and effectiveness
of these dietary supplements are still a highly controversial issue
(50, 51).

N. sativa seeds are quite safe and effective for treating patients
with chronic disease (52–55). Thymoquinone obtained in N.
sativa seeds can reduce oxidative stress and recover the balance
between anti- and pro-inflammatory cytokines (56). Another
study indicated that supplementing 2 g/day of N. sativa oil
capsules showed considerable improvements on cardiometabolic
parameters of high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), and glutamic-
oxaloacetic transaminase (GOT) levels (57) of the serum.
However, further research into clinical situations might be
required to evaluate the functions of N. sativa seeds on the
inflammation and immune mechanisms responsible for this
behavior. Every supplementation could be considered prudently
by the nutritionist and used within the recommended safety dose
(58). In addition, monosaccharide derivatives are generally found
at low levels in our diet, providing essential contribution by some
dietary habits. More growing research with reliable and advanced
technologies could be carried out to assess the dietary intake of
monosaccharide derivatives in the future.

N. sativa seeds were applied as value immune modulators in
the therapy of chronic diseases (14). Thus, taking both properties
of the compounds and the optimal dose into account, research on
N. sativa food supplements can provide fundamental information
regarding body health suggestions with N. sativa in the future,
especially against chronic inflammation which leads to some
diseases. Our research indicated that an N. sativa supplement
might be beneficial as a complementary method for therapy of
immune and inflammatory complications in patients.
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CONCLUSION

A new monoterpene glucoside (1) and 11 known compounds
(2–12) were isolated and identified in N. sativa seeds.
Monosaccharide derivatives 5 and 8 exerted bidirectional
regulatory effects on immunity and anti-inflammation through
NF-κB signaling pathways. The mechanism of immunity
may relate to the increased release of cytokines and the
level of mRNA transcription in normal RAW264.7 cells,
and anti-inflammatory properties may associate with the
inhibition of the excessive release of pro-inflammatory
cytokines and excessive transcription at the mRNA level
under LPS stimulation. These data will be valuable for
further research on N. sativa seeds as a dietary supplement
for immune-modulation.
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