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Carbohydrate counting is essential for well-controlled blood glucose in people with

type 1 diabetes, but to perform it precisely is challenging, especially for Thai foods.

Consequently, we developed a deep learning-based system for automatic carbohydrate

counting using Thai food images taken from smartphones. The newly constructed Thai

food image dataset contained 256,178 ingredient objects with measured weight for 175

food categories among 75,232 images. These were used to train object detector and

weight estimator algorithms. After training, the system had a Top-1 accuracy of 80.9%

and a root mean square error (RMSE) for carbohydrate estimation of <10 g in the test

dataset. Another set of 20 images, which contained 48 food items in total, was used to

compare the accuracy of carbohydrate estimations between measured weight, system

estimation, and eight experienced registered dietitians (RDs). System estimation error

was 4%, while estimation errors from nearest, lowest, and highest carbohydrate among

RDs were 0.7, 25.5, and 7.6%, respectively. The RMSE for carbohydrate estimations of

the system and the lowest RD were 9.4 and 10.2, respectively. The system could perform

with an estimation error of <10 g for 13/20 images, which placed it third behind only two

of the best performing RDs: RD1 (15/20 images) and RD5 (14/20 images). Hence, the

system was satisfactory in terms of accurately estimating carbohydrate content, with

results being comparable with those of experienced dietitians.

Keywords: carbohydrate counting, computer vision, deep learning, Thai food, eHealth, nutrition

INTRODUCTION

In 2019, type 1 diabetes (T1D) was estimated to affect 1,110,100 persons aged <20 years globally
(1). The estimated incidence is 2.07% from 11 tertiary centers in Thailand (2). Briefly, the disease is
caused by the progressive destruction of pancreatic beta cells of the immune system. Patients with
T1D are dependent on exogenous insulin for glycemic control (3).

Essentially, patients with T1D should estimate the amount of carbohydrates in their foods as
precisely as possible using a carbohydrate countingmethod and administer the appropriate amount
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of insulin for each meal. Furthermore, patients need to measure
their blood glucose levels and record their physical activity to
maintain optimal glycemic control. These procedures are part
of diabetes self-management (DSM). While patients with T1D
should complete DSM regularly to maintain good control of their
blood glucose levels, DSM tasks can become a life-long burden.

While carbohydrate counting is crucial for controlling blood
glucose levels among patients with T1D, bias, misreporting, and
portion size estimation errors are unavoidable for inexperienced
(4–6) and even trained persons (7–9). Furthermore, certain
patients may find that accurate carbohydrate counting is
challenging (and even frustrating) because of inadequate
nutritional and/or mathematical knowledge. This challenge may
result in suboptimal blood glucose control.

The evolution of a high-resolution digital image sensor,
together with the high-performance processor in smartphones,
offers a new way to reduce errors in carbohydrate amount
estimation. This technology also has the potential to reduce the
DSM burden among patients with T1D. With the incorporation
of computer vision and deep learning technologies, carbohydrate
amounts can be estimated automatically using images of foods
taken by a smartphone in a real-time fashion.

Several estimation systems have been developed to overcome
problems of inaccuracy (10–12) that demonstrate comparable
results with estimations made by experienced dietitians. In
addition, some systems have been equipped with functions for
recording individual health status on a daily basis, including
food intake, physical activities, blood glucose levels, and insulin
dosage. This information can also be exported to healthcare
providers. Such features can reduce the burden of diabetes care
process. However, the direct application of these systems to
include Thai Foods can be challenging due to differences in
visual appearance, cultural food preparation practices, cooking
methods, and local ingredients, amongst others.

Compared with Western foods, carbohydrate counting in
Thai foods is more challenging (13–15). The visual appearance
of similar foods can vary because of the customization of food
ingredients. For instance, several fruits, such as mango, tamarind,
pomelo, star gooseberry, and carambola, can be used along
with lime juice to produce acidic flavors in Thai foods, thus
providing a significant amount of carbohydrates. Even for foods
with the same visual appearance, carbohydrate content can vary
depending on the cooking method. Consequently, Thai dietitians
must estimate carbohydrate content based on a standard recipe
and thenmodify the carbohydrate content by taking into account
the visible or known ingredients in each dish (16).

To the best of our knowledge, while there have
been many attempts to develop a system for Thai food
recognition (17–19), no system has aimed at estimating
carbohydrate content in Thai foods. The objective of this
study, therefore, was to develop a carbohydrate estimation
system using single images of Thai foods taken using
smartphones. Moreover, in this study, system estimation
results were validated against those of experienced dietitians
to ensure that the newly developed system is practical
and accurate.

MATERIALS AND METHODS

System Outline
The system proposed by this study was based on the
traditional approach for image-assisted dietary assessment (20–
23) entailing food recognition, food volume estimation, and

nutrient calculation from a food composition database. The

system was designed to use only a single RGB-color image
for determining the carbohydrate content of specific individual

foods. The system consisted of three independent algorithms,
namely, the convolutional neural network (CNN)-based object

detector, segmentation unit, and neural network regression-
based weight estimation unit. The state-of-the-art YOLOv4-

tiny (24) was employed for the object detection task. Transfer

learning was used to retrain a Microsoft Common Objects in
Context (MS COCO) pre-trained model for the newly developed

dataset. Darknet was used initially for training, and the trained

model ran on OpenCV’s dnn module after being trained well.
The system demonstrated Top-1 accuracy at 80.9% for food
recognition in the test dataset. The classic GrabCut (25) was used
for image segmentation.

The regression model consists of an input layer, three dense
hidden layers with 100, 50, and 25 nodes, and 1 node of the dense
output layer. Rectified linear units were used for the activation
function between each layer, and mean squared error was used
for loss function with Adam optimization. An 11× 1 input layer,
matching the food item area and the location of it, referring to
values of xmin, ymin, xmax, ymax, the reference object area,
reference object location of the same image, and shooting angle,
was used for training spoon-corrected models. A 6 × 1 input
layer was used for training no-spoon-corrected models using
the same data, but reference object information was omitted.
For each food class type, the dataset was split into 80% for
training and 20% for testing from three different angles equally.
The weight estimation unit selected the spoon-corrected models
when the spoon was present in the input image.

After the image acquisition process, an object detector
identified the areas of food components in each image. The food
code and region-of-interest (ROI) were sent to the segmentation
unit wherein non-food regions were removed automatically.
Incorporating the angle at which each photo was taken, the
segmented food component images were transferred to the
weight estimation unit. Finally, the estimated weight of each food
component was sent to the food composition computational unit
to determine nutritive values and the amount of carbohydrates.
The summation of all nutrients for each food component was
used to report the nutritive values of each food image. An
overview of the system is illustrated in Figure 1. Previous
reports have found that children living with T1D can tolerate an
estimation error of up to 10 g of carbohydrates without any effect
on postprandial blood glucose. However, an estimation error
beyond 20 g of carbohydrates may have deleterious effects on
postprandial blood glucose (26). Consequently, the system aimed
to have an estimation error of <10 g of calculated carbohydrates
as measured by root mean square error (RMSE) when compared
with the measured food weights for all items in the test dataset.
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FIGURE 1 | Overview of the system.

Selected weight estimation results from the test dataset are
illustrated in Figure 2.

Building the Thai Food Image Dataset
To the best of our knowledge, a Thai food image dataset with
measured food weights was not available at the time of this study.
Consequently, the dataset was built from scratch. According to
a previous report (27), 80% of carbohydrates consumed by the
Thai population frequently come from only 93 food items as
determined by the INMUCal-Nutrients software (28). Hence,
these items were included in the newly developed dataset. For
expanding coverage in real life, some traditional Thai desserts,
favorite tropical fruits, and vegetables, as well as meats, were
also included in the dataset. The final image dataset contained
175 food item classes. The selected foods, which were similar to
their descriptions in the INMUCal database (cooking methods,
appearance, etc.), were purchased from two to three local food
vendors and prepared into ready-to-eat forms. Some of the
foods were diced, chopped, or ground to change their physical
appearance before being placed on low-reflective, white, flattened
9-inch plates or low-reflective, white 6-inch bowls. For some
foods, such as those packed in ready-to-eat containers like foam
boxes, photos were taken in each food’s original container and
afterwards transferred to a plate. Generally, no part of the
food was covered by another food. However, for some menus
consisting of rice topped with cooked meat, curry, or an opaque
sauce, they were arranged to have photos taken both with and
without toppings. For each type of food, the portion sizes of
food items were gradually increased by adding 1 or ½ exchange

unit for a large portion-sized food. All the food portions were
measured using a digital kitchen scale and rounded to the nearest
integer, for instance, 63.4 and 55.5 g were rounded to 63 and 56 g,
respectively. Various shapes of tablespoons were randomly placed
on plates along with the foods to be used as reference objects.

White plates or other food containers were individually placed
on top of an electric-powered rotating plate, which was then
placed on top of a low-reflective white table. Three Android
smartphones were attached to three camera tripods to take
photos from three different angles (30◦, 60◦, and 90◦ from the
tabletop).While the rotating plate was operating, burst shots were
taken to capture pictures simultaneously, resulting in a series
of multi-angle food images. After the removal of low-quality or
duplicated images, the remaining images were resized into 800×
800 pixels using Lanczos algorithms to allow the annotators to
function conveniently in any device. All visible food components
were annotated separately in the same fashion as that for Thai
dietitians, and only the head (bowl) part of a spoonwas annotated
as a reference object. Image-acquisition setup and examples
of annotation are illustrated in Figure 3. The newly developed
dataset contained 256,178 ingredient objects from 175 ingredient
categories in 75,232 images. This image dataset was used for both
object detector and weight estimator unit training together with
1,800 non-food images. Figure 4 displays example images from
the newly developed dataset.

Reliability Test and Statistical Analysis
To assess the accuracy of the newly developed system,
estimated results (Estimated) were compared with measured
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FIGURE 2 | Swarm plots illustrating measured weights and weight estimation results with and without using spoons as reference objects from the test dataset. This

level of error could produce the RMSE of calculated carbohydrate <10g for all classes.

weight (Measured) and estimations by experienced registered
dietitians (RDs). Since there are no valid criteria to directly
compare accuracy, a set of statistical analyses was used to
determine the accuracy of carbohydrate estimation, including
RMSE, Pearson’s correlation coefficient (r), Lin’s concordance
correlation coefficient (Rc), paired t-test, and Bland–Altman plot.
A two-sided p < 0.05 was considered statistically significant. The
Dupont and Plummer method was used to determine sample size
estimation for dependent measurement values. When the mean
difference (δ) of carbohydrate estimation between two methods
was set to 10 g, and the standard deviation of difference (σ) in
the response of matched pairs, as obtained from literature, was
10.12 (11), only 13 images were required for testing with power
= 0.9 and α = 0.05. However, 20 known-weight food images were
used in the testing. Twenty food menus were randomly selected
from the image dataset. These foods were purchased from local
food vendors and prepared in ready-to-eat forms with a variety
of portion sizes. Food photos were taken freely (5–10 images
for each food) that resulted in 300 images for validation testing.
Finally, 20 images were randomly selected from the validated
dataset, containing 48 food items, and used for both dietitians
and the newly developed system to estimate portion sizes. Instead
of using the image acquisition process on smartphones, which

can repeat several times until the object detector can recognize
all food components, the images were sent to the system directly
to mimic dietitians performing the method. Eight RDs from
Theptarin Hospital agreed to participate in this study. Six RDs
were also certified diabetes educators by the Thai Association
of Diabetes Educators. Five RDs had performed image-assisted
dietary assessment in a previous study (27). Because most of the
RDs estimated in exchange units, the results were converted back
to weight in grams for identified foods according to the Thai
Food Exchange List (29) or the official Carbohydrate Counting
guidebook (16). Carbohydrate content and nutritive values were
calculated based on the same principles unless the RDs specified
the amount of weight, carbohydrates, or nutritive values.

RESULTS

The system could detect 36 of the 48 food items (75%) among
20 food images. Missing items included three leafy vegetables
(cucumbers and white jelly fungus) and eight meat products
[Kun-chieng (Chinese sausage/dried sweet pork sausage), boiled
chicken breast and blood, cuttlefish, fish strips, and boiled eggs],
all of which do not significantly contribute to the amount of
carbohydrate in foods.
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FIGURE 3 | (A) Image acquisition setup for building the image dataset and (B)

demonstration of how a dietitian annotated the ingredients of Khao-kluk-kapi

(fried rice with shrimp paste), including fried rice with shrimp paste (16031),

thin sheets of fried egg (08030), Kun-chieng (dried sweet pork sausage)

(06051), yardlong bean (04039), unripe mango (05038), cucumber (04030),

dried chili (12017), bird’s eye chili (04103), and dried shrimp (07002). The

five-digit code is the INMUCal food code.

For the 20 images, overall, summations of the calculated
carbohydrate content for measured and estimated were 682 and
655 g (4%), respectively, while the nearest, lowest, and highest
estimations by RDs were 687 (0.7%), 508 (25.5%), and 734 g
(7.6%), respectively. All the summations of calculated nutrients
are illustrated in Figure 5A. For each image, the system had
an estimation error of <10 g of calculated carbohydrates for 13
images, which ranked in third place, behind RD1 (15 images) and
RD5 (14 images). The scatter plots of raw values are illustrated in
Figure 5B.

The RMSE of the calculated carbohydrate content between
Measured and Estimated was 9.4, while the lowest and highest
RMSE by the RDs were 10.2 and 19.5, respectively. Lin’s
concordance correlation coefficient (Rc) was 0.79, and Pearson’s
correlation coefficient (r) was 0.8. These results placed the system
in second place, only behind the RD5 who had Rc = 0.79 and
r = 0.83.

For group mean comparisons, the difference between the
means of the calculated carbohydrate content of Measured (30.3
± 14.8 g) and Estimated (29.2 ± 15.3) was small enough that
the paired t-test could not detect the difference as indicated by
a p-value of 0.625, whereas the paired t-test was able to detect
the difference between the highest (36.7 ± 19.7) of RD4 and the
lowest (25.4 ± 16.5) of RD5 with p-values of 0.047 and 0.03,
respectively. Statistical analysis results are given in Table 1.

The Bland-Altman plots reveal that the system could produce
a narrow limit agreement for calculated carbohydrate content,
as illustrated in Figure 6. According to these results, the system
could provide comparable carbohydrate estimation compared
with the RDs.

DISCUSSION

In this study, a system was designed to perform carbohydrate
counting automatically using only a single image without any
user interaction. The testing environment mimicked a real-world
scenario where several food items might be present in the same
dish and the portion size along with the visual appearance of each
item may vary. Sources of variation include food preparation,
photo taking angles, and the distance between foods and the
smartphone. The systemwas tested using several statistical means
to ensure the robustness of carbohydrate estimation accuracy.
The results are convincing since the system resulted in estimates
comparable with those of experienced RDs.These accurate results
also support the use of this system in a real-world situation by
people living with T1D.

Traditionally, image-assisted dietary assessment is composed
of food recognition, segmentation, food volume estimation, and
calculation of nutritive values using a food composition table
(20–23, 30). The overall accuracy of the system is dependent
on the accuracy and performance of correspondent algorithms
to handle each step, which has been improved continuously
over time through the efforts of many researchers (31–33). With
the aid of cutting-edge technologies, such as deep learning and
CNNs, some steps in the traditional method can be bypassed
with better accuracy. Two pioneering studies that used CNNs to
predict food volume from just a single RGB image have achieved
fascinating results (34, 35). The systems were trained using RGB
images and their corresponding depth information, and then a
depth map was applied to predict food volumes. In addition
to volume estimation, CNNs also have the potential to predict
nutritive values directly without utilizing a food composition
table (36), which could be accomplished by training the system
with nutrient content annotated food images.

Applying these advanced approaches to the situation in
Thailand is more challenging. One major barrier to applying
these approaches is the need for a large dataset for deep learning
training. Acquiring a large image dataset with depth images
or analyzed nutritive values is costly and may not be suitable
under limited resource conditions. For this reason, the proposed
system still relied on the multistep traditional method for image-
assisted dietary assessment but was re-implemented withmodern
techniques, such as deep learning.
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FIGURE 4 | Examples of Thai food images in the newly developed dataset; (A1:D1) represent gradual increases in the portion size of steamed white rice; (A2:D2)

represent variation in visual appearance of (A2:B2) fried rice entailing plain fried rice, (C2) fried rice with ketchup and raisins, and (D2) fried rice as provided by food

vendors; (A3:B3) are wheat noodles in gradually increasing portion sizes; (C3) is plain Kanomjeen (rice noodle), and (D3) is Kanomjeen topped with Namya-pla

(ground fish in spicy coconut milk curry) and vegetables; (A4) is food vender prepared Khao-kluk-kapi (fried rice with shrimp paste), while (B4) is the rearranged form

of the food as recommended for carbohydrate counting. (C4) is Kaotom-mud (glutinous rice steamed with coconut milk) wrapped in a banana leaf container, and (D4)

is the unwrapped form of the dessert; (A5:B5) are steamed white rice with Ka-moo-palo (pig leg in a sweet stew), and (C5:D5) are various shapes of steamed buns,

representing relocation of food items due to plate rotation.

YOLOv4-tiny was selected when considering trade-offs
between detection accuracy and efficiency of resource usage.
GrabCut could handle segmentation sufficiently when the
interested area contained only a single object and was surrounded
by a monotonous background to predict results from the object
detector. Volume estimation by 2D pixel density and calibration
with a reference object is an unsophisticated yet more feasible
choice. Two previous reports (22, 37) have applied this method
and demonstrated acceptable results in their datasets consisting
of 15 and 20 classes of solid food. The former report described

implicitly how to estimate the volume and measure the accuracy
of estimation, but the latter used one of three formulas based
on the shape of foods to estimate food volume and corrected
with the size of a One-Yuan coin. Instead of constructing a new
volume estimated formula, simple feedforward neural networks
were selected and trained with shooting angle, object area, object
location, reference object area, and reference object location, and
measured weight was treated as a latent variable.

Building a new image dataset with weight annotation could
overcome two additional problems. While Microsoft COCO
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FIGURE 5 | Comparison of calculated carbohydrate between measured

weight (green), estimated weight (pink), and estimated results from eight

registered dietitians (RDs); (A) Summation of carbohydrates; (B) scatter plot of

calculated carbohydrate of each image for Measured (green), Estimated (pink),

and box and whisker plot represent the estimation results from eight RDs.

(38), PascalVOC (39), and ImageNet (40) are dominantly public
datasets for image classification, they contain a limited number
of food classes. While Food-101 (41), UEC Food100/256 (42, 43),
and VIREO Food-172 (44) are considered large, high-quality
image datasets for food recognition, they do not include volume
information and are also limited in the number of Thai foods
included. Food specific density is equally important as measured
ground truth food volume for the volume estimation approach,
but relevant data are not available in the current version of
the INMUCal database. Furthermore, a recent report raised a
concern about the accuracy of the volume to weight conversion

TABLE 1 | Statistical results for the estimation of error, agreement, and

relationship as measured by RMSE, Rc, and r, respectively, between estimated

and RDs of carbohydrate against measured in the validated dataset.

RMSE Rc r Mean ± SD t-test

Estimated 9.4 0.79 0.80 29.2 ± 15.3 0.625

RD1 10.6 0.75 0.75 29.8 ± 15.8 0.868

RD2 14.4 0.69 0.74 31.7 ± 21.7 0.658

RD3 12.3 0.71 0.74 34.4 ± 17.6 0.137

RD4 14.7 0.65 0.73 36.7 ± 19.7 0.047*

RD5 10.2 0.79 0.83 25.4 ± 16.5 0.030*

RD6 11.8 0.76 0.80 28.9 ± 19.9 0.625

RD7 19.5 0.56 0.66 28.6 ± 26.3 0.719

RD8 10.5 0.77 0.80 26.8 ± 16.7 0.141

RMSE, root mean square error; Rc, Lin’s concordance correlation coefficient; r, Pearson’s

correlation coefficient; t-test, paired t-test p-value.

*Statistically significant.

method or vice versa (45). Both of which could be eliminated with
ease by creating a new dataset with the weight of food instead
of volume.

Due to several reasons, the results here cannot be compared
directly with results from prior studies. Our system was
developed based on common practices of carbohydrate counting
by Thai dietitians, in which foods with several food items are
counted separately and the amount of carbohydrate is modified
based on visible or known components. If food items are already
mixed into a prepared food dish by a vendor, a client must
separate each item as much as possible (16). For example, the
amount of carbohydrates in a typical fried rice dish does not
differ substantially from that of steamed rice (29 vs. 30 g per
100 g). However, when the fried rice is mixed with raisins,
the amount of carbohydrates should be increased by 1 g for
each raisin used in the dish. To comply with this tradition,
the fried rice and all raisins in the image must be annotated
separately. When the system can detect one item of fried rice
and five raisins from a total of 10 raisins as presented in the
image, this results in 55% detection accuracy (6 from 11 items),
while the carbohydrate estimation error is 5 g. This situation
makes comparing recognition accuracy with results from prior
studies challenging. Furthermore, the newly developed system
was trained with foods that are consumed daily in Thailand,
and different from Thai foods available in other countries
and presented in other datasets. Even though some Thai food
menu items may have the same name, the ingredients, cooking
methods, and visual appearance may be different. Moreover,
methods to validate estimation accuracy among previous studies
vary greatly. Three recently published review articles on image-
based dietary assessment indicate a great variety of accuracy
measurement procedures (31–33).

Estimation errors made by the RDs were noticeable, since not
all of them were familiar with all of the foods, and not all the RDs
could remember exactly the exchange weights for all foods listed
in official resources. These limitations were evident especially
for glutinous rice desserts that had considerable estimation
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FIGURE 6 | Bland–Altman plots show agreement between calculated carbohydrate content of Measured, Estimated, and RDs. The orange lines are limits of

agreement between other methods against Measured.

errors, as displayed in food picture numbers 7, 9, and 10
in Figure 5B, which represents Kaotom-mud (glutinous rice
steamed with coconut milk), Khaoniao-sang-khaya (glutinous
rice with custard), and Khaoniao-na-kung (glutinous rice with
sweet, dried shrimp), respectively. Inaccuracies were made
in terms of portion estimation, as well as a large variation
in guessing hidden sugars in these desserts, largely due to
difficulty in correctly guessing unfamiliar foods. RD4 and RD5
were affected especially by these limitations, which resulted
in significant over- and under-estimation of mean values,
respectively, as shown in Table 1. The problems can be lessened
with the aid of a nutrient calculation mobile application.

While the system was satisfactory in terms of accurately
estimating carbohydrate content, it can only produce a fair level
of satisfaction for protein and fat estimation. Because the new
food dataset in this study was aimed at carbohydrate counting,
it contained only a limited number of items, low variety in terms
of visual appearance, and limited portion sizes for bothmeats and
vegetables. These issues can affect the ability of an object detector
to perform effectively. Furthermore, when the food container is a
patterned plate or made with a highly reflective material, this can
also interfere with the performance of the object detector as well
as GrabCut.

Even though the trained dataset was constructed from three
angles, and an electronic rotating plate was used to vary food
item appearance, camera distance was not changed as it was
the recommended distance for applying the system. Hence, the
system could not detect food items behind other food items,
even when some parts of a food item were present in the
image. However, the object detector could occasionally detect
a food item in the background, but the size of this food
would be smaller than its actual size. Furthermore, presenting
more than one food object without enough space between each
object can affect GrabCut in terms of foreground extraction and
subtraction of the background correctly. These problems could
potentially introduce inevitable errors in the system. However,
even though the system can performwith several limitations, user
awareness of these can overcome them, such as by separating and
rearranging food items on the monotonous background plate,
placing spoons beside foods, and keeping the distance between
foods and a mobile phone at around 30 cm.

CONCLUSION

This study provides evidence for the feasibility of a deep learning-
based carbohydrate estimation system using Thai food images.
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The system was able to achieve estimation results comparable
with those of the dietitians in this study. Further studies are
warranted to test the effectiveness of this newly developed
system in aiding DSM and improving glycemic control in people
living with T1D and, thus, lessening the burden of counting
carbohydrates in their food.
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