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Age-related gut barrier dysfunction and dysbiosis of the gut microbiome play crucial

roles in human aging. Dietary methionine restriction (MR) has been reported to extend

lifespan and reduce the inflammatory response; however, its protective effects on

age-related gut barrier dysfunction remain unclear. Accordingly, we focus on the effects

of MR on inflammation and gut function. We found a 3-month methionine-restriction

reduced inflammatory factors in the serum of aged mice. Moreover, MR reduced

gut permeability in aged mice and increased the levels of the tight junction proteins

mRNAs, including those of occludin, claudin-1, and zona occludens-1. MR significantly

reduced bacterial endotoxin lipopolysaccharide concentration in aged mice serum. By

using 16s rRNA sequencing to analyze microbiome diurnal rhythmicity during 24 h, we

found MR moderately recovered the cyclical fluctuations of the gut microbiome which

was disrupted in aged mice, leading to time-specific enhancement of the abundance

of short-chain fatty acid-producing and lifespan-promoting microbes. Moreover, MR

dampened the oscillation of inflammation-related TM7-3 and Staphylococcaceae. In

conclusion, the effects of MR on the gut barrier were likely related to alleviation of

the oscillations of inflammation-related microbes. MR can enable nutritional intervention

against age-related gut barrier dysfunction.

Keywords: methionine restriction, aging, microbiome diurnal rhythmicity, gut barrier, inflammation

INTRODUCTION

Aging is accompanied by a decline in the functional capacity of body systems, including cognitive,
cardiovascular, and physiological health. The gut has been reported to play crucial roles in the aging
process (1). Moreover, aging can alter microbial abundance and cause microbiota dysbiosis (2).
Loss of gut microbiota diversity can increase chronic low-grade inflammation and reduce cognitive
function during aging (3). The gut microbes could produce short-chain fatty acids (SCFAs)
from carbohydrate fermentation. It has been reported that Sutterella, Bacteroides, Lactobacillus,
Prevotella and Bacteroidales are SCFAs producing microbe (4). Moreover, Desulfovibrionaceae,
Staphylococcus, and Ruminococcaceae lipopolysaccharidesare has been reported to be associated
with the microbiota inflammatory properties (5, 6). Several studies have revealed that elderly adults
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and aged mice have lower levels of Firmicutes, Actinobacteria,
and SCFA-producing microbiota (e.g., Lachnospiraceae,
Faecalibaculum, and Ruminococcaceae) and higher levels of
inflammatory gastrointestinal bacteria, such as Proteobacteria,
Desulfovibrio, and Staphylococcus, compared with the
microbiome of younger adults and mice (7–10). Age-related
changes in the gut microbiome are strongly related to intestinal
barrier permeability and age-associated inflammation of the
host. Christensenella, Akkermansia, and Bifidobacterium, showed
potential life span–promoting effects (11–13). Furthermore,
Escherichia coli can induce cognitive impairment and colitis,
which is increased in the feces of aged mice and elderly
adults (14).

Mammalian circadian clock system is composed of
suprachiasmatic nucleus (SCN) in the hypothalamus, which
acts as the central pacemaker, and other cells/tissues, such as
the liver, gut, and muscle, which act as peripheral oscillators
(15, 16). Aging has a negative effect on the circadian clock, and
animals and humans show impairment of rest-activity rhythms
with age. SCN neurons can disrupt the circadian phase, and the
amplitude is reduced in peripheral oscillators with age (17, 18).
Mutation of circadian clock gene reduces lifespan and increases
oxidative damage and neuronal degeneration in Drosophila
(19). In addition, disorders of the circadian clock system
affect microbial community gene expression, decrease host
immune ability and increase the synthesis and transportation
of lipopolysaccharide (LPS); these changes are similar to those
observed in the gut microbiome of Alzheimer’s disease patients
(20, 21). Interestingly, the circadian clock is involved in gut
microbiota-gut epithelium crosstalk and regulates multiple
functions, including intestinal permeability, body composition,
and the immune response (22–24). Notably, the abundance of
gut bacteria exhibit daily oscillations over a 24-h period (25, 26).
The total biomass of the gut microbiome also shows diurnal
fluctuations, affecting more than 20% of functional pathways
(27). Furthermore, the oscillating pattern of genes in germ-free
and wild-type mice was quite different, suggesting that the gut
microbiome is associated with host molecular rhythms (28).
Similarly, germfree or antibiotic-treated mice exhibit reduced
expression of clock and metabolic genes and significantly
dampened diurnal histone signaling owing to a lack of histone
deacetylase 3 expression (22, 29). The diurnal rhythms of the gut
microbiome may contribute to the development of healthy host
states. However, whether the circadian rhythm affects the aging
process by regulating the gut microbiome remains unclear.

Dietary restriction (DR) extends lifespan in various
organisms, including rat, mouse, and fruit fly models, and
prevents age-related circadian reprograming in various tissues
(30, 31). Methionine is a sulfur-containing essential amino acid
that is enriched in animal products. Methionine restriction (MR)
can mimic the effects of DR and is effective for suppressing
proliferation, increasing longevity, and alleviating inflammation
and obesity (32). More specifically, both 80 and 40% MR diets
reduce mitochondrial reactive oxygen species generation, which
may lead to a healthy lifespan in rodent models (32). In MR-
treated mice, the inflammatory responses in the liver and white
adipose tissue were found to be significantly downregulated

(33). Notably, MR (0.172%) decreases endogenous oxidative
molecular damage in the rat brain, further ameliorating aging-
related neurodegenerative diseases (34). In addition, a recent
study showed that MR improves gut function by regulating
the gut microbiome and reducing intestinal permeability in
high-fat diet (HFD)-fed mice (35), and feeding of an MR diet
for 1 month leads to sex-specific changes in the gut microbiome
(36). Moreover, MR time-specifically increases the abundance
of SCFA-producing bacteria and decreases the inflammation-
related bacteria Desulfovibrionales and Staphylococcaceae (37),
and restriction of sulfur amino acids improves gut barrier
function and upregulates claudins (38). Taken together, these
findings support that MR may alter the gut microbiome in aged
mice. However, whether MR affects diurnal fluctuations in the
gut microbiome and the potential effects of MR on age-related
gut homeostasis remain unknown. Accordingly, in this study, we
revealed the effects of MR on age-related inflammation and gut
barrier damages.

MATERIALS AND METHODS

Animal Procedures
Fifteen-month-old and two-month-old male C57BL/6J mice
(Vital River Laboratory Animal Technology, Beijing, China)
were housed under a 12/12-h light-dark cycle (lights on 08:00,
lights off 20:00). Fifteen-month-old mice were randomized
into two groups after adaptively feeding. Aged group fed a
standard chow diet and MR group fed a MR diet for 3
months. Two-month-old mice were fed a standard chow diet.
The detailed dietary compositions of these diets are provided
in Supplementary Materials. We have obeyed relevant ethical
regulations and research were approved in advance by Northwest
A&F University (approval no. N81803231).

Quantitative Real-Time Polymerase Chain
Reaction Analysis
Total RNA was isolated from frozen colon using TRIzol method,
diluted to uniform concentration, and reverse-transcribed into
cDNA. RT-qPCR was performed using an UltraSYBR Mixture
(Cowin Bio., Jiangsu, China) on a CFX96TM real-time system
(Bio-Rad, CA, USA), operated at 95◦C for 10min, followed by 40
cycles of 95◦C for 15 s and 60◦C for 60 s. The 2−11CT method
was used to calculated the mRNA expression. Gene-specific
mouse primers were used as listed in Supplementary Materials.

Serum Lipopolysaccharide Analysis
Serum samples were obtained by eyeball extirpating under
anesthesia. Serum LPS contents were detected by ELISA kits
(Xinle Bio., Shanghai, China).

Hematoxylin and Eosin (H&E) and
Immunofluorescence Staining
The proximal colons were fixed in paraformaldehyde (4% in PBS,
v/v) and embedded in paraffin. For H&E staining, colon sections
were cut and stained with hematoxylin and eosin. Three animals
per group were used for the assessment of goblet cell numbers.
The number of goblet cells on each villus was counted.
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For immunofluorescence staining, sections were exposed to
Claudin-1 antibodies (Abcam, Ab15098, USA) at 4◦C for 10 h,
and incubated with biotinylated antibodies. After DAPI staining,
the sections were sealed with antifading mounting medium
(Solarbio, Beijing, China). Stained sections were observed using
an inverted fluorescence microscope (Olympus, Tokyo, Japan).

Ussing Chamber Assays
Ussing chamber assays were performed as previously described
(39). Briefly, 1.5 cm colons were unfolded and placed on
Ussing chambers (KingTech, Beijing, China). The chamber was
separated into two parts by the unfolded tissue. The tissue was
exposed to carbogen-gassed Krebs buffers (7.35 g CaCl2·2H2O,
13.67 g NaCl, 7.01 g KCl, 4.2 g NaHCO3, 4.88 g MgCl2·6H2O,
3.96 g glucose, 3.74 g NaH2PO4·2H2O, dissolved in 2 L ddH2O,
pH 7.4) at 37◦C. For permeability measurements, fluorescein
(0.09 g/L) were replaced on the luminal side and the fluorescence
intensity of the serosal buffer was determined on the other side.

16S rRNA Sequencing
Fecal samples were collected every 4 h over 24 h before sacrifice
through repeated sampling from the same mice after dietary
intervention. Total DNA was isolated using an E.Z.N.A. Stool
DNA Extraction Kit (Omega, GA, USA), and the V3 to V4
regions of the 16S rRNA gene were amplified using region-
specific primers (341_F: 5′-CCTACGGGNGGCWGCAG-3′;
and 802_R: 5′-TACNVGGGTATCTAATCC-3′). Raw reads were
merged, trimmed, and denoised to construct operational
taxonomic units (OTUs) and identified using Usearch
(version 7.1). Venn diagram evaluation, β-diversity assessment,
principal coordinate analysis (PCoA), and partial least squares-
discriminant analysis (PLS-DA) were performed using Qiime2
(2018.11) combined with the R-package vegan and ANCOM2.
Taxonomy-based analyses were used to identify significant
differences in phylotypes under MR treatment at distinct energy
densities. Biomarker-discovery responses to MR were analyzed
by linear discriminant analysis (LDA) effect size (LEfSe).
Significant biomarkers were detected using the default threshold
of α value <0.05 and LDA score >2.

Data Analysis
Gut microbiome data were reported as mean ± SEM, other
data were reported as max, min, and median. Significant
differences between mean values were determined by one-way
ANOVA. For multiple comparisons, Tukey’s test was performed
using GraphPad Prism 7.0 software. Means were considered
significantly different when the p-value was <0.05. JTK_CYCLE
(v3.1) was used to determine whether an OTU was cyclical (ADJ.
p <0.05) (40).

RESULTS

Effects of MR on Serum Inflammation
Factors in Aged Mice
Aged mice were fed with an MR diet for 3 months. MR
feeding significantly decreased the body weights of aged mice
(p < 0.01, Figure 1A). However, MR-fed aged mice consumed

more food compared to control diet-fed aged mice (p <

0.01, Figure 1B). Moreover, methionine intake was significantly
decreased under MR feeding (p < 0.01, Figure 1C). The
inflammatory response during aging is one of the causes of other
age-related symptoms. To evaluate the effects of MR on age-
induced systemic inflammation, which have been reported to be
a risk factor for age-related biological degradation, inflammatory
factors were investigated. As shown in Figures 1D,E, interleukin
(IL)-1β and tumor necrosis factor (TNF)-α levels in serum were
dramatically increased in aged mice, and this effect was reversed
in MR-fed aged mice (Figures 1D,E, p < 0.05).

Effects of MR on the Gut Barrier Integrity in
Aged Mice
Intestinal barrier integrity plays a critical role in age-related
systemic inflammation. There is no significant difference of
muscular thickness between young and aged mice. We found
MR increased the villi length, and number of goblet cells in aged
mice (p < 0.01, Figures 2A–D). Moreover, immunofluorescence
staining for claudin-1 showed that aging decreased the expression
of claudin-1, whereas MR increased claudin-1 in aged mice
(Figure 2A). Furthermore, we observed that MR prevented
gut leakage (Figure 2E). In addition, the expression levels of
occludin, claudin-1, and zona occuldens-1 (Zo-1) mRNAs, which
encode tight-junction proteins in the gut barrier, were also
elevated by MR (p < 0.01, Figures 2F–H). The intestinal barrier
is the first defense against LPS-induced inflammatory activation
in the body. Consistent with this, LPS content was increased in
aged mouse serum, whereas MR reversed the abnormal increase
(p < 0.05, Figure 2I). This result showed that MR reduced age-
related inflammation, possibly because of its effects on improving
gut barrier function.

Effects of MR on Gut Microbiome in Aged
Mice
We identified 1102 OTUs in mice fecal of 3 conditions.
Venn diagram showed that microbial composition of mice in
each group was significantly changed (Figure 3A). As shown
in Figures 3B,C, the gut microbiome was distinctly different
between the young and aged groups, as demonstrated by
PCA and PLS-DA. Moreover, aging significantly increased the
observed OTUs, Chao index, and ACE index compared with
that in young mice (p < 0.01, Figures 3D–G). However, MR
increased the Simpson index in aged mice (p < 0.01, Figure 3H).
MR affected the relative abundance of gut microbiome.
Specifically, compared with the young group, the proportion
of Bacteroidetes decreased and the proportions of Firmicutes
and Proteobacteria increased in the aged group. After MR
treatment, an increase in the proportion of Bacteroidetes
with a decrease in Firmicutes was observed (Figure 3I).
LEfSe analysis suggested thatAkkermansia,Verrucomicrobiaceae,
and Bacteroidaceae were universal markers in the young
group; Erysipelotrichaceae, Staphylococcus, andHelicobacteraceae
were dominant microbes in the aged group; and Prevotella,
Bacteroidales, Desulfovibrionales, and Bifidobacteriales were aged
+MR-specific markers (Figures 3J,K).
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FIGURE 1 | Effects of methionine restriction on the body weight, food intake, and serum cytokines concentrations of aged mice. (A) Body weight; (B) food intake; (C)

methionine intake; (D) IL-1β content in serum; (E) TNF-α content in serum. The boxplot elements are defined as following: center line, median; box limits, upper and

lower quartiles; whiskers, min to max (n = 5/group). Significant differences between mean values were determined using one-way ANOVA analysis of variance with

Tukey’s multiple comparison test; *p < 0.05, **p < 0.01.

Differential Effects of MR on the Gut
Microbiome Composition Over a 24-H
Period
To investigate the stability of the relative abundance of gut
microbes over the course of a day, we use JTK_CYCLE to define
the rhythmicity of each OTU. Venn diagram analysis showed the
distribution of OTUs that were considered to be rhythmic, with
an ADJ. p-value <0.05, in each group (Figure 4A). Moreover,
the gut microbiome of aged mice had the most rhythmic OTUs,
accounting for 17.48% of the total number of OTUs. However,
the gut microbiome of young mice andMR-fed aged mice ranged
from 11 to 12% (Figure 4B). In OTUs with oscillations, peaks
appeared at different times. In the young group, the cycling OTUs
showed peaks distributed over a day (Figure 4C). The peaks of
these OTUs changed in the feces of aged mice. However, these
alterations were alleviated by MRD. The peaks of these OTUs
were shifted rather than dramatically disturbed compared with
those in young mice (Figure 4C). These data indicated that the
composition of the gut microbiome changed over time and that
MR could have different influences on the gut microbiome at
different time points.

MR Decreased the Inflammation-Related
Microbiome in Aged Mice
The results of analyses of inflammation-related microbiome,
involving TM7-3 CW040, Staphylococcaceae, Desulfovibrionales,

and Ruminococcaceae, showed that the aged group exhibited
dramatic increases in TM7-3 CW040, Staphylococcaceae, and
Desulfovibrionales compared with the young mice. No significant
differences in Ruminococcaceaewere detected between the young
and aged groups. The relative abundance of Staphylococcaceae
was lower in the aged + MR group than in the aged group
at ZT4 and ZT8. Moreover, the aged group showed disordered
cyclical oscillations of Staphylococcaceae, Desulfovibrionales, and
Ruminococcaceae (ADJ. p = 0.18, 0.08, and 0.05, respectively).
After MR feeding, the aged + MR group exhibited similar
cyclical fluctuations in Staphylococcaceae,Desulfovibrionales, and
Ruminococcaceae as the young group (Figures 4D–G).

MR Increased the SCFA-Producing and Life
Span-Promoting Microbiome in Aged Mice
To consider circadian effects, the family, genus, and species
levels of the gut microbiome were evaluated. Specific differences
in the relative abundances of these organisms are shown in
Figure 5A, including SCFA-producing microbes (e.g., Prevotella,
Bacteroidales, Bacteroides, Lachnospiraceae, and Sutterella) and
potential life span-promoting microbes (e.g., Escherichia coli,
Akkermansia, and Bifidobacterium), from the light to the dark
phase. The aged + MR group showed a marked increase in
the relative abundance of Prevotella compared with the aged
group, particularly at ZT0 and ZT4. Moreover, the young
group exhibited higher relative abundances of Bacteroidales,
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FIGURE 2 | Effects of methionine restriction on the gut barrier integrity of aged mice. (A) Representative images of hematoxylin and eosin staining and

immunofluorescence staining of claudin-1/DAPI in mouse colon tissues (n = 3/group). Arrows point to goblet cells. (B) Muscular thickness; (C) villus length; (D)

average goblet cell per villi; (E) rate of fluorescence changes during Ussing chamber analysis (n = 3/group). (F–H) mRNA expression of occludin, claudin-1, and Zo-1;

loading control: Gapdh (n = 5/group). (I) LPS content in serum. (n = 5/group). The boxplot elements are defined as following: center line, median; box limits, upper

and lower quartiles; whiskers, min to max. Significant differences between mean values were determined using one-way ANOVA analysis of variance with Tukey’s

multiple comparison test; *p < 0.05, **p < 0.01.

Bacteroides, and Lachnospiraceae than the aged groups, but
had a lower relative abundance of Sutterella. A previous study
demonstrated that aging could alter the Sutterella to Barneseilla
ratio (41). Additionally, we found that MR significantly increased
the relative abundance of Bacteroidales at ZT0. Although
Lachnospiraceae has been found to increase SCFA levels,
this microbe is also associated with obesity. Our findings
showed that MR slightly decreased the relative abundance of
Lachnospiraceae in the aged mice. In addition, in the young
and aged+MR groups, Prevotella, Bacteroides, Lachnospiraceae,
Escherichia coli, and Bifidobacterium exhibited similar cyclical
oscillation, whereas the cyclical fluctuations of Bacteroides and
Bifidobacterium were disrupted (ADJ. p = 0.17 and 0.08,

respectively) compared with those in the young and aged
+ MR groups (Figure 5B). These results together indicated
that MR enhanced the relative abundances of SCFA-producing
and life span-promoting microbiomes and restored the diurnal
fluctuations of specific microbiomes in aged mice.

Correlation Analysis Between
Characteristic Indicators and the Specific
Rhythm Microbiome
To clarify the correlations among the characteristic indicators,
tight junction proteins, and inflammatory factors, Pearson’s
correlation analysis was performed (Figure 6). The results
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FIGURE 3 | Effects of methionine restriction on the gut microbiota composition of aged mice. (A) Venn diagram displays the number of shared and unique OTUs

among Young, Aged and Aged+MR. (B) Principal coordinate analysis (PCoA) and (C) Partial least squares discrimination analysis (PLS-DA) indicated the

beta-diversity of gut microbiome.; (D) Observed species index, (E) Chao index, (F) Ace index, (G) Simpson index, and (H) Shannon index indicated the alpha-diversity

of gut microbiome. The boxplot elements are defined as following: center line, median; box limits, upper and lower quartiles; whiskers, min to max. Significant

differences between mean values were determined using one-way ANOVA analysis of variance with Tukey’s multiple comparison test; *p < 0.05, **p < 0.01. (I) Gut

microbiome composition at the phylum level. Differential analysis of the gut microbiome between (J) young and (K) aged + MR groups.

showed that characteristic indicators and specific rhythm
microbiomes were highly correlated. More specifically,
Met intake was positively correlated with serum TNF-
α levels (Pearson’s coefficient = 0.83). Importantly, the

correlation of oscillation characteristic indicators and
abundance in the light period (ZT4, ZT8, and ZT12) was
slightly higher than that in the dark period (ZT16, ZT20,
and ZT0).
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FIGURE 4 | Effects of methionine restriction on diurnal rhythms of the gut microbiome in aged mice. (A) Venn diagrams displays the number of shared and unique

cycling OTUs. (B) Proportion of cycling and non-cycling OTUs. (C) Heatmap of cycling OTUs organized by peak, from the young group. (D–G) Diurnal patterns of

relative abundances of TM7-3 CW040, Staphylococcus, Desulfovibrionales, and Ruminococcaceae over 24 h. Data are double-plotted for clear visualization. Data are

presented as means ± SEMs; n = 5/time point. *p < 0.05, **p < 0.01, vs. the young group; #p < 0.05, ##p < 0.01, vs. the aged group. Significant differences

between means were determined using one-way ANOVA analysis of variance with Tukey’s multiple-comparison test.
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FIGURE 5 | Methionine restriction increased the abundances of SCFA-producing and life span-promoting microbes. (A) Diurnal patterns of the relative abundances of

Prevotella, Bacteroides, Lachnospiraceae, and Sutterella over 24 h. (B) Diurnal patterns of the relative abundances of Escherichia coli, Akkermansia, and

Bifidobacterium over 24 h. Data are presented as means ± SEMs; n = 5/time point. *p < 0.05, **p < 0.01, vs. the young group; #p < 0.05, ##p < 0.01, vs. the

aged group. Significant differences between means were determined using one-way ANOVA analysis of variance with Tukey’s multiple-comparison test.
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FIGURE 6 | Correlation analysis between the characteristic indicators and relative abundances of the gut microbiome during daytime (ZT4, ZT8, and ZT12) and

nighttime (ZT16, ZT20, and ZT0). Pearson’s correlation analysis was performed for body weight, methionine intake, inflammatory factors, and relative abundance of

the gut microbiome. Red, positive correlation; blue, negative correlation.

FIGURE 7 | Methionine restriction alleviated systemic inflammation in aged

mice by reshaping the gut microbiome, improving gut barrier function, and

reducing serum lipopolysaccharide.

DISCUSSION

In this paper, the protective effects of MR on age-related
systemic inflammation were investigated. The mechanism
may involve protecting the gut barrier and reducing
LPS, consistent with the results of reshaping the gut
microbiome (Figure 7). We also found that intestinal tight

junction proteins were upregulated and the age-related
rhythmic disturbance of intestinal bacteria was alleviated
by MR.

The effects of MR on lifespan extension have been reported
in various animal models (32). Recent studies have shown that
MR can alleviate age-related bone density reduction, cognitive
dysfunction, systemic inflammation, and oxidative stress (35,
42–44). Moreover, during aging, intestinal function gradually
degrades, which may facilitate other age-related degenerative
processes. Aging leads to aging of intestinal cells, damage to
intestinal barrier function, and reduction of intestinal tight
junction protein levels, which in turn promotes the degradation
of overall body function (3, 45, 46). Additionally, improving
aging-related intestinal barrier damage can extend lifespan
(46, 47). Mechanistically, MR can promote the production of
glutathione and regulate the production of H2S by activating
the nutritional response signal fibroblast growth factor 21,
thereby prolonging lifespan and reducing inflammation (48, 49).
However, some studies have shown that the anti-inflammatory
effects of MR are partly independent of these mechanisms (50).
Furthermore, the regulatory effects of MR on the intestinal
function of aging mice have not been clearly studied. In
an HFD-induced obese mouse model, an MRD reshaped the
gut microbiome, reduced inflammatory factors, and ultimately
alleviated metabolic syndrome in obese mice (35, 37). MR
alleviates fat accumulation and inflammatory responses by
reshaping gut microbiome of 8-month-old mice (51). In young
mice, dietary methionine supplementation alters one-carbon
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metabolism and DNA methylation in the proximal jejunum,
and alters the normal gut physiology (52). Increasing or
decreasing the level of methionine in the diet will cause changes
in the composition of gut microbes, with some differences
between males and females (36). Consistent with this, in our
study, dramatic changes in gut microbiome composition were
found in MR-treated 18-month-old mice, with a lower level of
inflammatory factors.

Intestinal barrier integrity is necessary for maintaining
the stability of the body. Gut microbial disruption leads
to compromised gut barrier function and sustained systemic
inflammation (53). Microbiome-host interactions are related
to the inflammatory factors production in humans (54), and
LPS produced by the gut microbiota accelerates inflammation
and aging in mice (55). In the current study, we found that
MR reduced serum LPS levels in aged mice and that LPS
levels were correlated with Met intake. In addition, the increase
in LPS associated with age further activates the intestinal
inflammatory factors TNF-α and IL-1β, triggering a systemic
inflammatory response. In another study in our group, an
increase in LPS caused by aging was found to exacerbate the
cognitive impairment associated with aging (56). Furthermore,
damage to the intestinal barrier function and activation of
inflammatory factors have been used as triggers or biomarkers
for Crohn’s disease, Parkinson’s disease, and metabolic syndrome
(57–59). We found that MR reduced the levels of serum LPS
and inflammatory factors in aged mice, which may be related
to enhancement of the integrity of the intestinal barrier and
upregulation of tight junction proteins by MR. The results of
correlation analysis also supported this speculation.

The gut microbiome has a circadian rhythm similar to
that of organisms, and this rhythm plays critical roles in
the biological functions of the host, including digestion,
absorption, and metabolism (60, 61). Feeding time and food
composition have been shown to affect the diurnal rhythm
of the gut microbiome (62, 63). In our study, MR affected
the diurnal rhythms of some specific intestinal bacteria,
particularly those related to inflammation-associated, SCFA-
producing, and lifespan-promoting microbes. The relative
abundance of TM-7 has been reported to be increased in
the intestine and oral cavity of patients with inflammatory
bowel disease (64, 65). In addition, the relative abundances
of Desulfovibrionaceae and Staphylococcaceae, related to the
activation of host inflammatory factors, are down-regulated
by MR. In particular, Desulfovibrio and other sulfate-reducing
bacteria, hydrogen sulfide producer, are related to inflammatory
response (66). Sutterella, Bacteroides, Lactobacillus, Prevotella,
and Bacteroidales are associated with SCFA production (4).
Akkermansia improves the colonic mucus thickness decline and
attenuates immune activation in aged mice (67). Bifidobacterium
and Lactobacillus have been reported to impair brain function
and further lead to neurodegenerative disorders (68). We found
that MR increased the relative abundance of Staphylococcaceae
during the daytime and decrease the relative abundance of
TM7-3 CW040 at night in aged mice. MR has no difference in
up-regulating the relative abundance of Akkermansia between
a day.

This study has potential limitations. Firstly, the synchronism
between gut microbiota and gut barrier function upon MR
diets would be estimated if there are serum LPS concentrations
with different time points. Secondly, there may be commensal
bacteria that become opportunistic pathogens only under certain
conditions. The classification of inflammation-related, SCFA
producing and age-related microbes in presented study may
not be applicable to all pathologies. Metagenomics sequencing
could provide more precise information on how gut microbiota
affects host functions. Thirdly, we only chose a single dose of
Met-restricted diet commonly used in MR studies. The effect
of different Met intakes on the gut microbiome is not clear.
A wider range of Met-restricted level will reveal a clearly
correlation between Met intake and the relative abundance of
gut bacteria. Moreover, feeding time was not monitored in
this study, which was proved to have great influence on the
diurnal rhythm of the gut microbiome. The relationship between
dietary methionine content and the relative abundance of gut
microbiome on aging and aging-related gut dysfunction are
under further investigation.

CONCLUSION

In this study, we found thatMR alleviated systemic inflammation,
improved gut barrier function, and reshaped the gut microbiome.
The effects of MR on Staphylococcus, TM7-3 CW040, and
Prevotella varied during the 24-h observation period. These
findings provide important insights into the application of
MR for prevention of age-related gut barrier damage and
inflammation-related diseases.
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