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Brain aging is characterized by a chronic low-grade inflammation, which significantly

impairs cognitive function. Microglial cells, the immunocompetent cells of the brain,

present a different phenotype, switching from a homeostatic signature (M0) to a

more reactive phenotype called “MGnD” (microglial neurodegenerative phenotype),

leading to a high production of pro-inflammatory cytokines. Furthermore, microglial

cells can be activated by age-induced gut dysbiosis through the vagus nerve or the

modulation of the peripheral immune system. Nutrients, in particular n-3 long chain

polyunsaturated fatty acids (LC-PUFAs) and low molecular weight peptides, display

powerful immunomodulatory properties, and can thus prevent age-related cognitive

decline. The objective of this study was to investigate the effects of n-3 LC-PUFAs and

low molecular weight peptides contained in a marine by-product-derived hydrolysate on

microglial phenotypes and intestinal permeability and their consequences on cognition

in mice. We demonstrated that the hydrolysate supplementation for 8 weeks prevented

short- and long-term memory decline during aging. These observations were linked

to the modulation of microglial signature. Indeed, the hydrolysate supplementation

promoted homeostatic microglial phenotype by increasing TGF-β1 expression and

stimulated phagocytosis by increasing Clec7a expression. Moreover, the hydrolysate

supplementation promoted anti-inflammatory intestinal pathway and tended to prevent

intestinal permeability alteration occurring during aging. Therefore, the fish hydrolysate

appears as an interesting candidate to prevent cognitive decline during aging.

Keywords: n-3 long chain PUFA, lowmolecular weight peptides,microglia, memory, hydrolysate, cognitive decline,

aging

INTRODUCTION

Brain aging has been associated with a chronic low-grade inflammation, in humans (1–3) and
rodents (4–6). Neuroinflammation is finely orchestrated by microglial cells, the immunocompetent
cells of the central nervous system (CNS). In the healthy brain, microglial cells exhibit a
unique molecular homeostatic signature (M0) but with aging, these cells can display a novel
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non-homeostatic signature called “MGnD” (microglial
neurodegenerative phenotype) and become sensitized to
inflammation and highly reactive, leading to an imbalance
between pro- and anti-inflammatory cytokine production (7, 8).
During aging, microglial cells express pro-inflammatory markers
such as galectin 3 (Lgals3), the AXL receptor tyrosine kinase
(Axl), c-type lectin domain family 7-member A (Clec7a), the
major histocompatibility complex class II (MHCII) and the
integrin subunit alpha X (Itgax also known as CD11c) (9–11).
Moreover, transforming growth factor β (TGF-β), an important
molecule in the maintaining of the M0 phenotype, is decreased
in microglial cells of aged mice, contributing to the shift toward
MGnD signature (7, 10). Microglia can also be activated by
aged-induced gut dysbiosis. Indeed, aging has been linked to a
decrease of gut microbiota diversity and an increase of intestinal
permeability and inflammation, contributing to microglia
activation via the vagus nerve or by direct modulation of the
peripheral immune system (12–15).

This microglial dysfunction can lead to aged-related
cognitive decline which is characterized by non-pathological,
but significant alterations of memory in both humans and
animals (16, 17). This cognitive decline can lead to alteration
of well-being and quality of life (18, 19). Indeed, in humans, a
mild stimulation of the host defense is associated with increased
cytokine release and negative effects on emotional and memory
functions (20). In rodents, interleukin (IL)-1β injection induces
decreased memory performance as measured in an 8-arm radial
maze or in the Morris water maze (21, 22). Moreover, spatial
memory is altered in transgenic mice overexpressing tumor
necrosis factor α (TNF-α) in the brain, while it is enhanced in
TNF-α deficient mice (23, 24). Thus, targeting inflammation
during aging constitutes a good strategy to delay or limit the
development of age-related cognitive deficits (25).

Nutrition is an innovative strategy to prevent age-related
cognitive impairments. Among all nutrients, n-3 long chain
polyunsaturated fatty acids (LC-PUFAs) and low molecular
weight peptides derived from proteins are good candidates
for their immunomodulatory properties. n-3 LC-PUFAs,
including docosahexaenoic acid (DHA) and eicosapentaenoic
acid (EPA), display powerful anti-inflammatory and pro-
resolutive properties. Indeed, they regulate the release of
pro-inflammatory mediators, as evidenced in clinical and
pre-clinical in vivo studies, as well as in in vitro studies (26–28).
In humans suffering from diseases associated with chronic low-
grade inflammation, supplementations with EPA and/or DHA
reduce circulating pro-inflammatory cytokines expression and
increase the production of specialized pro-resolving mediators
(SPM) (29–31). Supplementation with n-3 LC-PUFAs in adult
rodents prevents the increase of the pro-inflammatory cytokine
expression IL-1β, IL-6 and TNF-α induced by lipopolysaccharide
(LPS) or IL-1β and increases hippocampal production of
anti-inflammatory cytokines, such as IL-10 and IL-4 (32–38).
Furthermore, numerous observational and interventional studies
highlighted the positive association between the consumption
of dietary n-3 LC-PUFAs and cognitive performance in the
elderly (39–43). Similarly, beneficial effect of n-3 LC-PUFAs
supplementations on cognition have also been shown in aged

rodents (44–47). Aged mice supplemented with DHA and/or
EPA are protected against neuroinflammation and cognitive
impairment (46). In vitro, anti-inflammatory effects of n-3
LC-PUFAs have been demonstrated in microglial cells with
the reduction of LPS-induced expression of pro-inflammatory
cytokines as well as the polarization of microglial cells into an
anti-inflammatory phenotype (48–54). Low molecular weight
peptides (<1,000 Da) contained in protein hydrolysates are
also nutrients of interest for their central and peripheral anti-
inflammatory properties, demonstrated in vivo and in vitro
(55–59). In a mouse model of Alzheimer’s disease, peptides from
milk reduced the expression of inflammatory factors such as
TNF-α, monocyte chemoattractant protein-1 (MCP-1/CCL2)
inducible nitric oxide synthase (iNOS) in the brain (60). In
vitro, in human primary monocytes and murine macrophages,
salmon- and lupine-derived peptides inhibited the production of
nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory
cytokines, including TNF-α, IL-6, and IL-1β (61, 62). At the
periphery, peptides from soy and milk reduced peripheral
expression of pro-inflammatory factors such as TNF-α, IL-6,
IL-1β, interferon-γ, or IL-17 in mice colon and abdominal aorta
(56, 63). Furthermore, at the intestine level, an intake of marine
n-3 PUFAs or bioactive peptides (from soy or oyster hydrolysate,
for example) has been shown to decrease intestinal inflammation
induced by inflammatory bowel diseases in humans and mice
(64, 65). n-3 LC-PUFAs have been shown to influence the gut
microbiota and improve intestinal immunity (66, 67). In rodents,
supplementation with n-3 LC-PUFAs increases the number
and abundance of beneficial bacteria, such as Bifidobacterium
(68, 69). EPA and DHA have also been shown to prevent
intestinal permeability changes induced in vitro and in vivo (70).
Moreover, low molecular weight collagen peptides have been
shown to protect the intestinal barrier function in vitro via the
regulation of tight junction proteins zonula occludens 1 (ZO-1)
and occludin (Ocln) expression and distribution and the myosin
light chain kinase (MLCK) pathway (71, 72).

In this study we investigated the effects of n-3 LC-PUFAs
and low molecular weight peptides contained in a marine by-
product-derived hydrolysate on microglial signature, intestinal
permeability, and cognition in mice.

MATERIALS AND METHODS

Animals
Fifteen-month old male C57Bl6/J mice (Janvier Labs, Le
Genest-Saint-Isle, France) were housed under normal 12 h-12 h
light/dark cycle on cellulose litter in a controlled environment
(21–23◦C, 40% of humidity), with ad libitum access to food
and water. Animal husbandry and experimental procedures were
done in accordance with the EUDirective 2010/63/EU for animal
experiments and were approved by the local ethical committee
(CE050 from Bordeaux) for the care and use of animals (approval
ID APAFIS#14144-2018041213072383).

Diet
Mice were randomly assigned to different groups: one group
(n = 10) fed a control diet (INRAE Jouy-en-Josas, France)
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TABLE 1 | Composition of the control and the hydrolysate-enriched diets.

Components Percent (%)

Control diet Hydrolysate-enriched diet

Hydrochloric casein 18 18

Corn starch 45.9 45.7

Sucrose 24 24

Cellulose 2 2

Peanut oil 5 5

Mineral mix 4 4

Vitamin mix 1 1

+ DL methionine 0.1 0.1

+ Vitamin A 5 UI/g 5 UI/g 5 UI/g

Hydrolysate 0 0.29

and one group (n = 11) fed the hydrolysate-enriched diet
(INRAE Jouy-en-Josas, France) containing 0.29% of the fish
hydrolysate for 8 weeks (Table 1; Figure 1). The fish hydrolysate
was provided by the BrainBooster Consortium. It was obtained
from marine by-products and contained mostly low molecular
weight peptides (<1,000 Da) and n-3 LC-PUFAs such as DHA
and EPA. The specific composition of the fish hydrolysate is
detailed in patent number B251427FR. The fish hydrolysate
dose was determined as previously shown (73). The dose of
low molecular weight peptides was 5.55 mg/mouse/day, and the
dose of n-3 LC-PUFAs was 280 µg/mouse/day (of which 70
µg/mouse/day of DHA and 179 µg/mouse/day of EPA).

EchoMRI
Fat mass and lean mass were quantified at the beginning and
at the end of the supplementation by magnetic resonance using
minispec LF90 II (Bruker, Wissembourg, 67166).

Behavioral Tests
Y-Maze
Eight weeks after the beginning of the supplementation, short
term spatial recognition memory was evaluated with the Y-maze
test as described previously (74). The apparatus is a Y-shaped
maze with 3 arms (35 cm long and 10 cm deep), illuminated at
15 lx. Extra-maze visual cues are placed on the walls, allowing
mice to navigate in space. In the first trial, one arm of the Y-maze
was closed, and mice were allowed to visit the two other arms
for 5min. Short term spatial memory was evaluated after a 1 h
inter-trial interval (ITI), wheremice were placed again in the start
arm for the second trial and allowed to explore freely all three
arms for 5min. Start and closed arms were randomly assigned for
each mouse. The animals were video-tracked (SMART system;
Bioseb, Vitrolles, France) to analyze the distance traveled in the
different arms.

Morris Water Maze
Spatial learning and memory were assessed in the Morris water
maze as previously detailed (73, 75). Briefly, two familiarization
days were designed. Mice had to find a submerged platform
in a small pool (60 cm diameter) to familiarize with water

and swimming (3 consecutive trials a day; 60 s cut-off). Then,
visuomotor deficits were evaluated during a day of cued learning
in the Morris water maze where mice had to find a submerged
platform pointed out with a cue (6 trials a day; 90 s cut-
off). During spatial learning, mice were trained during four
consecutive days to learn the location of the submerged platform
by using distal extra-maze cues (6 trials a day; 90 s cut-off).
For each trial, the distance traveled to reach the platform was
recorded by Imetronic videotracking system (Pessac, France).
Spatial memory was assessed 72 h after the last day of training,
during the probe test for 60 s in the maze without the platform.
The distance traveled in the four quadrants was recorded using
the SMART system (Bioseb, Vitrolles, France). The quadrant
containing the platform is referred to as “target quadrant.”

Tissue Preparation
Mice were euthanized by injection of a cocktail of
ketamine/xylamin the day following the probe test. After
transcardiac perfusion with phosphate buffered saline
(PBS), brain structures and peripheral organs of interest
were collected and frozen at−80◦C until further analysis. For the
immunohistochemistry analysis, hemispheres were post-fixed in
4% paraformaldehyde (PFA) overnight at 4◦C, cryoprotected in
30% sucrose during 48 h at 4◦C, rapidly frozen with isopentane
and stored at−80◦C.

Biochemical Measurements
Quantitative Real-Time PCR
The expression of the different genes of interest was evaluated
by real time quantitative PCR as previously described previously
(73). These analyses were performed on central (hippocampus)
and peripheral structures (ileum and colon). Briefly, total
RNAs were extracted from hippocampus, ileum and colon by
TRIzol (Invitrogen, Life Technologies, Saint Aubin, France).
Quantity and purity of RNA for each sample were measured
by spectrophotometry (Nanodrop, Life technologies, Saint
Aubin, France). Reverse transcription was performed on one
or two micrograms of RNA by Superscript IV (Invitrogen,
Life Technologies, Saint Aubin, France). TaqMan R© specific
primers were used to amplify genes of interest as previously
described (73). We focused on IL-6 (Mm00446190_m1),
IL-1β (Mm00434228_m1), TNF-α (Mm00443258_m1),
TGF-β1 (Mm01178820_m1), transforming growth factor
β receptor 2 (TGF-βr2; Mm03024091_m1), αM integrin
(Itgam; Mm00434455_m1); transmembrane protein 119
(Tmem119; Mm00525305_m1), P2Y purinoceptor 12 (P2y12;
Mm00446026_m1), colony-stimulating factor 1 receptor
(CSF1r; Mm01266652_m1), MHCII (Mm00439216_m1),
triggering receptor expressed on myeloid cells 2 (Trem2;
Mm04209424_g1), Apolipoprotein E (ApoE; Mm01307193_g1),
Lgals3 (Mm00802901_m1), Axl (Mm00437221_m1),
Clec7a (Mm01183349_m1), Itgax (Mm00498708_g1), IL-
10 (Mm01288386_m1), Ocln (Mm00500912_m1), ZO-1
(Mm00493699_m1), claudin 5 (Cldn5; Mm00727012_s1),
and MLCK (Mm00653039_m1). The housekeeping gene was
β-2-microglobulin (B2m; Mm00437762_m1). Fluorescence was
determined on a LightCycler R© 480 instrument II (Roche, La
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FIGURE 1 | Experimental design. Aged mice (15 months) were fed with the control diet or with the hydrolysate-enriched diet for 8 weeks. Behavioral tests were

performed during the next 2 weeks. Total supplementation duration was 10 weeks. DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; ITI, inter-trial interval;

LC-PUFAs, long chain polyunsaturated fatty acids; QE, quadrant east, QN, quadrant north; QS, quadrant south; QW, quadrant west.

Rochelle, France). Data were analyzed using the comparative
threshold cycle (Ct) method and results were expressed as relative
fold change (73, 76, 77) to control target mRNA expression.

Immunohistochemistry
Free-floating coronal sections of 40µm through the
hippocampus were collected on a cryostat (Leica Biosystems,
Nanterre, France). After being washed for 10min with PBS-
Tween 0.01%, sections were blocked in a buffer containing 5% of
donkey serum, 5% of bovine serum albumin (BSA), 0.3% Triton
in PBS 1X for 1 h at room temperature (RT). Sections were then
immunolabelled with a rabbit polyclonal antibody against Iba1
(1:1,000; Wako #019-19741, Plaisir, France) and a rat polyclonal
antibody Clec7a (1:50, Invitrogen, Life Technologies # MABG-
MDECT, Saint Aubin, France) in a staining buffer containing
5% of BSA, 0.1% of triton in PBS 1X over night at 4◦C. After
being washed in PBS-Tween 0.01%, slices were incubated with
donkey anti-rabbit 488 (1:2,000; Invitrogen, Life Technologies
#A-21206, Saint Aubin, France) and donkey anti-rat 594 (1:100,
Invitrogen, Life Technologies #A-21209, Saint Aubin, France)
secondary antibodies in a buffer containing 5% of BSA in PBS 1X
for 2 h at RT. All sections were processed in parallel. Staining was
visualized using DAPI (Santa Cruz Biotechnology, Heidelberg,
Germany). Images were obtained with a 20× microscope
objective and the software NIS-Elements AR3-2 (Nikon Eclipse
400, Nikon Corporation, Champigny-sur-Marne, France). The
number of Iba1- and Clec7a-positive cells in the hippocampus
was counted using Image J software (Image J, open source).

Western Blot
Proteins were extracted from the TRIzol fraction previously
recovered from the RNA extraction step using the extraction
protocol of Simões et al. (78). Protein concentration was
determined by bicinchoninic acid protein assay (Interchim,
Montlucon, France) according to the protocol. For analysis,

proteins were resolved on 10% sodium dodecyl sulfate-
polyacrylamide gel and transferred to nitrocellulose membranes.
Membranes were incubated with different primary antibodies:
a rabbit polyclonal anti-ZO-1 (1:500, #61-7300, Invitrogen, Life
Technologies, Saint Aubin, France), a rabbit polyclonal anti-ocln
(1:250, #40-4700, Invitrogen, Life Technologies, Saint Aubin,
France) and a rabbit polyclonal anti-GAPDH as housekeeping
protein (1:10,000; #51745, Cell Signaling, Leiden, Netherlands).
These primary antibodies were detected with appropriated
donkey horseradish peroxidase-conjugated secondary antibodies
(1:5,000, #711-035-152, Jackson Immunoresearch, Westgrove,
PA, USA). The membranes were incubated with a peroxidase
revealing solution (SuperSignal West Dura, ThermoFisher,
Waltham, MA, USA) and were revealed using ChemiDoc
MP (Biorad, Hercules, CA, USA). Proteins of interest
were normalized to GAPDH and results are expressed as
relative expression.

Data Analysis
Hierarchical cluster analysis was performed using R free software
(79), version 4.0.3. Forty variables were used (Table 2). Then,
unsupervised hierarchical analysis was performed with hclust
function (80) using Ward’s linkage method (81). The resulting
cluster dendrogram was then generated with the plot function.
Correlation matrices were calculated and drawn in R with
heatmap.plus, gplots, psy, RcolorBrewer, corrplot, ggplot2, Hmisc
and ggcorrplot packages (cran.r-project.org). All aforementioned
packages can be found on the CRAN repository (https://cran.r-
project.org/).

Statistical analyses were conducted with GraphPad Prism 7
(GraphPadSotfware, San Diego, USA). Graphs are represented as
mean ± standard error of the mean (SEM). A 2-way ANOVA
with repeated measures was used to analyze body weight (factors:
diet and time). The Y-Maze was analyzed using a 2-way ANOVA
followed by a Tukey post-hoc test. Concerning the Morris
water maze:
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TABLE 2 | Variables used for hierarchical cluster analysis.

Family Process Variable Full name

Central nervous system Inflammation IL6 Interleukin 6

IL1b Interleukin 1β

TNFa Tumor necrosis factor α

M0 Microglial phenotype TGFb1 Transforming growth factor β1

TGFbr2 Transforming growth factor β receptor 2

Itgam αM integrin

Tmem119 Transmembrane protein 119

P2Y12 P2Y purinoceptor 12

CSF1r Colony-stimulating factor 1 receptor

MGnD Microglial phenotype MHCII Major histocompatibility complex class II

Trem2 Triggering receptor expressed on myeloid cells 2

ApoE Apolipoprotein E

Lgals3 Galectin 3

Axl Tyrosine-protein kinase receptor UFO

Clec7a C-type lectin domain containing 7A

Itgax αX integrin

Clec7a+ Iba1+/Iba1+ C-type lectin domain containing 7A

Ionized calcium binding adapter molecule1

Intestinal tract Colon Inflammation IL6 Interleukin 6

IL1b Interleukin 1β

TNFa Tumor necrosis factor α

IL10 Interleulin 10

Permeability Protein Ocln Protein occludin

Protein ZO-1 Protein ZO-1

Ocln Occludin

ZO-1 Zonula occludens-1

Cldn5 Claudin 5

MLCK Myosin light-chain kinase

Ileum Inflammation IL6 Interleukin 6

IL1b Interleukin 1β

TNFa Tumor necrosis factor α

IL10 Interleukin 10

Permeability Protein Ocln Protein occludin

Protein ZO-1 Protein ZO-1

Ocln Occludin

ZO-1 Zonula occludens-1

Cldn5 Claudin 5

MLCK Myosin light-chain kinase

Behavior Cognition Distance target Distance in the target quadrant of the MWM

Y.Maze.

New arm

Distance in the new arm of the Y-Maze

Y.Maze.

Familiar arm

Distance in the familiar arm of the Y-Maze

M0, Microglial homeostatic signature; MGnD, Microglial neurodegenerative-associated disease phenotype.

• Cued learning was analyzed using an unpaired t-test.

• Spatial learning was analyzed using a 2-way ANOVA with

repeated measures (factors: diet and days of learning).

• Probe test comparisons were performed for each group against

chance level (25%) using a one sample t-test and a 1-way

ANOVA (factor: quadrants) followed by a Dunnett’s multiple

comparisons post-hoc test. A 2-way ANOVA has also been
performed (factors: quadrant and diet).

The other analyses were performed using unpaired t-tests (when
variances were not different) or Welch-corrected t-tests (when
variances were different) between groups. For the ANOVA
analyses, the method of Geisser-Greenhouse was used to correct
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FIGURE 2 | Unsupervised hierarchical cluster dendrogram of individuals using Ward’s linkage method. Dendrogram of the two clusters corresponding to control fed

mice (white) and mice fed the hydrolysate-enriched diet (black). Mice removed from analyses are represented with a cross. Such analyses are based on cognitive

behavior, central and intestinal inflammatory cytokines, microglial and intestinal permeability markers (Table 2).

the violation of the assumption of sphericity (82). Alpha has been
set at 0.05 and all the post-hoc tests used in the present study
(Tukey’s and Dunnett’s) are comparing multiple variables and are
also correcting for family wise error rate.

RESULTS

Individual Heterogeneity in the
Experimental Groups
Unsupervised hierarchical clustering analysis was performed
using input from all the behavioral and biochemical parameters
previously described (Table 2). Output clustered mice into
two different clusters. The majority of mice that were given
hydrolysate-enriched or control diets were segregated in two
separate clusters (Figure 2). However, out of 11 mice fed with the
hydrolysate enriched-diet, 3 mice did not behave as the majority
of the group. Similarly, 2 out the 10 mice fed with the control diet
did not behave as the majority of the group. Subsequently, these
mice were considered as not homogenous within their respective
groups and were therefore considered as outliers, and excluded
from further analyses (Figure 2).

Weight and Body Composition
Weight, fat mass and lean mass were measured all along the
10 weeks of dietary supplementation. Body weight increased in
both control and hydrolysate fed mice over the 10 weeks of diet
(time effect [F(9, 126) = 25.93, p < 0.001]), in a diet-independent
manner (diet effect [F(1, 14) = 2.287, p = 0.153]) (data not
shown). Fat mass gain and lean mass reduction were also similar
between mice fed either with the control diet or the hydrolysate

enriched-diet [t(14) = 0.949, p = 0.359 and t(14) = 0.688, p =

0.503, respectively] (data not shown).

Short-Term and Long-Term Memory
Evaluation
The effect of the hydrolysate supplementation on short-term
spatial memory was assessed using a Y-maze test with a 1 h ITI.
The 2-way ANOVA revealed an effect of arms [F(1, 28) = 25.62,
p < 0.001] but did not reveal any effect of the diet [F(1, 28) =
1.451, p = 0.239]. However, the interaction between arms and
diet was significant [F(1, 28) = 15.08, p < 0.001]. The distance
traveled in the familiar and in the new arm were not significantly
different in control aged mice (Tukey post-hoc test: p = 0.838),
characterizing short-term memory deficits. Furthermore, aged
mice fed the hydrolysate diet traveled less distance in the familiar
arm than control agedmice (Tukey post-hoc test: p< 0.01). These
deficits were prevented in mice fed the hydrolysate diet, which
traveled more distance in the new arm (Tukey post-hoc test: p <

0.001) (Figure 3A).
The effect of the hydrolysate supplementation on spatial

learning and long-term memory was then assessed with the
Morris water maze test. First, to evaluate their visuo-motor
abilities, mice were trained to find a visible cued platform in
the Morris water maze. Both groups traveled similar distances
to reach the visible platform [t(14) = 1.515, p = 0.152], meaning
that they had similar visual abilities and did not display any
impairment during the cued learning (Figure 3B). Mice were
then submitted to the spatial learning. The 2-way ANOVA did
not reveal any interaction [F(3, 42) = 1.119, p = 0.352] or effect
of the diet [F(1, 14) = 1.098, p = 0.313]. However, both control
and hydrolysate supplemented groups traveled significantly less
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FIGURE 3 | Effects of the fish hydrolysate supplementation on short-term memory, spatial learning and long-term memory. (A) Recognition of the new arm after a 1 h

ITI in aged mice fed the control diet or the hydrolysate-enriched diet (**p < 0.01, ***p < 0.001 by 2-way ANOVA followed by Tukey post-hoc test). (B) Distance

traveled during the cued learning (C) Distance covered to reach the platform over the 4 consecutive days of spatial learning (day effect p < 0.01 by 2-way ANOVA

with repeated measures). (D) Percentage of distance traveled in quadrants during the probe test. The dotted line represents chance level (25%) [$$p < 0.01 vs.

chance level by one-sample t-test. ***p < 0.001 compared to QW (Target) by One-way ANOVA and Dunnett’s multiple comparison test; n = 8 per group]. Data are

presented as mean ± SEM. QE, quadrant east; QN, quadrant north; QS, quadrant south; QW, quadrant west.

distance over the 4 days of training [day effect, F(3, 42) = 3.85,
p < 0.05] indicating that learning was achieved (Figure 3C).
Mice fed the hydrolysate enriched-diet did not show better
performance than control mice (diet effect [F(1, 14) = 1.098,
p = 0.313]). Spatial memory was evaluated 72 h after the last day
of spatial learning, during the probe test. A 2-way ANOVA was
performed for the probe test and did not reveal any interaction
[F(3, 42) = 0.475, p = 0.702] and no effect of the diet [F(1, 14) =
1.117, p = 0.308]. However, the analysis revealed a significant
quadrant effect [F(3, 42) = 10.47, p < 0.001]. One sample t-
test compared to the chance level (25%) showed that control
mice didn’t travel more distance in the target quadrant [t(7)
= 1.533 p = 0.169], revealing that 72 h after the last day
of training, aged control mice presented memory alterations
(Figure 3D). The hydrolysate supplementation prevented this
memory long-term memory deficit as shown in Figure 3D.
Indeed, supplemented mice significantly traveled more distance
in the target quadrant [t(7) = 3.591, p < 0.01]. Furthermore, aged
control mice failed to discriminate the target quadrant [F(3, 28)
= 2.164, p = 0.115] to the contrary of aged mice supplemented
with the hydrolysate enriched-diet [F(3, 28) = 12.61, p < 0.001].
They significantly differentiated QN and QS from the target

quadrant (QN vs. QW: p < 0.001; QS vs. QW: p < 0.001)
and tended to differentiate QE from the target quadrant (QE
vs. QW: p = 0.061). The absence of differences between QE
and QW could be explained by the freezing of the mice for the
10 first seconds of the probe test, suggesting the presence of
anxiety-like behavior, which were corrected by the hydrolysate
supplementation. The freezing of the mice can be due to the
cold water but we used the temperature used by Morris (75).
Freezing can also be a temporary stress related to immobility.
This behavior is commonly observed, especially in aged
animals, while the Morris water maze is test known to induce
stress (83).

Pro-inflammatory Cytokine Gene
Expression in the Hippocampus
Gene expression of pro-inflammatory cytokines IL-6, IL-1β, and
TNF-α was analyzed in the hippocampus of mice. The mRNA
expression of IL-6, IL-1β, and TNF-α was not different between
control and supplemented groups ([t(14) = 0.601, p = 0.557];
[t(14) = 0.326, p = 0.749], and [t(14) = 0.821, p = 0.426],
respectively) (Figure 4).
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FIGURE 4 | Effects of the fish hydrolysate supplementation on pro-inflammatory cytokine expression in the hippocampus. Pro-inflammatory cytokines IL-6, IL-1β, and

TNF-α mRNA expression in the hippocampus of aged mice fed with the control diet or the hydrolysate-enriched diet for 10 weeks. n = 8 per group. Data are

presented as mean ± SEM.

Homeostatic and MGnD Microglial
Signatures in the Hippocampus
The expression of genes that characterize the homeostatic
microglial signature has been evaluated. Interestingly, the
hydrolysate supplementation increased the expression of TGF-
β1 compared to the control diet [t(9.413) = 2.34, p < 0.05],
which is essential for the maintenance of the homeostatic
microglial signature (Figure 5). No differences were observed
between mice fed with the control and the hydrolysate enriched-
diet for TGF-βr2 [t(14) = 0.07, p = 0.945], P2y12 [t(14) =

0.7, p = 0.496], CSF1r [t(14) = 0.279, p = 0.784], Itgam
[t(14) = 0.301, p = 0.768] and Tmem119 [t(14) = 0.012,
p= 0.991] (Figure 5).

The expression of genes that characterize the MGnD
microglial signature, occurring during aging, has also been
evaluated in the same cerebral structure. Mice fed the hydrolysate
enriched-diet displayed higher expression of Clec7a, which is
involved in phagocytosis, compared to mice fed the control
diet [t(14) = 2.226, p < 0.05] (Figure 6). Moreover, the
hydrolysate supplementation tended to decrease the expression
of Trem2 [t(14) = 1.84, p = 0.087], which is involved in the
shift toward MGnD phenotype (Figure 6). No differences were
observed between both control and hydrolysate supplemented
groups for ApoE [t(14) = 0.818, p = 0.427], Axl [t(14)
= 0.878, p = 0.395], MHCII [t(14) = 0.987, p = 0.341],
Lgals3 [t(14) = 0.73, p = 0.478] and Itgax [t(14) = 0.031,
p= 0.976] (Figure 6).

Hippocampal Clec7a-Positive Microglia
We wanted to go further with the increased mRNA expression
of Clec7a in the hippocampus of the aged hydrolysate group.
We then performed immunohistochemical analysis on the
number of cells positive for Clec7a within Iba1-positive microglia
in the hippocampus (Figure 7A). The analysis revealed no
significant difference between the number of Clec7a+ Iba1+

cells between mice fed either the control or the hydrolysate-
enriched diet in the whole hippocampus [t(8) = 1.265,
p= 0.241] (Figure 7B).

mRNA and Protein Expression of Intestinal
Inflammation and Permeability Markers
Gut alterations related to aging lead to the production of
inflammatory cytokines, thus contributing to chronic low-
grade inflammation. Then, the effect of the hydrolysate
supplementation was evaluated on inflammation in the ileum
and the colon. In the ileum, gene expression of IL-6, IL-1β, TNF-
α and IL-10 was not different between mice fed the control and
the hydrolysate-enriched diet (IL-6 [t(14) = 0.115, p= 0.911]; IL-
1β [t(14) = 0.637, p = 535]; TNF-α [t(14) = 0.061, p = 0.952];
IL-10 [t(14) = 0.436, p= 0.67]) (Figure 8A). In the colon, mRNA
expression of IL-10 was significantly increased following the
hydrolysate supplementation [t(14) = 2.27, p < 0.05], suggesting
an anti-inflammatory effect of the hydrolysate (Figure 8B). The
mRNA expression of the other genes in the colon was comparable
in the control and hydrolysate supplemented groups (IL-6 [t(14)
= 0.899, p = 0.384]; IL-1β [t(14) = 0.832, p = 0.42]; TNF-α [t(14)
= 1.046, p= 0.313]) (Figure 8B).

Gut alterations related to aging, in addition to the production
of inflammatory cytokines, lead to an increase of intestinal
permeability. The effect of the hydrolysate supplementation was
then evaluated on gene expression involved in ileum and colon
permeability. In the ileum, gene expression of Ocln, ZO-1, Cldn5
and MLCK were not different between mice fed the control diet
and mice fed the hydrolysate-enriched diet (Ocln [t(14) = 0.398,
p = 0.697]; ZO-1 [t(14) = 0.87, p = 0.399]; Cldn5 [t(14) = 0.24,
p= 0.814]; MLCK [t(14) = 0.212, p= 0.835]) (Figure 9A). In the
colon, both control and supplemented groups displayed similar
expression of Ocln [t(14) = 0.448, p= 0.661], Cldn5 [t(14) = 0.203,
p= 0.843], andMLCK [t(14) = 0.641, p= 0.532] (Figure 9B). The
hydrolysate supplementation tended to increase the expression of
ZO-1 [t(14) = 1.891, p= 0.08] (Figure 9B).

To go further, protein expression of Ocln and ZO-1 were
assessed in the ileum and the colon. As shown in Figure 10 for
Ocln, multiple reactive bands were observed at molecular weights
of∼62–65 kDa for the lowermolecular weight and 71 kDa for the
higher molecular weight, representing the hyperphosphorylated
form of the lower molecular weight form. Relative protein
expression is represented as the ratio of protein expression to
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FIGURE 5 | Effects of the fish hydrolysate supplementation on homeostatic microglial signature in the hippocampus. mRNA expression of homeostatic microglial

markers TGFβ1, TGFβr2, P2y12, CSF1r, Itgam, and Tmem119 in the hippocampus of aged mice fed with the control diet or the hydrolysate-enriched diet for 10

weeks (*p < 0.05 by unpaired t-test; n = 8 per group). Data are presented as mean ± SEM.

GAPDH. Total Ocln expression is represented as the ratio of
the higher molecular weight form to the lower molecular weight
form. No differences were observed between groups in the ileum
(Ocln [t(14) = 0.191; p= 0.851]; ZO-1 [t(14) = 0.497; p= 0.627])
(Figure 10A) neither in the colon (Ocln [t(14) = 1.122; p= 0.281];
ZO-1 [t(8.81) = 0.384; p= 0.71]) (Figure 10B).

Shift in Inflammatory, Intestinal
Permeability, and Behavioral Marker Profile
Correlation matrices were performed in aged control and aged
hydrolysate groups. Overall, these correlation matrices revealed
two different profiles based on the expression of hippocampal
and intestinal inflammatory markers, intestinal permeability
markers, behavioral assessment and immunological markers
(Figure 11). Correlations between cognitive parameters and
microglial markers were highlighted in both groups but to
a lesser extent in the aged control group than in the aged
hydrolysate group. In the aged hydrolysate group, the distance
traveled in the new arm of the Y-Maze as well as in the target
quadrant of the Morris water maze was positively correlated with
genes involved in the homeostatic microglial signature, such as
CSF1r, Tmem119, or P2y12, suggesting that the maintenance
of this signature plays a role in cognitive function. In the
aged control group, some markers of the MGnD microglial
signature such as Trem2 or MHCII were negatively correlated
with the distance traveled in the new arm of the Y-Maze.

Likewise, the M0 marker P2y12 was positively correlated to
the distance traveled in the target quadrant of the Morris
water maze. Differences in the level of correlations between
M0 and MGnD markers have been highlighted in the aged
control group and the aged hydrolysate group. Indeed, in the
aged hydrolysate group, the correlation matrix showed more
significant positive than negative correlations, notably between
the M0 markers TGF-βr2, Tmem119, P2y12, CSF1r and the
MGnD markers MHCII, Trem2, ApoE, Lgals3, and Axl. In
this group, negative correlations have also been highlighted
between the M0 markers TGF-β1, Tmem119, P2y12, CSF1r
and the MGnD markers Clec7a, Itgax, and Clec7a+Iba1+ cells.
In comparison, the aged control group showed less significant
correlations. Nevertheless, those correlations were similar to
those observed in the aged hydrolysate group. The higher
number of significant correlations in the aged hydrolysate
group as compared to the aged control group suggested a
higher microglial reactivity and switches between M0 and
MGnD phenotype and a dysfunction in phenotype transition
of microglial cells in the aged control group. Furthermore, in
the aged hydrolysate group, markers of the MGnD microglial
signature, such as Axl, Lgals3, ApoE, Trem2, and MHCII
were negatively correlated with permeability markers, such as
ZO-1, Cldn5, MLCK, Ocln (protein) in the ileum and Ocln,
ZO-1, and Cldn5 in the colon, highlighting a link between
microglial phenotypes and intestinal permeability. Moreover,
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FIGURE 6 | Effects of the fish hydrolysate supplementation on MGnD microglial signature in the hippocampus. mRNA expression of MGnD microglial signature

Trem2, ApoE, Axl, MHCII, Lgals3, Clec7a, and Itgax in the hippocampus of aged mice fed with the control diet or the hydrolysate-enriched diet for 10 weeks (*p <

0.05 by unpaired t-test; n = 8 per group). Data are presented as mean ± SEM.

FIGURE 7 | Effects of the fish hydrolysate supplementation on Clec7a+ Iba1+/Iba1+ cells in the hippocampus. (A) Representative images of Clec7a+ Iba1+/Iba1+ cells

(double staining), Iba1+ cells (in green), Clec7a+ cells (in red) and DAPI+ cells (in blue) (scale bars: 10µM) and (B) Number of positive cells for Clec7a and Iba1 staining

in the hippocampus of aged mice fed with the control diet or the hydrolysate-enriched diet for 10 weeks (n = 8 per group). Data are presented as mean ± SEM.

different profiles were observed concerning correlations between
intestinal inflammation and permeability. In the aged hydrolysate
group, IL-10 in the ileum and the colon was positively correlated
with ZO-1, Cldn5, andMLCK in the ileum and the colon whereas
IL-10 in the ileum was negatively correlated to any variable
in the aged control group. Concerning the pro-inflammatory
cytokines, IL-6, IL-1β, and TNF-α in the ileum were positively
correlated with Ocln, ZO-1, Cldn5, and MLCK in the ileum in
the aged hydrolysate group. These correlations were not observed
in the aged control group. We also noticed a positive correlation
between colon inflammatory (IL-6, TNF-α) and permeability
(Ocln, ZO-1, Cldn5) markers and brain IL-6. These results
suggest a link between gut physiology and brain function.

DISCUSSION

Our results confirmed previous results obtained in our laboratory

(73) and demonstrated that the hydrolysate supplementation

prevents short- and long-term memory decline during aging. To

better understand the mechanisms involved in the prevention of

cognitive decline, we investigated the impact of the hydrolysate
on microglial signature and on peripheral inflammation. We
demonstrated that, without modulating pro-inflammatory
cytokine expression, the fish hydrolysate supplementation
modulated microglial signature. Indeed, mice supplemented
with the fish hydrolysate displayed higher TGF-β1 expression,
characteristic of the homeostatic microglial phenotype, higher
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FIGURE 8 | Effects of the fish hydrolysate supplementation on intestinal inflammation. Pro-inflammatory cytokines IL-6, IL-1β, and TNF-α and anti-inflammatory

cytokine IL-10 mRNA expressions in (A) the ileum and (B) the colon of aged mice fed with the control diet or the hydrolysate-enriched diet for 10 weeks (*p < 0.05 by

unpaired t-test; n = 8 per group). Data are presented as mean ± SEM.

FIGURE 9 | Effects of the fish hydrolysate supplementation on gene expression of intestinal permeability markers. Intestinal permeability markers Ocln, ZO-1, Cldn 5

and MLCK mRNA expressions in (A) the ileum and (B) the colon of aged mice fed with the control diet or the hydrolysate-enriched diet for 10 weeks. n = 8 per group.

Data are presented as mean ± SEM.
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FIGURE 10 | Effects of the fish hydrolysate supplementation on protein expression of intestinal permeability markers. Intestinal permeability markers ocln and ZO-1

protein expressions in (A) the ileum and (B) the colon of aged mice fed with the control diet or the hydrolysate-enriched diet for 10 weeks. n = 8 per group. Data are

presented as mean ± SEM.

expression of Clec7a, a marker of MGnD microglial signature
involved in phagocytosis, and tended to express less Trem2.
Our results represent a snapshot of the experimental conditions
that we used during our study (i.e., population of microglia in
the hippocampus of 17-months old mice supplemented or not).
Although phenotypic changes can be transient and observed
in a time-dependent manner, we can also suggest that these
changes can be due to the fish hydrolysate supplementation
that modulated microglia microenvironment. As shown
by correlation matrices, aged mice supplemented with the
hydrolysate enriched-diet displayed more significant and
positive correlations between markers of the homeostatic
microglial phenotype and markers of the MGnD phenotype,
suggesting a higher reactivity of microglial cells as compared
to the aged control group. The results are in accordance with
a previous study that showed higher microglial reactivity in
response to inflammation (84). Moreover, the hydrolysate
supplementation promoted anti-inflammatory intestinal
pathway and tended to prevent intestinal permeability alteration
occurring during aging. The hydrolysate supplementation
induced a shift in biochemical and behavioral marker profiles
and appeared consequently as an interesting candidate to prevent
cognitive decline during aging.

We highlighted a beneficial effect of the fish hydrolysate
supplementation on TGF-β1 during aging, which is an anti-
inflammatory cytokine largely involved in the regulation of
inflammation, in cell proliferation, growth and differentiation
as well as in neuroprotection (85). Moreover, protective
effects against neuronal insults have also been observed before

(10). We showed that TGF-β1 expression was higher in the
hydrolysate supplementation group as compared to the control
group. This effect could be linked to the enhancement of
the cognitive performances in these mice. Indeed, defects in
TGF-β1 have negative impact in physiological and pathological
conditions. In normal aging in human, it was shown that
a genetic variation within TGF-β1, leading to a lower
production of TGF-β1, has a negative impact on functional
and cognitive performance (85). In patients with Alzheimer’s
disease, impairment in TGF-β1 signaling is characterized by
a reduction of TGF-β1 plasma levels and decreased receptor
expression in neurons (85). In rodents, this cytokine seems
to be involved in learning processes as demonstrated in
mice and rats treated with a selective inhibitor of TGF-β1
signaling pathway (86, 87). These results suggest a possible
role of TGF-β1 probably in the formation and remodeling of
synapses (88).

In our study, aged mice fed the fish hydrolysate enriched-
diet tended to express less Trem2 than aged control mice.
This trend is interesting since this marker, which is highly
expressed in glial cells, is involved in the switch from
homeostatic microglial phenotype to MGnD phenotype (89, 90).
Moreover, several studies have highlighted the beneficial effect
of a Trem2 deficiency in aged mice on microglial activation,
cognitive performance as well as hippocampal long-term
potentiation, suggesting a potential detrimental role of Trem2
during physiological aging (89, 91). Further experimentations
are needed to deepen the effect of the fish hydrolysate on
Trem2 expression.
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FIGURE 11 | Correlation matrix of behavioral and biochemical parameters of each group. Positive correlations are represented in blue, negative correlations in red. No

significant correlations are represented by a cross.

The expression of another gene associated to the MGnD
phenotype, (Clec7a), was higher following the fish hydrolysate
supplementation, although the number of positive microglia
for Clec7a was not different from the aged control group.
This could be the result of infiltrating cells, other than
microglia, since this marker is expressed by macrophages as
well as dendritic cells (92). It promotes microglial phagocytosis
but can also be involved in pathogen recognition and the

regulation of autophagy (93). In fine, it enhances the removal
of cellular debris or damaged cell accumulation. Clec7a has
been reported to enhance neuroinflammation when acting in
synergy with Toll-like receptor 2 (94, 95) but in the regeneration
of damaged CNS (96), via Syk-dependent signaling pathway.
Syk is activated by phosphorylation into p-Syk, which, in turn
activates signaling molecules such as NF-κB (95). It would be
interesting to evaluate Syk and p-Syk expression to demonstrate
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the signaling pathways involved in the regulation of Clec7a by
the hydrolysate.

Another possible mechanism of action of the fish hydrolysate
during aging has been explored. We focused on the intestinal
tract, which is involved in several physiological processes
including nutrient intake as well as immune modulation (97).
Indeed, a close link between gut inflammation, gut permeability
and cognition has been demonstrated before (14). Age-related
dysbiosis of the gut microbiota is known to be associated
with aberrations of gut barrier integrity and enhanced pro-
inflammatory cytokines. These changes impact the gut-brain axis
thereby impairing neural, endocrine, and immunological signals
between the gut and the brain via the enteric nervous system and
could play a role in diseases of the CNS (98, 99). In aged rodents,
several studies have reported an increased intestinal permeability
to macromolecules and microbes, suggesting altered function
and integrity of the intestinal barrier, leading to the leakage of
microbial products in the circulation, thereby triggering systemic
inflammation and contributing to cognitive impairments (12,
100–102). Recently, fecal microbiota transplant from aged mice
to young mice has been shown to affect spatial learning and long-
term memory, confirming the link between gut microbiota and
cognitive function (103). It is also known that some nutrients can
influence gut microbiota and functionality. In this study, aged
mice fed the hydrolysate enriched-diet displayed higher colonic
expression of IL-10 as compared to aged control mice. This is
particularly interesting since IL-10 is a cytokine which plays a
crucial role in the regulation of epithelial integrity as well as
the regeneration of the colon (104, 105). In line with this, a
positive correlation was also found between intestinal IL-10 and
permeability markers ZO-1, Cldn5, and MLCK. Furthermore,
IL-10 can interact with the intestinal microbiota to regulate
epithelial function (106). The hydrolysate supplementation also
tended to decrease intestinal permeability. The effects of n-3 LC-
PUFAs on gut microbiota, intestinal permeability and immune
function have recently been reviewed (66, 67, 70). EPA and
DHA display significant beneficial effects on barrier integrity
and intestinal inflammation as shown in in vitro and in vivo
studies. Moreover, n-3 PUFAs can influence gut microbiota
composition and, in turn, microbiota can impact the metabolism
and absorption of n-3 PUFAs. However, less is known about
the effects of low molecular weight peptides. Recently, the
supplementation with small peptides from skipjack by-products
have been shown to display anti-inflammatory effects in a mouse
model of ulcerative colitis and to increase the diversity of the
intestinal flora (107). These anti-inflammatory properties have
also been observed in murine models of colitis supplemented
with peptide derived from soy or oyster (63, 64). In addition,
collagen peptides also protect the intestinal barrier function
in vitro, via the regulation of ZO-1 and Ocln expression and
distribution and the MLCK pathway (71, 72).

The effect of the fish hydrolysate on intestinal inflammation
and permeability was highlighted in the colon but not in the
ileum. This could be linked to differences in microbiota in these
two intestinal tissues. Indeed, ileum and colon presented distinct
microbiota suggesting different mechanisms of action (97, 108).
Microbial signatures in colon and ileum are specific and may

be differently modulated by the hydrolysate supplementation, as
already shown in a study evaluating the effects of polyphenols
on intestinal inflammation and gut microbiome signature (97).
Moreover, aging induces change in microbiota diversity, which
is linked to immune function and cognition (14). Comparisons
between microbiota composition in the colon or the ileum would
be interesting, as previous studies in humans have observed
differences in composition and density between the microbiota
of the distal ileum and the colon (109, 110). These microbiota
compositions also changed with diet and we could speculate that
it wasn’t change similarly by the hydrolysate supplementation
due to their basal composition.

This study has some limitations. A first limitation concerns
the sample size, which could have been increased in order to
increase the significance of the statistical tests. However, we had
to comply with ethical regulations and our previous results have
shown that the number of mice is sufficient to highlight beneficial
effects of a hydrolysate supplementation on cognitive function as
well as neuroinflammation (73, 84). We also acknowledge some
potential bias for themultiple comparison analyses given the high
risk of family-wise, thus given rise to potential false positives
within the reported results. A second limitation concerns the
lack of morphological analyses of microglia. Indeed, microglia
morphology and function are closely related and morphological
analyses would have given us information on their function.
We chose to analyze the protein expression of Clec7a by
immunofluorescence because it is involved in phagocytosis,
which is enhanced during aging (10).

CONCLUSION

This study provides further evidence for the understanding of the
mechanisms of action of the marine hydrolysate containing n-3
LC-PUFAs and low molecular weight peptides on inflammation
and cognitive functions during aging. The beneficial effects
induced by the hydrolysate supplementation on behavioral and
biochemical markers reinforce the innovative character of this
hydrolysate on the prevention of age-related cognitive decline.
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