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The average human life expectancy continues to rise globally and so does the prevalence

and absolute burden of cardiovascular disease. Dietary restriction promotes longevity

and improves various cardiovascular risk factors, including hypertension, obesity,

diabetes mellitus, andmetabolic syndrome. However, low adherence to caloric restriction

renders this stringent dietary intervention challenging to adopt as a standard practice for

cardiovascular disease prevention. Hence, alternative eating patterns and strategies that

recapitulate the salutary benefits of caloric restriction are under intense investigation.

Here, we first provide an overview of alternative interventions, including intermittent

fasting, alternate-day fasting and theMediterranean diet, along with their cardiometabolic

effects in animal models and humans. We then present emerging pharmacological

alternatives, including spermidine, NAD+ precursors, resveratrol, and metformin, as

promising caloric restriction mimetics, and briefly touch on the mechanisms underpinning

their cardiometabolic and health-promoting effects. We conclude that implementation of

feasible dietary approaches holds the promise to attenuate the burden of cardiovascular

disease and facilitate healthy aging in humans.

Keywords: cardiovascular risk factors, obesity, hypertension, caloric restriction mimetics, autophagy, dietary

regimens, caloric restriction, intermittent fasting

INTRODUCTION – A BRIEF OVERVIEW OF CARDIOVASCULAR
RISK FACTORS

Cardiovascular diseases remain the major cause of morbidity and mortality, accounting for 17.9
million deaths per year or almost one third of all deaths worldwide1. Functional decline of the
cardiovascular system and increased vulnerability to disease manifestation is accelerated by various
risk factors. While some risk factors, such as age, sex, family history and race are unmodifiable,
several behavioral and environmental risk factors can be efficiently targeted through lifestyle
modifications and/or pharmacological interventions. In this regard, systemic analyses of global
cardiovascular disease trends and patterns revealed a cluster of modifiable cardiovascular risk

1World Health Organization. Health topics - cardiovascular diseases (2019). Available online at: https://www.who.int/health-
topics/cardiovascular-diseases#tab=tab_1 (accessed July 29, 2021).
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factors, including high blood pressure, obesity, diabetes mellitus
type 2, and hyperlipidemia, which are on the rise due to the global
population aging, hypercaloric dietary habits, and sedentary
lifestyle (1).

Extensive body of evidence indicates that hypertension is
the leading modifiable risk factor for cardiovascular disease
and premature mortality (2), accounting for 9.4 million global
deaths per year (3). In 2010, around 31.1% of adult population
worldwide (or 1.39 billion) were reportedly hypertensive (4).
As such, high blood pressure remains an unmet medical need,
despite the widespread use of antihypertensive medications.
Obesity and unhealthy diets are major behavioral determinants
that hamper the long-term control of hypertension (2),
contributing to the increased risk for cardiovascular disease
(5). Furthermore, obesity-related high levels of low-density
lipoprotein-cholesterol (LDL-cholesterol) and triglycerides are
causally linked to the progression of atherosclerosis (6), a chronic
inflammatory disease associated with increased risk of ischemic
cardiomyopathy and myocardial infarctions. Diabetes mellitus
type 2 is a global health risk that is often seen concurrently with
obesity and obesity-related complications, resulting in a 2-fold
increase of cardiovascular disease risk (7). Despite accumulating
evidence of the detrimental role of obesity and diabetes mellitus
type 2 in the development of cardiovascular disease, their
prevalence has reached epidemic dimensions2. Importantly, the
increasing co-occurrence of multiple morbidities, such as obesity,
dyslipidemia, diabetes mellitus type 2, and hypertension, which
are referred to as a cluster of conditions also known as metabolic
syndrome, typically contributes to an exponential increase in the
risk for cardiovascular diseases (8).

In general, patients with cardiovascular disease are commonly
affected by more than one risk factor (9). Emerging evidence
suggests that most cardiovascular diseases can be prevented
using systematic approaches that target behavioral risk factors
such as unhealthy diet, obesity, and physical inactivity. Indeed,
dietary restrictions or regular exercise have recently attracted
much attention for cardiovascular disease prevention as recent
estimations suggest that preventive treatments might reduce the
development of cardiovascular disease by 80% (3). However,
most patients exhibit low adherence to such demanding lifestyle
modifications. Therefore, there is a pressing need to identify
alternative interventions with better compliance. Various natural
and pharmacological supplements or small molecules have
emerged as potential candidates to replicate the pleiotropic
salutary effects of dietary restriction and, thus, might offer better
adherence without reducing calorie intake.

The amount of dietary intake, quality of food and its
preparation as well as micronutrient composition together
with general eating habits (e.g., meal timing and frequency)
significantly contribute to the onset of cardiovascular disease risk
factors (3, 10). To this end, many studies have tested various
forms of dietary modifications for their efficiency on improving
cardiovascular and metabolic health (Table 1 and Figure 1).

2World Health Organization. Health topics - diabetes (2019). Available online at:
https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed July 29, 2021).

DIETARY APPROACHES FOR IMPROVING
CARDIOMETABOLIC HEALTH

Mediterranean Diet
The Mediterranean diet is characterized by high fruit and
vegetable intake combined with plenty of fish and unsaturated
fatty acids derived mainly from extra-virgin olive oil, with
minimal or no consumption of low saturated fat and processed
food. Many epidemiological studies and randomized clinical
trials report that the traditional Mediterranean diet is associated
with lower risk for all-cause and cardiovascular disease
mortality, coronary heart disease, metabolic syndrome, and
diabetes mellitus type 2 (37, 38). For example, a meta-analysis
demonstrated 10% reduction in cardiovascular disease incidence
or mortality, and 8% decrease in all-cause mortality (39). In
similar vein, a randomized controlled trial (PREDIMED) that
included high-risk individuals consuming the Mediterranean
diet showed that the cardiovascular disease risk could be
lowered by almost 30% (11). In a sub-study derived from the
PREDIMED principal trial, the Mediterranean diet was found
to improve high-density lipoprotein (HDL) atheroprotective
functions (13). Remarkably, similar effects on HDL function
were reported in individuals suffering from metabolic syndrome,
which were subjected to the Mediterranean diet coupled
to exercise for 12 weeks only (12). Increased polyphenol
intake from Mediterranean diet is associated with improved
levels of LDL-cholesterol, HDL-cholesterol, and systolic and
diastolic blood pressures in older participants at high risk
for cardiovascular disease. Furthermore, elevated polyphenol
consumption reduces circulating inflammatory biomarkers,
such as vascular cell adhesion protein-1, interleukin-6, tumor
necrosis factor-α, which are linked to atherosclerosis (14).
Another sub-study of the PREDIMED trial reported reduced
expression of genes involved in vascular inflammation, foam cell
formation and thrombosis in a high cardiovascular disease risk
population (15).

Growing evidence suggests that the markedly reduced risk for
cardiovascular disease by the Mediterranean diet is attributed
to its plant-rich nutrient composition with seafood as the
predominant source of animal protein. For example, the
Women’s Health Initiative Observational Study demonstrated
that increased consumption of baked or boiled fish, but not fried
fish, inversely correlates with heart failure risk in postmenopausal
women (17). In agreement with these findings, a 25-year follow-
up study suggested that increased intake of long-chain omega-
3 polyunsaturated fatty acids (PUFAs) and non-fried fish in
early adulthood protects against the development of metabolic
syndrome (18). Similarly, the Mediterranean diet enriched with
extra-virgin olive oil, but without reduced caloric intake, reduces
the risk for diabetes mellitus type 2 in individuals with high
cardiovascular risk (16). In sum, the Mediterranean diet is
a promising and feasible diet with manifold cardiometabolic
benefits. However, since the PREDIMED trial has had its
limitations (40), additional randomized clinical studies are
warranted to corroborate the efficacy of this most extensively
studied dietary regimen.
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TABLE 1 | Overview of human trials testing the efficacy of dietary interventions on cardiometabolic risk.

Dietary

intervention

Diet characteristics and

duration

Follow-

up

time

Disease/target

population

Study design/Number of

participants/Sex

Effect Study outcomes Reference/Trial title

Mediterranean

diet

Until follow-up 4.8 years High-risk for cardiovascular

disease

RCT 7,447 participants 57% women ↓ 30% reduced cardiovascular disease

risk

(11)

12 weeks

Therapeutic lifestyle

changes (diet plus exercise)

- Metabolic syndrome Prospective pilot study 25

participants 76% women

↓

↑

Body weight

Body-mass-index

Fasting insulin

HDL function

(12)

1-year intervention

Enriched with extra-virgin

olive oil or nuts

- High-risk for cardiovascular

disease

RCT 296 participants 51% women ↑ HDL atheroprotective functions (13) PREDIMED

1-year intervention

Enriched with extra-virgin

olive oil or nuts

- High-risk for cardiovascular

disease

RCT 1,139 participants 55% women ↓

↑

LDL-cholesterol

Inflammatory biomarkers (VCAM-1,

intracellular adhesion molecule, IL-6,

TNFα, monocyte chemotactic protein

1)

HDL-cholesterol

(14) PREDIMED

3-month intervention

Enriched with extra-virgin

olive oil or nuts

- High-risk for cardiovascular

disease

RCT 49 participants 53% women ↓ Pro-atherothrombotic genes (15) PREDIMED

Enriched with extra-virgin

olive oil or nuts

4.1 years High-risk for cardiovascular

disease

RCT 3541 participants 70% women ↓ Diabetes risk (16) PREDIMED

Increased fish consumption

(non-fried)

10 years Healthy post-menopausal

women

Observational study 84,493 women ↓ Heart failure risk (17) WHI-OS

During early adulthood

increased fish (non-fried)

and long chain omega-3

PUFAs

25 years Young adults, free form

metabolic syndrome and

diabetes

Prospective cohort study 4,356

participants 53% women

↓ Metabolic syndrome incidence (18) CARDIA

Caloric

restriction

(CR)

2-year intervention

25% CR

- Healthy, non-obese RCT 220 participants 67% women ↓

↑

Body weight

General health

(19) CALERIE 2

2-year intervention

25% CR

- Healthy, non-obese RCT 53 participants (analyzed)

68% women

↓ 10-year cardiovascular disease risk

by 30%

Blood pressure

Body weight

Subcutaneous and visceral fat

Insulin resistance (at 12 months of

intervention)

LDL-cholesterol

Cholesterol

Triglycerides

(20) CALERIE 2

6-month intervention 25%

CR plus other groups with

exercise and varied % of CR

- Overweight RCT 48 participants 57% women ↓ Body weight

Fat mass

Leptin

(21) CALERIE

(Continued)
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TABLE 1 | Continued

Dietary

intervention

Diet characteristics and

duration

Follow-

up

time

Disease/target

population

Study design/Number of

participants/Sex

Effect Study outcomes Reference/Trial title

2-year intervention

25% CR

- Normal weight to

moderately overweight

RCT 218 participants 68% women ↓

↑

Body weight

Blood pressure

Insulin resistance

Inflammatory biomarkers

(triiodothyronine, TNFα)

Triglycerides

LDL-cholesterol

Total cholesterol

Energy expenditure

HDL-cholesterol

(22) CALERIE

6-month intervention - Metabolic syndrome Observational study 18 men ↓

↑

Body weight

Insulin levels

Fasting glucose

Pro-inflammatory cytokines

Lipoprotein composition

(23)

6-month intervention

25% CR, additional

subgroup for 2 days/week

- Healthy, obese or

overweight, family history of

breast cancer in 54% of

participants

RCT 107 women ↓

↑

Body weight

Blood pressure

Fasting insulin

Insulin resistance

Leptin

C-reactive

Protein

LDL-cholesterol

Triglycerides

IGF-1 BP

(24)

16-week intervention

Calorie reduction of 700 or

500 kcal/day (latter coupled

to physical exercise)

- Diabetes mellitus type 2 RCT 63 participants 51% women ↓

=

Body weight

Epicardial fat

Total fat mass

Cardiometabolomic profile

(25)

20-week intervention calorie

deficit of ∼400 kcal/day

- Older, heart failure with

preserved ejection fraction

RCT 92 participants 80% women ↑ Peak oxygen consumption (26)

CR for 6.5 ± 4.6 years - Healthy Cross-sectional 50 participants

19% women

↓

↑

Blood pressure C-reactive protein

TNFα, TGFβ1
Diastolic function

(27)

Intermittent

fasting

2-week intervention

∼17 h fasting cycles

- Diabetes mellitus type 2 +

metformin, obese

Observational study 10 participants

90% women

↓

↑

Body weight

Morning glucose level

Postprandial glucose level

Physical activity

(28)

8-week intervention

16 h fasting cycles

- Healthy men RCT 34 men ↓

↑

Fat mass

IGF-1

Testosterone

Respiratory ratio

Adiponectin

(29)

(Continued)
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TABLE 1 | Continued

Dietary

intervention

Diet characteristics and

duration

Follow-

up

time

Disease/target

population

Study design/Number of

participants/Sex

Effect Study outcomes Reference/Trial title

Alternate-day

fasting

8-week intervention

Allowed for 25% of energy

intake on fasting days

- Obese Interventional study 16 participants

75% women

↓ Body weight

Body fat percentage

Blood pressure

Total LDL

LDL-cholesterol

Triglycerols

(30)

22-day intervention

No control group

- Non-obese 16 participants 50% women ↓

↑

Body weight

Fasting insulin

Respiratory quotient

Fat oxidation

(31)

4-week and 6-month

intervention

- Healthy non-obese Cohort study with integrated pilot

RCT 90 participants for long term

ADF 58% women

57 participants in RCT 60% women

↓

↑

Cardiovascular disease risk

Fat-to-lean ratio

Inflammatory markers (sICAM-1,

triiodothyronine) LDL-cholesterol

Ketones

PUFAs

(32) InterFast

8-week intervention

High-fat (45%) or low-fat

(25%) diet on non-fasting

days

- Obese RCT 32 women ↓ Coronary heart disease risk

Body weight

Fat mass

LDL-cholesterol

Triacylglycerol

(33)

Intermittent

fasting vs.

caloric

restriction

12-week intervention

Continuous CR

(5,000–6,500 kJ/day) or

intermittent fasting for

2 days/week

- Overweight/obese and

Diabetes mellitus type 2

RCT 63 participants 52% women ↓ Body weight HbA1c

Comparable results between IF and

CR

(34)

Alternate-day

fasting vs.

caloric

restriction

1-year intervention

25% of energy intake

allowed on fasting days or

25% CR continuously

- Obese RCT 100 participants 86% women ↓

↑

Body weight

HDL-cholesterol in alternate-day

fasting (6 months of intervention)

(35)

3-week intervention

150 or 200% energy intake

on non-fasting days or 25%

CR continuously

- Healthy and lean RCT 36 participants 58% women ↓

↑

Body weight (not for 200% energy

intake)

Body fat (not for 200% energy intake)

LDL-cholesterol (only CR)

Leptin

HDL-cholesterol

Adiponectin

CR more effectively reduces body

weight than alternate-day fasting with

25% reduced energy intake, which

confers no additional short-term

metabolic or cardiovascular benefits

(36)

We searched the US clinical trial registry (https://www.clinicaltrials.gov/) and PubMed using terms “Mediterranean diet,” “Caloric restriction,” “Intermittent Fasting,” “Alternate-day fasting,” and “Cardiovascular risk/disease” for completed,

pending or ongoing clinical trials testing the effects of dietary regimes on cardiovascular risk factors.

HDL, High-density lipoprotein; IGF-1, Insulin-like growth factor-1; IGF-1 BP, Insulin-like growth factor-1 binding protein; IL-6, Interleukin-6; LDL, Low-density lipoprotein; PUFA, Polyunsaturated fatty acid; RCT, Randomized clinical trial;

sICAM-1, Soluble intercellular adhesion molecule-1; TGFβ1, Transforming growth factor β1; TNFα, Tumor necrosis factor α; VCAM-1, Vascular cell adhesion protein-1.

↑ (arrow up) indicates increase or improvement, ↓ (arrow down) indicates decrease or decline, = indicates no change.
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FIGURE 1 | Beneficial effects of caloric restriction (red), intermittent fasting (orange) and alternate-day fasting (green) on cardiometabolic parameters in humans.

HbA1c, Glycated hemoglobin; HDL, High-density lipoprotein; IGF-1, Insulin-like growth factor-1, IGF-1 BP, Insulin-like growth factor-1 binding protein; LDL,

Low-density lipoprotein; PUFAs, Polyunsaturated fatty acids. Arrow up indicates increase or improvement, arrow down indicates decrease or decline.

Caloric Restriction
Caloric restriction and other forms of stringent eating behaviors,
such as intermittent fasting and alternate-day fasting, have
recently attracted a lot of attention amongst researchers and
have become increasingly popular in the general population to
avoid the unhealthy effects of “all-around-the-clock” high caloric
diet. Caloric restriction is defined as a chronic reduction of
overall calorie consumption without malnutrition. In patients
withmetabolic syndrome, caloric restriction reduces body weight
and exerts beneficial effects on insulin levels, fasting glucose
levels, lipoprotein composition and pro-inflammatory cytokines
within 6 months of intervention (23). In addition to weight loss
in obese or overweight women, caloric restriction reduces leptin,
total C-reactive protein (CRP), LDL-cholesterol, triglycerides,
blood pressure, fasting insulin and insulin resistance (24). In
another study, improved body weight and reduced epicardial
fat accumulation were also observed in patients with diabetes
mellitus type 2 subjected to caloric restriction. These effects were
further augmented by physical activity, while cardiometabolic
profiles were apparently unchanged (25).

Caloric restriction was shown to be a safe and well-
tolerable intervention in healthy, non-obese individuals (41),
leading to body weight loss (19, 20, 42), reduced fat mass
and waist circumference (20, 21, 42), and improved general
health (19). A long-term clinical trial reported increased energy
expenditure without negatively affecting the quality of life in
non-obese to moderately overweight cohorts (22). A 20-week
long intervention with caloric restriction also potently improved
peak oxygen consumption in older and obese patients with heart

failure with preserved ejection fraction (26). Beneficial effects
of caloric restriction were attributed to reduced blood pressure
(20, 22, 24, 42), and lower total cholesterol and LDL-cholesterol
concentrations (20) as well as lower leptin levels (21), altogether
contributing to reduced 10-year risk for cardiovascular disease
by 30% (20). Caloric restriction exerts cardiac-specific effects that
ameliorate aging-related decline in diastolic function (27). These
salutary effects on heart function might be mediated by the effect
of caloric restriction on blood pressure, systemic inflammation,
and cardiac fibrosis (43).

Mechanistically, the beneficial effects of caloric restriction
are closely linked to autophagy, a cellular recycling process
essential for cardiovascular homeostasis (44, 45). Caloric
restriction mediates positive effects on the heart also via
increased activity of SIRT1 and peroxisome proliferator-activated
receptor gamma coactivator 1-α (PGC1α), leading to reduced
amount of reactive oxygen species (ROS), and less fibrosis
and inflammation (46). Furthermore, caloric restriction lowers
oxidative stress in the heart and vasculature by increasing
the expression of endothelial nitric oxide synthase (eNOS),
and activating superoxide dismutase (SOD) and NADPH
oxidase (47). Importantly, non-cell autonomous mechanisms
also contribute to the cardiovascular health benefits of prolonged
caloric restriction. Although the mechanisms are still ill-defined,
the “metabolic switch” hypothesis may explain, at least in
part, improvements in cardiovascular health indicators, such
as lower blood pressure in animals and humans (48). In fact,
fasting induces the conversion of hepatic fatty acids into ketone
bodies (e.g., β-hydroxybutyrate), which act as fuel and potent
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signaling molecules, with the capacity to effectively reduce
markers of inflammation and control various regulators of
systemic metabolism, such as levels of HDL and LDL cholesterol,
triglycerides, and glucose (48, 49).

Notably, severe caloric restriction (∼800 kcal per day) induces
changes of gut microbiome composition during weight loss (50,
51). However, the consequences of gut microbiome composition
alteration for health and disease in response to stringent caloric
restriction are only beginning to unveil. A very recent clinical
trial, with 80 post-menopausal women who were overweight
or obese, revealed that severe calorie restriction imparts a
reversible shift in the gut microbiome associated with improved
glucose regulation and decreased adiposity, indicating improved
metabolic health in dieters (52).

Collectively, caloric restriction exerts clear cardiometabolic
benefits in both obese and non-obese individuals. However,
caloric restriction might also cause adverse side effects on
immunity, fertility and bone density. Hence, further research
is warranted to develop more suitable dietary patterns or
pharmacological alternatives to reproduce the health benefits of
caloric restriction.

Intermittent and Alternate-Day Fasting
In an effort to circumvent the complexity of counting calories
and avoid the side effects associated with caloric restriction,
other forms of dietary restriction with food intake limited to a
daily time window, such as intermittent fasting and alternate-
day fasting, have been proposed. Accordingly, different lengths
of eating and fasting periods have been tested, with the most
common reported of 16/8 h of fasting and eating intervals,
respectively (53). Longer fasting periods of 24 h followed by
ad-libitum food intake for 24 h are also practiced and known
as alternate-day fasting. Although intermittent fasting and
alternate-day fasting are not as well-studied as caloric restriction,
emerging evidence suggests that they are more tolerable and their
side effects are less prominent than in caloric restriction and,
thus, both dietary interventions could represent promising and
more feasible strategies to curtail the hypercaloric pandemic in
the Western societies (54).

To this end, a study comparing the efficacy of caloric
restriction and intermittent fasting (restricted to 2 days a week)
in obese diabetic patients at risk of cardiovascular disease showed
that both regimens reduce body weight and HbA1c levels, a
measure of long-term blood glucose control (34). Consistently,
another small observational study on obese subjects with diabetes
mellitus type 2 and receiving metformin reported that short-
term intermittent fasting effectively reduces body weight and
improves morning glucose levels. Interestingly, 6 out of 10
participants in this study described that intermittent fasting is
highly tolerable, and reported readiness to follow intermittent
fasting after study completion (28). Of note, intermittent fasting
was capable to improve health parameters in healthy, male
athletes. Specifically, intermittent fasting reduced body fat mass
without worsening body fat-free mass, muscle area and strength.
These effects were associated with lower concentrations of
insulin-like growth factor-1 (IGF-1) and higher adiponectin
levels, while leptin was not found reduced after adjusting for body

fat mass (29). By contrast, a recent meta-analysis concluded that
the evidence supporting a positive effect of intermittent fasting
on glucose remains uncertain, despite the robust body weight-
lowering effect (55). Interestingly, the analysis suggested that
both intermittent fasting and caloric restriction equally improve
cardiometabolic risk factors. Irrespectively, larger studies with
long-term follow-up are necessary to clearly determine the effect
of either regimen on hard cardiovascular end-points, such as
myocardial infarction, heart failure as well as cardiac and all-
cause mortality.

With regard to alternate-day fasting, a short-term trial
conducted in obese adults, which showed high adherence to
alternate-day fasting at least for 8 weeks, revealed manifold
cardiometabolic benefits, including reduced body weight, body
fat percentage, total and LDL-cholesterol, triglycerides as well as
systolic blood pressure (30). It is important to mention that the
participants were allowed for 25% energy intake on fasting days.
Interestingly, short-term alternate-day fasting effectively reduces
body weight, body fat mass and waist circumference despite
high-fat dietary intake on non-fasting days. However, although
alternate-day fasting improves plasma levels of LDL-cholesterol
and triacylglycerol in obese individuals, HDL-cholesterol, blood
pressure and heart rate are not altered (33). At variance with
short-term studies, a long-term trial reported low adherence
to the prescribed amount of energy intake and, accordingly, a
high dropout of obese, otherwise metabolically healthy adults
subjected to alternate-day fasting within the 1-year follow-
up (35). This study also included a caloric restriction group,
which exhibited higher compliance rates than the alternate-day
fasting group. Although reduction in body weight was evident
upon both alternate-day fasting and caloric restriction, none
of the fasting regimens improved blood pressure, plasma lipid
profile, or markers of glucose control and inflammation. In
addition, HDL-cholesterol levels that were higher at 6 months
of alternate-day fasting, were not improved after 12 months
(35). Recently, a 3-week randomized trial, which is among
the first to disentangle the effects of alternate-day fasting and
“traditional” daily energy restriction, revealed that alternate-day
fasting without energy restriction is not sufficient to reduce
body weight in lean individuals. However, although alternate-day
fasting with 25% reduced energy intake reduces body mass, the
decrease of body fat content is lower compared to a matched
traditional daily energy restriction and confers no additional
short-term metabolic or cardiovascular benefits (36). Further
studies with larger cohorts and longer duration are warranted to
examine the fasting-specific effects of alternate-day fasting and
intermittent fasting, and directly compare their effects to diets
that only reduce daily net calories.

Along similar lines, initial short-term studies in non-obese
individuals highlighted the positive impact of alternate-day
fasting on body weight loss in absence of clear metabolic
changes, but increased fat oxidation. Notably, participants
reported difficulty to adhere to alternate-day fasting due to
severe hunger on the fasting days (31). By contrast, the
InterFast trial showed that alternate-day fasting is capable
of improving cardiometabolic markers in healthy non-obese
subjects, including reduced body weight, fat-to-lean ratio,
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and LDL-cholesterol (32). Furthermore, alternate-day fasting
increases ketone bodies (on fasting and non-fasting days), and
reduces the inflammatory marker sICAM-1, suggesting that
alternate-day fasting is a viable dietary adaptation also for non-
obese individuals. Importantly, this 4-week long intervention
trial reported no adverse effects on immunity or bone density.

In sum, growing body of evidence indicates potential
cardiovascular benefits of intermittent and alternate-day fasting
(56). However, it is still not clear whether these nutritional
regimens, wherein food intake is limited to a consistent time-
restricted interval without changes in nutritional quality or
quantity, confer a significantly better adherence than caloric
restriction. Also, it remains elusive whether the cardiometabolic
benefits of these regimens can be applied to the general
healthy population or specific groups with disorders, such as
obese individuals with metabolic disease. Hence, larger studies,
preferably with long-term follow-up, will be required to address
these open issues.

CALORIC RESTRICTION MIMETICS

Recent years have seen an increasing interest in fasting-
mimicking diets and caloric restriction, which might offer a more
feasible alternative to stringent forms of fasting. For example, a
randomized clinical trial was designed to investigate the effects
of fasting mimicking diets, which are low in carbohydrates and
protein and high in unsaturated fats, on cardiovascular disease
and risk factors, including aging and diabetes mellitus type 2
(57). The authors observed that practicing low calorie fasting
mimicking diet for only 5 consecutive days per month results in
a reduction of body mass index (BMI), arterial blood pressure,
fasting glucose, and IGF-1 levels. Generally, subjects who are at
greater risk for disease, exhibit a larger benefit than individuals
who have no other risk factors, confirming the relevance of
fasting mimicking diet for disease prevention. Similarly, caloric
restriction mimetics–natural and pharmaceutical compounds
with intrinsic pro-autophagic action–might offer superior
compliance, and are under intensive investigation as they have
been shown to improve cardiovascular health and they might be
used for the treatment of cardiovascular disease (58). Therefore,
in the following section commonly used and well-studied caloric
restriction mimetics will be discussed. Further, we will briefly
describe their mode of actions and summarize the current
evidence for the cardiovascular and metabolic effects of selected
caloric restriction mimetics (Figure 2).

Spermidine
Spermidine is a natural polyamine and autophagy inducer
that exerts pleiotropic cardioprotective effects by lowering
high blood pressure in salt-sensitive Dahl rats, while reducing
maladaptive hypertrophy and attenuating the decline of diastolic
function (59, 60), and arterial elastance in aged mice (61).
In addition to its direct cardioprotective effects, accumulating
evidence demonstrated the anti-obesity impact of spermidine
supplementation in rodents consuming a high-fat diet (HFD).
In particular, spermidine counteracts HFD-induced body weight
gain and obesity-associated alterations by increasing lipolysis

in visceral fat and improving blood glucose control in
obese mice (62, 63), and diabetic rats (64). Interestingly,
spermidine treatment appears to provide no additional metabolic
benefit in young and old mice consuming normal chow (59,
63), suggesting that salutary metabolic effects of spermidine
might be limited to hypercaloric and pro-diabetic dietary
regimens. Beside the regulation of lipid metabolism, spermidine
attenuates inflammatory response in the adipose tissue by
decreasing inflammatory cytokine and chemokines expression
(65). Spermidine is also capable of reducing circulating TNFα
levels during aging, thereby counteracting chronic low-grade
inflammation in old mice (59).

The cardiovascular health-promoting effects of spermidine
supplementation are predominantly attributed to its
cytoprotective autophagy-inducing properties. For example,
cardiomyocyte-specific Atg5-deficient mice exhibit no cardiac
benefits upon spermidine supplementation (59), while the aortic
rings of spermidine-fed mice display no functional advantages
over their non-treated controls upon incubation with the
autophagy inhibitor chloroquine (61). Autophagy-inducing
capacity of spermidine relies on the inhibition of several
acetyltransferases, including EP300, one of the major negative
regulators of autophagy (66). These autophagy-stimulatory
properties are mediated via hypoacetylation of histones (67), and
autophagy-related genes, such as Atg5, Atg7, and Atg8 (68). In
addition, spermidine has been proven to inhibit the mammalian
target of rapamycin complex 1 (mTORC1) (66), a key regulator
of cell growth and metabolism, and to activate AMP-dependent
protein kinase (AMPK) (69). More recently, spermidine was
reported to stimulate autophagy through the hypusination of
eukaryotic translation initiation factor 5A-1 (eIF5A), which in
turn controls the expression of transcription factor EB (TFEB),
a master regulator of lysosome biogenesis and autophagy
(70). By contrast, age-related decline of spermidine levels
and subsequent down-regulation of TFEB may cause reduced
autophagic activity in the adaptive immune system, as well as
in other tissues. However, although many protective effects of
spermidine are autophagy-dependent and associated also with
increased mitophagy, a selective form of autophagy that degrades
dysfunctional mitochondria (59, 71), a recent study showed that
enhanced lipolysis by spermidine was independent of autophagy
in adipose tissue (63). Indeed, spermidine effectively stimulated
lipolysis in HFD-fed mice with adipose-specific autophagy
deficiency. In this regard, further studies are warranted to
elucidate, which of the cell type/tissue/organ-specific effects
induced by spermidine requires autophagy.

In humans, circulating spermidine levels decline with age
(72), and reduced endogenous concentrations of spermidine
appear to be associated with age-related deterioration of
cellular homeostasis attributed to decreased autophagy (73). The
upregulation of endogenous spermidine levels extends lifespan
acrossmultiple species, includingmice. Spermidine is abundantly
found in wheat germ, soybeans, and nuts (73), and reportedly
enriched also in the Mediterranean diet (74). While the optimal
concentration of spermidine in humans to maintain optimal
autophagy levels for healthy aging still needs to be determined,
self-reported dietary spermidine intake has been shown to
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FIGURE 2 | Cardiovascular and metabolic health-promoting effects of caloric restriction mimetics in animal models with cardiovascular risk factors. Arrow up indicates

increase or improvement, arrow down indicates decrease or decline.

inversely correlate with arterial blood pressure, risk of both fatal
and overt heart failure as also other cardiovascular disease (59),
and overall mortality (75).

Taken together preclinical evidence supports the translational
potential of spermidine to ameliorate cardiovascular risk factors,
including hypertension and HFD-induced obesity. Dietary
spermidine supplementation has been proven safe with no
adverse effects reported and well-tolerated in healthy volunteers
(74, 76), and older adults at risk for dementia (77). Further larger
and long-term clinical investigations are needed to elucidate
whether cardiovascular risk factors may be counteracted by
ingesting polyamine-rich food items, polyamine-enriched plant
extracts, synthetic spermidine, or by stimulating polyamine
synthesis in the gut microbiome through supplementation of
prebiotics or probiotics.

Resveratrol
The polyphenol resveratrol, which is abundantly found in the
skin of grapes and red wine, is one of the most extensively studied
natural and bona fide caloric restriction mimetics. Interest in
the cardiovascular health-promoting properties of resveratrol has
been greatly influenced by experimental studies, demonstrating
that resveratrol protects against metabolic disturbances induced
by HFD and, thus, prevent early mortality in obese mice (78).
The favorable effects of resveratrol on the cardiovascular system
could be, at least in part, explained by its capability to promote
vasodilation (79, 80), suppress atherosclerosis (81), improve
glucose tolerance and insulin sensitivity (78, 82, 83), inhibit
LDL oxidation (84, 85), and decrease plasma triglycerides and
cholesterol accumulation (86). In addition to reported protection

from the negative consequences of an obesogenic diet, such as
insulin resistance (87), resveratrol has been demonstrated to
exhibit anti-inflammatory effects (88, 89). The anti-inflammatory
properties of resveratrol include down-regulation of genes
involved in inflammatory pathways (90), as well as systemically
inhibited expression of TNFα, IL-6 (90, 91), IL-1β, ICAM-1,
and iNOS (91). Altogether, the anti-inflammatory activity has
been postulated to explain a relatively low risk of cardiovascular
disease in the French population consuming moderate amounts
of resveratrol in red wine, despite high intake of saturated fats
(so-called “French Paradox”) (92).

Evidence has accumulated indicating that resveratrol, both
in vivo and at nutritionally relevant concentrations in vitro,
can activate several interrelated signaling pathways in the
cardiovascular system. Many of the beneficial cardiovascular
effects of resveratrol are mediated by pathways that require
SIRT1 in cardiomyocytes and endothelial cells (93, 94). Although
both SIRT1 and AMPK are necessary for resveratrol-induced
health promotion (87, 95), there are likely other molecular
targets of resveratrol that contribute to its cardioprotective
effects. Studies reported that resveratrol inhibits the nuclear
factor kappa-light-chain-enhancer of activated B-cells (NF-kB)
pathway (96), attenuates vascular oxidative stress (97, 98),
and upregulates eNOS (99, 100), which is known to improve
endothelium-dependent vasodilation through increased nitric
oxide bioavailability. Importantly, SIRT1-mediated activation of
autophagy is a key process in mediating many beneficial effects
of resveratrol (101–103). Very recently, resveratrol was found to
promote lysosomal function via endoplasmic reticulum calcium-
dependent TFEB activation, which is associated with reduced

Frontiers in Nutrition | www.frontiersin.org 9 September 2021 | Volume 8 | Article 758058

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Voglhuber et al. Diet and Cardiovascular Risk Factors

intracellular lipid accumulation (104). Importantly, inhibition of
mTORC1 activity and presence of Unc-51-like kinase 1 (ULK1)
were shown to be required for autophagy induction by resveratrol
(105). However, although resveratrol attenuates the activation of
mTORC1, low dose resveratrol reportedly induces the expression
of Rictor, a component of mTORC2 pathway (106). Overall,
despite the large number of molecular targets that have been
identified responsible for the promiscuous effects of resveratrol,
more research effort is needed before definitive mechanisms can
be assigned to its multifaceted cardioprotective benefits. On the
basis of available evidence, it can be endorsed that resveratrol-
induced cardiovascular protection is controlled by many of the
pathways (e.g., NF-kB pathway) and master regulators (e.g.,
mTORC) involved in cellular stress resistance, redox homeostasis
and cellular energetics.

Encouraging results from preclinical research have greatly
increased the interest in resveratrol supplementation to mitigate
cardiovascular risk factors in humans. A recent meta-analysis
of 17 randomized clinical trials validated the blood pressure
lowering effect of resveratrol (107). The anti-hypertensive effect
of resveratrol that was consistently reproduced only in studies
testing doses >300 mg/day was reported mainly in patients with
diabetes mellitus type 2 likely due to its favorable effect on
insulin sensitivity (108). Of note, lower systolic blood pressure is
associated with metabolic changes (90). In this small randomized
control trial, 30 days of resveratrol supplementation decreased
intrahepatic lipid content, circulating levels of glucose and
triglycerides, and inflammation markers, while it stimulated
adipose tissue lipolysis in obese men. By contrast, a recent
study failed to demonstrate the efficacy of resveratrol against
metabolic syndrome (109). In fact, although resveratrol has
been shown to modify risk factors in experimental models of
obesity and cardiovascular diseases by phenocopying most of
the transcriptional aspects and molecular mechanisms of caloric
restriction, including the suppression of inflammatory response
(91, 110), it is important to note that clinical trials mostly failed
to reproduce cardiometabolic improvements likely due to low
in vivo bioavailability of resveratrol (111). This is particularly
relevant because in vivo evidence has been viewed increasingly
important in endeavors to understand how resveratrol elicits its
effects in humans and to ascertain the optimum doses and routes
for mitigating cardiovascular risk factors. To this end, other
small-molecule activators of SIRT1 have been developed. For
instance, SRT1720 has been demonstrated to extend lifespan and
improve metabolic syndrome, insulin sensitivity, and endothelial
dysfunction in mice, while a related compound, SRT2104,
has undergone clinical phase I and II trials, revealing only
minor adverse effects (112). Interestingly, rapid metabolism of
resveratrol and the composition of the gut microbiome were
proposed to control the production of resveratrol metabolites,
which are detected at higher levels in humans after intake than
their parent compound, with similar biological effects (113).
Owing to its capability in modulating the composition of the
gut microbiota, resveratrol may affect central energy metabolism
and modify concentrations of satiety hormones to produce anti-
obesity effects. Similar to resveratrol and spermidine, fasting also
induces changes to the gut microbiome and improves immune

homeostasis with a sustained beneficial effect on body weight and
blood pressure in hypertensive patients with metabolic syndrome
(114), suggesting that caloric restriction mimetics and dietary
interventions promote cardiovascular health at least in part by
regulating the abundance of certain microbes in the gut (115).

NAD+ Precursors
Recent years have witnessed growing interest in NAD+

intermediates as molecules that efficiently recapitulate the
salutary effects of caloric restriction and exercise by elevating
cellular NAD+ content, which is reduced in aging, obesity
and other metabolic disorders (116). Direct supplementation
of NAD+ precursors, in particular nicotinamide riboside (NR)
and nicotinamide mononucleotide (NMN), has been shown
to alleviate metabolic abnormalities by reducing body weight
gain and reinstating blood glucose control in mice consuming
HFD (117, 118). Along similar lines, nicotinamide (NAM, also
known as vitamin B3) was found to improve glucose homeostasis
associated with positive effects on liver metabolism in absence of
obesity-lowering effects in aged mice fed HFD (119). Recently,
we have also demonstrated that orally administered NAM to
male and female ZSF1 obese rats with cardiometabolic syndrome
evidently reduces hyperphagia-induced obesity (120). This effect
could be partially attributed to increased energy expenditure and
improved metabolic flexibility. In addition, NAM moderately
lowers high arterial blood pressure, while it improves diastolic
dysfunction in ZSF1 obese rats, Dahl salt-sensitive rats and aged
mice (120). In another study, oral NMN supplementation late
in life to aged mice was also found to elicit anti-aging effects
on the vasculature by improving aortic stiffness in association
with increased arterial SIRT1 activation and reduced vascular
oxidative stress, suggesting that NMN delays arterial aging and
its pathological sequelae (121).

Mechanistically, increased NAD+ is required for a sustained
SIRT1 deacetylase activity, which regulates autophagy through
deacetylation of autophagy-related proteins, such as ATG5,
ATG7 and ATG8 (122). In addition, NAD+ can induce
autophagy via AMPK (123). The NAD+/sirtuin pathway
activates mitophagy, which was demonstrated to maintain
cardiac function during HFD-induced diabetic cardiomyopathy
(124). Moreover, NR supplementation was shown to activate
SIRT1 and SIRT3, improve mitochondrial function and protect
against HFD-induced obesity in mice (118). It is important
to mention, however, that other NAD+-modulated processes,
like inflammation and oxidative stress, which are attenuated
by NAD+, might be involved in the cardiac and more broadly
physiological effects of NAD+ precursors. In fact, health-
promoting effects of NAM coincide with reduced inflammation,
oxidative stress and adipose tissue infiltration with leukocytes
(119, 120).

Ample preclinical evidence has demonstrated that strategies
to increase NAD+ content can mitigate cardiovascular disease
in various rodent models. Hence, NAD+ precursors are
increasingly proposed as promising agents to reduce the burden
of cardiometabolic diseases in humans. Niacin, which has been
typically used in the form of nicotinic acid, is themost extensively
studied NAD+ precursor in humans. The impact of niacin on
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lipid control and cardiovascular risk in humans was recently re-
examined in a meta-analysis based on a systematic review of 119
clinical trials that included 35,760 patients (125). Collectively,
this analysis revealed a marginal benefit of niacin as a
monotherapy to elevate HDL-cholesterol levels, but raised doubts
about the safety profile of niacin, especially in combination with
statins. Despite its poor tolerability, niacin remains in use as
an alternative lipid-lowering agent in statin-intolerant patients
at cardiovascular risk. First reports on human trials that tested
other NAD+ boosting strategies than niacin have only started
to emerge (126), announcing an era of NAD+ therapeutics.
Amongst these, NR and NMN are the main precursors in
ongoing or lately completed clinical trials (127). In fact, a recent
study in postmenopausal, overweight women with prediabetes,
demonstrated that 10 weeks of NMN supplementation increases
skeletal muscle insulin signaling, insulin sensitivity, and muscle
remodeling (128). These beneficial metabolic effects of NMN
supplementation differ from the observations reported from NR
trials conducted in obese middle-age and older men and women
(129–131), suggesting different biological functions of NMN and
NR. Another clinical investigation showed that NR may have
the potential for reducing blood pressure and aortic stiffness in
healthy middle-aged and older individuals (132). Additionally,
NR has been shown to exert anti-inflammatory effects not only
in aged healthy individuals, but also in hospitalized patients with
heart failure (129, 133). Of note, high doses of oral NAM are
safe and have also been shown to reduce non-melanoma skin
cancers as well as markers of cardiorenal injury (134), opening
a new perspective on the previously understudied therapeutic
potential of NAM. In this regard, a diet enriched in NAM and
NA is associated with lower blood pressure and a reduced risk of
overall and cardiac-specific mortality in humans (120).

Taken together, several challenges need to be overcome
before experimental findings on rodent models of cardiovascular
risk factors can be translated into clinics. Future clinical
trials need to be of longer duration and include a follow-up
assessment, involve large numbers of patients, and consider
more appropriate conversion of drug doses from rodent
studies to human trials (135). In this regard, quantification
of potential long-term adverse effects will be instrumental
to ensure that NAD+ precursor administration at higher
doses is safe for the use in humans. Head-to-head studies
are warranted to answer the outstanding question about
the optimal NAD+ precursor, and determine which of
the NAD+ precursors have superior properties, capable of
eliciting a wide range of beneficial effects that may improve
cardiovascular risk factors. In addition, several practical
hurdles will need to be overcome, such as how to best
deliver NAD+ precursors to achieve the optimal NAD+

bioavailability, and at what dose and time of the day, as NAD+

levels are subjected to circadian fluctuations. Future studies
should also compare the effects, efficacy and outcomes of
pharmacologically increased NAD+ levels vs. physiological
means of raising NAD+ levels, such as regular physical activity
and dietary interventions that are designed for older individuals
with comorbidities.

Metformin
The biguanide metformin, which originates from the French
lilac, is the first-line drug used for the treatment of diabetes
mellitus type 2 (136). Although best known for its glucose-
lowering effects, a growing body of evidence indicates that
metformin extends lifespan and healthspan (137) by mitigating
age-associated conditions (138, 139), such as cancer, cognitive
decline and cardiovascular diseases (140) across various species
(137, 141, 142). Metformin exhibits a plethora of direct effects
on the cardiovascular system. For example, it potently protects
against hypertrophy in a pressure overload rat model, likely
via increased AMPK and eNOS phosphorylation and higher
nitric oxide production (143), leading to improved endothelial
function and vasodilation (144). Metformin effectively reduces
atherosclerotic plaque size in high-cholesterol diet fed rabbits
by decreasing high-sensitivity C-reactive protein and inhibiting
the NF-kB pathway in the vascular wall (145). In addition,
metformin is capable of stabilizing atherosclerotic plaques by
activating AMPK in ApoE-knock-out mice (146), resulting in
better cardiovascular outcomes as calcification of plaques is
associated with their instability and serves as a negative predictor
of mortality (147, 148). Metformin attenuates inflammatory
response in rabbits fed an atherogenic diet by reducing
infiltration of macrophages (149), which is known to result in
their differentiation to foam cells and atherosclerotic plaque
formation (150). Furthermore, metformin suppresses the NLRP3
inflammasome and upregulates autophagy in mice with diabetic
cardiomyopathy through the activation of AMPK and inhibition
of mTORC (151, 152), both of which regulate aging-related
pathways, leading to prolonged lifespan (153). Furthermore,
metformin increases the expression and activity of SIRT1, while it
attenuates the activation of PGC1α, a central energy metabolism
regulator (154).

As most of the research endeavors focused on the glucose-
lowering effect of metformin, it is not surprising that the
majority of clinical trials were designed to investigate the
beneficial role ofmetformin on diabetesmellitus type 2. However,
several human studies assessed the impact of metformin
monotherapy on other age-associated comorbidities as well.
For example, metformin reduces pro-inflammatory cytokine
levels in older diabetic patients, suggesting that metformin
has the potential to attenuate age-related low-grade chronic
inflammation, reduce the predisposition toward inflammation-
related comorbidities, and improve survival of diabetic patients
(155). In another clinical investigation, the use of metformin
was assessed in the context of cardiovascular outcome in
patients with diabetes mellitus type 2 and chronic kidney
disease (156). The authors that analyzed data from the TREAT
trial (157) demonstrated that metformin reduces the incidence
of cardiovascular events as well as cardiovascular death and
all-cause mortality. Importantly, metformin was found to be
safe for patients with chronic kidney disease, which is in
contrast with the previous assertion that metformin commonly
induces lactic acidosis (158). In pubertal children with diabetes
mellitus type 2 and metabolic syndrome, metformin improves
various health parameters, including BMI, leptin levels, fat
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mass and liver fat (159). Interestingly, some of these beneficial
effects were maintained after completing the 24 months of
metformin treatment, suggesting thatmetformin is well-tolerated
and has a potential long-term benefit in adolescents at risk.
In the REMOVAL trial, patients with diabetes mellitus type
1 displayed lower LDL-cholesterol levels after 3 years of
metformin treatment (160). Recently, a meta-analysis that
included 16 studies and nearly 2 million participants revealed
that metformin reduces overall cardiovascular risk, including
mortality and incidence, in patients with diabetes mellitus
type 2 (161). Another comprehensive meta-analysis of 260
studies described a general drop in all-cause mortality and
occurrence of cardiovascular disease in diabetic patients upon
metformin treatment as compared to diabetic patients receiving
other medication and, interestingly, even non-diabetic subjects
(139). These observations highlight that metformin could extend
lifespan and healthspan by acting as a geroprotective drug.
However, studies in healthy or non-diabetic populations are
rare and showed conflicting results. For example, the CAMERA
study failed to produce the beneficial effects of metformin on
cardiovascular disease prevention in non-diabetic patients with
high cardiovascular risk (162). By contrast, 6 weeks of metformin
treatment reduced body weight, improved insulin secretion,
lowered LDL and triglyceride levels in an elderly population
exhibiting impaired glucose tolerance but no previous history of
diabetes (163).

Of note, the 6-year Targeting Aging with MEtformin
(TAME) clinical trial3, which started in 2016 as a large
randomized controlled and multicenter study, including over
3,000 participants (between the ages of 65–79) without diabetes
but who are at high risk for the development of chronic diseases
of aging, is expected to generate highly valuable new knowledge
about the impact of metformin on the primary outcome of
death and major age-related chronic disease development, such
as cardiovascular disease, cancer, and dementia (164).

FUTURE PERSPECTIVES AND
CONCLUDING REMARKS

Recent years have seen a growing interest in understanding
how dietary interventions shape and interact with the most
common cardiovascular risk factors, including hypertension,
obesity, metabolic syndrome, and diabetes mellitus type
2. Substantial cardiometabolic improvements have been
reported with fasting interventions such as reduction in blood
pressure, body weight and fat mass, lower blood glucose,
and improvement in insulin sensitivity, both in experimental
and clinical studies. Although caloric restriction consistently
improves several aspects of health, its application has been
hampered by poor compliance and adverse side effects
on bone health and immune response, especially in the
elderly. To overcome these major hurdles, clinical trials on

3American federation for AGING RESEARCH. The TAME Trial (2021). Available
online at: https://www.afar.org/tame-trial (accessed July 29, 2021).

alternate-day or intermittent fasting, with higher statistical
power and follow-up, are strongly needed before they can be
implemented as a treatment strategy. Individuals practicing
alternate-day or intermittent fasting should consider to include
regular physical activity to maintain their energy expenditure.
Emerging evidence indicates that the optimal cardioprotective
diet is constructed around the traditional Mediterranean
eating pattern.

Another interesting aspect that warrants further attention
is the effect of caloric restriction mimetics or dietary
interventions aimed at weight loss on the gut microbiome
changes in obese patients with diabetes mellitus type 2
or metabolic syndrome. Although these interventions
propose beneficial clinical outcomes, their effect on the
gut microbiome is only beginning to unfold. Interestingly,
a combination therapy of resveratrol and spermidine
synergistically induces autophagy at doses, which do not
trigger effects of the same magnitude if administered
alone. At present, however, it remains elusive what is the
optimal dose for any of the caloric restriction mimetics that
could provide health benefits or protect humans at risk of
cardiovascular disease.

Unlike the current drug development approaches that focus
on individual diseases in isolation and consider specificity
as a desirable outcome in disease prevention and treatment,
both caloric restriction mimetics and caloric restriction
exhibit a spurious mode of action, intercepting with multiple
different targets (165). Such pleiotropic mode of action appears
advantageous in targeting the complex process of aging as the
greatest risk factor for cardiovascular diseases and associated
comorbid conditions. Thus, dietary interventions should
aim to maintain optimum health and prevent cardiovascular
diseases by attenuating the molecular causes of biological
aging directly.

Non-cell autonomous effects of caloric restriction mimetics
and caloric restriction itself, such as the anti-inflammatory
or immune modulatory functions, are increasingly viewed as
relevant as cell autonomous mechanisms. Taking this into
account, more research is needed to ascertain how different
forms of fasting and caloric restriction mimetics can be the
most favorable to further improve cardiometabolic markers
in healthy adults and patients living with or at risk of
developing cardiovascular disease. Based on the currently
available data, harnessing caloric restriction mimetics or
dietary interventions, such as intermittent fasting or the
Mediterranean diet represent a promising preventive venue,
which might reduce cardiovascular risk and the burden of
cardiovascular disease.
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