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The purpose of the study was to assess the artificial saliva (AS) pH on ruminal

fermentation and rumen bacteria community in the rumen simulation technique

(RUSITEC) system. The experiment was performed in two treatments (low AS pH

vs. high AS pH) with four replicates. The low AS pH was sustained by altering the

composition of the AS (NaHCO3 from 9.8 to 1.96 g/L, Na2HPO4 from 9.3 to 1.86

g/L) according to McDougall’s method. The diets were supplemented with 16 g basic

diets with forage to the concentrate ratio of 50:50. The experiments were conducted

over 13-day incubation periods, with 9 days adaption and 4 days sample collection.

The results showed low AS pH decreased dry matter (DM) degradability (64.37 vs.

58.67%), organic matter (OM) degradability (64.38 vs. 59.32%), neutral detergent fiber

(NDF) degradability (46.87 vs. 39.94%), acid detergent fiber (ADF) degradability (38.16

vs. 31.13%), and crude protein (CP) degradability (70.33 vs. 62.99%), respectively.

Compared with the high AS pH, the low AS pH increased the proportion of butyrate

(P = 0.008) and decreased the proportion of propionate (P < 0.001). At the bacteria

community, the low AS pH increased the abundances of Spirochaetes (P = 0.001) and

Synergistetes (P = 0.004) and decreased the Verrucomicrobia abundance (P = 0.004)

in solid-associated bacteria. At the genus level, the low AS pH increased the abundance

of Lactobacillus (P = 0.050) and decreased the abundance of Schwartzia (P = 0.002)

in solid-associated bacteria. The abundances of Prevotellaceae_YAB2003_group (P =

0.040), Schwartzia (P = 0.002), and Ruminobacter (P = 0.043) were lower in the low AS

pH group compared with the high AS pH group in liquid-associated bacteria. Low AS pH

decreased the number of Ruminococcus albus, Ruminococcus flavefaciens, Fibrobacter

succinogenes (P < 0.001) both in the solid- and liquid-associated bacteria, respectively.

The results of the present study included three groups of bacteria communities

according to the different sensitives to rumen pH: the abundances of Lactobacillus,

Succinivibrio, and Prevotella_7 are increased with decreasing AS pH; the amounts of

R. albus, R. flavefaciens, F. succinogenes as well as the abundances of Schwartzia and

Ruminobacter decreased with the reducing AS pH; the abundances of Selenomonas_1,

Rikenellaceae_RC9_gut_group, and Succiniclasticum were not affected by the AS pH

in RUSTITEC.
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INTRODUCTION

A high grain-based diet has been a common strategy to improve
animal performance in ruminant production. However, the
fermentable carbohydrate diets can lead to the accumulation
of organic acids in the rumen, which results in the reduction
of ruminal pH, and increases the risk of subacute rumen
acidosis (SARA) (1, 2). SARA was described as the daily average
rumen pH between 6.25 and 5.5 (3). The main SARA model
was obtained by increasing the dietary proportions of grain
or decreasing physically effective fiber (peNDF) content (4, 5).
The SARA induction approaches have a different impact on
the rumen fermentation and bacterial community because of
the different substrates (6). The low dietary peNDF induced
SARA usually increased the feed intake of dairy cows (7), and
the increased feed intake resulted in increasing the production
of volatile fatty acids (VFA) and decreased pH (8). Therefore,
the low peNDF induced SARA needs to avoid the impact of
different feed intake between the treatments. Decreasing the
peNDF intake for ruminants could reduce the chewing time and
the amount of saliva secretion (9). The in vitro SARA model that
induced in the rumen simulation technique (RUSITEC) system
usually by decreasing the buffer capacity of artificial saliva (AS)
(10, 11), which could simulate the low peNDF induced SARA.
In addition, the RUSITEC system was designed to ensure the
identical substrate intake and rumen passage rate during the
fermentation that avoids the disturbance of different feed intake
and rumen content passage rate of in vivo when the ruminants
received different dietary peNDF. Orton et al. (10) decreased the
buffer capacity of AS (NaCl from 28 up to 118.5 mmol/L and
NaCO3 from 97.0 to 20 mmol/L) decreased pH from 7.0 to 6.0
in the RUSITEC system.

The ruminal pH plays an important role in affecting the
communities of rumen bacteria. Li et al. (8) found the low-
peNDF diet induced SARA increased the numbers of Fibrobacter
succinogenes and Ruminococcus flavefaciens for the dairy goats.
The increased feed intake and cellulolytic bacteria were due to
the more substrates or particulate surfaces available for these
bacteria attachment and proliferation (12). The solid-associated
bacteria attached to the feed particles play a key role in fiber
digestion, while the liquid-associated bacteria have significant
functions in the metabolism of soluble nutrients (13, 14).
There is a difference in the bacteria community between the
solid and liquid fractions. The rumen bacteria are influenced
by the combination of substrate, physical structure, and pH
environment. Li et al. (15) demonstrated that the three groups of
bacteria communities change under grain-induced SARA: pH-
sensitive but substrate insensitive bacteria, pH-insensitive but
substrate sensitive bacteria, and bacteria that are both pH and
substrate sensitive. However, it is difficult to design and execute
experiments in vivo to test this hypothesis. The RUSITEC system
is an optional tool in vitromodel to simulate the rumenmicrobial
fermentation and could strictly control the effects of substrate
and pH independently (10).

Therefore, we hypothesized that the low AS pH would alter
the rumen bacteria community, which also lead to the variation
of the rumen fermentation. The objectives of this study were to

TABLE 1 | The composition of the infused buffera.

High AS pH Low AS pH

NaHCO3 9.8 g/L 1.96 g/L

Na2HPO4 9.3 g/L 1.86 g/L

NaCl 0.47 g/L 0.47 g/L

KCl 0.57 g/L 0.57 g/L

MgSO4·7H2O 0.12 g/L 0.12 g/L

CaCl2·2H2O 0.045 g/L 0.045 g/L

aThe infused buffer was referenced to McDougall’s method (17).

determine the effects of AS pH on the nutrients digestion, rumen
fermentation, and ruminal bacteria community.

MATERIALS AND METHODS

All the procedures involving animals were carried out in
accordance with the Biological Studies Animal Care and Use
Committee of Gansu Province, China (2005–2012).

Equipment, Animals, and Procedures
The study was conducted using RUSITEC (Sanshin, Tokyo,
Japan) as described by Kajikawa et al. (16). The RUSITEC system
contained eight fermenters with a volume of 800ml each per
tank. The inoculum used in the fermenters was obtained from
four ruminal fistulated Hu lambs fed two equivalent meals at
07:00 and 19:00 daily in the form of totally mixed ration (TMR)
pellets with forage to concentrate of 80:20. The rumen contents
were collected through the ruminal fistula before the morning
feed and separated into liquid and solid fractions by four layers
of cheesecloth. The squeezed solid inoculum (70 g wet weight)
was enclosed in a nylon bag (7 × 13 cm, pore size: 100µm).
On the 1st day during fermentation, 400ml of liquid inoculum
was distributed to each fermenter under CO2 flux after mixing
with an equal volume of AS, and two bags were placed in the
fermenter, one with feed and the other with solid inoculum. After
24 h, the bag with the inoculum was replaced by a new bag with
the feed. Subsequently, the bag that included the feed incubated
48 h was replaced by a new feed bag. A continuous infusion of AS
at a rate of 600 ml/day was maintained in each fermenter. The
fermenters were kept in a water bath at 39◦C and slowly moved
up and down by an electric motor (five times per minute).

Experimental Diets
The fermenters were randomly assigned to the two treatments
with four replicates of each treatment. The treatment included
high AS pH (pH 7.0) or low AS pH (pH 6.0) according
to McDougall’s method (17) (Table 1). The low AS pH was
sustained by decreasing the AS buffer capacity (NaHCO3 from
9.8 to 1.96 g/L and Na2HPO4 from 9.3 to 1.86 g/L). The
pH of all the fermenters was recorded at 07:30, 15:30, and
23:30 daily throughout the experiment periods. The diets were
supplemented with 16 g basic diets with forage to the concentrate
ratio of 50:50 (Table 2). The diets were ground through a 2mm
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TABLE 2 | The dietary ingredients and nutrient composition (% dry matter [DM]).

Ingredients Contents

Alfalfa hay, % 40.60

Corn straw, % 9.40

Corn, % 18.80

Molasses, % 2.50

Cottonseed meal, % 3.80

Soybean hull, % 4.40

Corn gluten meal, % 6.30

Corn husk, % 12.50

Expanded urea, % 0.80

NaCl, % 0.40

Expanded urea, % 0.40

Premix, % 0.30

Nutritional levels

DM, % as fed 91.74

NDF, % as DM 42.17

ADF, % as DM 21.78

EE, % as DM 1.13

CP, % as DM 17.00

sieve. The experiment was conducted for 13-day incubation
periods, with 9 days adaption and 4 days sample collection.

Date and Sample Collection
During the last 4 days of the experiment, the ice water was
added around the over flow bottle to terminate fermentation. On
days 10 and 11, about 10ml of fermenter fluid were collected
at 0, 3, 6, 9, and 12 h after the morning feed, the ruminal pH
was immediately measured with a mobile pH meter (PHB-4,
Shanghai Hongyi instrument Limited, Shanghai, China). Then,
5-ml of rumen fluid was preserved with 1ml of metaphosphoric
acid (25% wt/vol) and stored at −20◦C for the determination
of VFA. On day 12, about 10ml of ruminal fluid was collected
from each fermenter and immediately stored at −80◦C to exact
bacterial DNA. On day 13, about 20% of solid contents from
each nylon bag were frozen at−80◦C for the solid phase bacteria
DNA extraction. The bag from each vessel on days 10, 11,
and 12 was collected, washed one time with 100ml of artificial
saliva, washed with cold water until the outflow was clear, and
stored to determine dry matter (DM) disappearance. The DM
disappearance was calculated from the loss in weight after oven
drying at 65◦C for 48 h by using the following equation: DM
disappearance (%) = {(g Sample DM – g Residue DM – g Bag
DM)/g Sample DM} ∗100, and the residues were analyzed for
DM, organic matter (OM), neutral detergent fiber (NDF), acid
detergent fiber (ADF), and crude protein (CP).

Analytical Procedures
The content of DM, ash, and N in the feed and residues
were determined according to the Association of Official
Analytical Chemists (AOAC) method (18). The DM content was
determined by drying at 105◦C in a forced-air oven for 4 h. The
ash content was determined by complete combustion in a muffle

furnace (PrepASH-340, Precisa, Swizerland) at 550◦C for 6 h. The
N contents of the feed bag were carried out by a protein analyzer
(K9840, Hanon Advanced Technology Group Co., Ltd, Jinan,
China) according to the Kjeldahl method and CP was calculated
as N × 6.25 (18). The NDF and ADF were determined by the
method of Van Soest et al. (19).

The thawed rumen fluid samples were centrifuged at 2,500
×g at 4◦C for 5min, and the supernatants were processed as
described by Liang et al. (20). The VFA concentrations were
measured with gas chromatography (GC) on a Thermo Fisher
Trace 1300 GC system (TRACE 1300, Thermo Scientific, Milan,
Italy) as described by Li et al. (15). The GC was fitted with a
silica capillary column (DB-FFAP, 30m × 0.32mm × 0.25µm,
Agilent Technologies Co., Ltd, Santa Clara, CA, USA), and
crotonic acid (1% wt/vol) was used as the internal standard.
The injector and detector temperatures were set at 240◦C. The
following temperature program was used: the temperature was
increased from 50 to 190◦C at a rate of 25◦C/min, and the
temperature increased was increased to 200◦C at 10◦C/min for
5min. Finally, the temperature was increased to 220◦C at a rate
of 10◦C/min and was held for 5min. The concentration of lactate
was determined by a commercial Lactate Analysis Kit (Nanjing
Jiancheng Technology Co., LTD., Nanjing, China).

Microbial DNA Extraction and Relative
Quantitative Real-Time PCR
The DNA of rumen bacteria was extracted by an E.Z.N. A R©

Bacterial DNA Kit (Omega Bio-Tek, Inc., Norcross, GA, USA)
according to the instructions from the manufacturer. The final
elution volume was 80 µl, and DNA concentration and purity
were measured by an ND-2000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA). The primer design for all
the rumen bacteria to amplify was selected on the basis of the
published literature (Table 3). The quantitative real-time PCR
(qPCR) protocol was described by Liang et al. (20). Each sample
contained 1µl of DNA, 10µl of SYBR Green (TransGen Biotech,
Beijing, China), 0.6 µl of each primer, and 8.6 µl of ddH2O in
a final volume of 20 µl. The amplification conditions were as
follows: 95◦C for 10 s; 40 cycles of 10 s at 95◦C; 30 s at 60◦C; 72◦C
for 10 s; and a final cycle at 72◦C for 5min. To obtain melting
curve data, the temperature increased in 0.5◦C increments from
65 to 95◦C. All investigated PCR products had only singlemelting
peaks. The relative abundance of rumen bacteria was expressed as
a proportion of total rumen bacterial 16S rRNA according to the
equation: relative quantification = 2−(CTctarget−CTctotal bacteria),
where CT represents a threshold cycle (26). Before the statistical
analysis, the percentage of each microbe target was calculated
as (2−1CT) × 100, then, the data were log10–scale transformed
before the statistical analysis (20). The quantity of each species
was expressed as the log10 copy number of 16S rRNA gene copies
per milliliter of rumen fluid.

The sequence analysis and bioinformatics were conducted
by SMRT Portal (version. 2.7; PacBio, CA, USA). The Lima
(version. 1.7.0; PacBio, CA, USA) software was applied to export
circular consensus sequencing (CCS) sequences from raw data
and perform Barcode identification for the CCS sequences. Then,
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TABLE 3 | The sequence of primers used to analyze the relative abundance

of bacteria.

Primer name Primer sequences (5′–3′) References

Fibrobacter

succinogenes

F: 5-GGTATGGGATGAGCTTGC-3

R: 5-GCCTGCCCCTGAACTATC-3

(21)

Butyrivibrio

fibrisolvens

F: 5-GCCTCAGCGTCAGTAATCG-3

R: 5-GGAGCGTAGGCGGTTTTAC-3

(22)

Ruminococcus

flavefaciens

F: 5-CGAACGGAGATAATTTGAGTTTACTTAGG-3

R: 5-CGGTCTCTGTATGTTATGAGGTATTACC-3

(22)

Prevotella brevis F: 5-GGTTCTGAGAGGAAGGTCCCC-3

R: 5-TCCTGCACGCTACTTGGCTG-3

(23)

Selenomonas

ruminantium

F: 5-CAATAAGCATTCCGCCTGGG-3

R: 5-TTCACTCAATGTCAAGCCCTGG-3

(23)

Ruminococcus

albus

F: 5-CCCTAAAAGCAGTCTTAGTTCG-3

R: 5-CCTCCTTGCGGTTAGAAC-3

(24)

Total bacteria F: 5-TCCTACGGGAGGCAGCAGT-3

R: 5-GGACTACCAGGGTATCTAATCCTGTT-3

(25)

the chimera was filtered by UCHIME (version. 4.2; Tiburon, CA,
USA) software to get the Optimization-CCS (27). We cluster
Optimization-CCS sequences to get operational taxonomic units
(OTU) by USEARCH (version 10.0; Tiburon, CA, USA) software
(28), then get the species classification according to the sequence
composition of OTU. The principal coordinate analysis (PCoA)
plot of samples according to the distance matrix was obtained to
analyze. The Ace, Chao1, Shannon, and Simpson indexes of each
sample were statistically calculated by using Mothur (version
v.1.30; Mothur, Michigan, USA) to evaluate the alpha diversity
at 97% similarity level (29). According to OTU analysis results, a
taxonomic analysis was performed with RDP Classifier (version
2.2; RDP Classifier, Michigan, USA) at the taxonomic level of
phylum and genus (30). The raw sequencing data were in the
Sequence Read Archive (SRA) of NCBI and can be accessed via
accession number: PRJNA752826.

Statistical Analysis
The nutrients degradation, fermentation parameters, and rumen
bacteria abundances were analyzed by using SPSS software
version 17.0 (IBM, Armonk, NY, United States). The independent
sample T-test was used to calculate the differences in the results
between the high AS pH group and the low AS pH group in
this experiment. The effect of time on fermentation variables
was used as a repeated measure. The model included the effects
of AS pH, time, and their interaction as fixed effects, and
individual fermenters as a random effect. The Kruskal–Wallis
test was used to test the rumen bacteria in the solid and liquid
fraction at the phylum and genus. The significant difference of
data was analyzed by Kruskal–Wallis one-way ANOVA analysis.
The significance was set as P ≤ 0.05 and the tendencies were
considered when 0.05 < P < 0.10.

RESULTS

Decreasing the AS buffer capacity resulted in a reduction in
average pH to 6.02 in the low AS group. The effect of AS pH

TABLE 4 | Effect of AS pH on the nutrients degradability in the rumen simulation

technique (RUSITEC).

Degradability

rate, % DM

High AS pH Low AS pH SEMa P-value

DM 64.37 ± 0.72 58.67 ± 1.37 0.555 <0.001

OM 64.38 ± 1.26 59.32 ± 1.34 0.669 <0.001

NDF 46.87 ± 0.83 39.94 ± 2.10 1.001 <0.001

ADF 38.16 ± 1.54 31.13 ± 2.51 1.274 <0.001

CP 70.33 ± 1.76 62.99 ± 2.83 1.239 <0.001

SEMa, standard error of the sample means.

TABLE 5 | Effect of artificial saliva (AS) pH on pH and volatile fatty acids in the

rumen simulating fermenter (RUSITEC).

High AS pH Low AS pH SEMa P-value

pH 7.03 ± 0.05 6.02 ± 0.05 0.023 < 0.001

VFA molar ratios, mol/100 mol

Acetate 46.47 ± 0.74 45.24 ± 1.25 0.727 0.140

Propionate 35.84 ± 1.59 24.94 ± 1.88 1.232 < 0.001

Isobutyrate 0.04 ± 0.002 0.04 ± 0.003 0.002 0.161

Butyrate 8.57 ± 1.87 14.18 ± 0.32 0.951 0.008

Isovalerate 1.68 ± 0.33 5.50 ± 2.13 1.075 0.012

Valerate 7.39 ± 0.60 10.07 ± 0.41 0.363 < 0.001

Acetate:propionate 1.30 ± 0.04 1.82 ± 0.14 0.723 < 0.001

Lactate, mmol/L 0.07 ± 0.01 0.05 ± 0.02 0.010 0.209

TVFAb, mmol/L 52.41 ± 8.77 42.66 ± 2.92 4.624 0.080

SEMa, standard error of the sample means; TVFAb, total volatile fatty acids.

on the nutrients degradabilities is presented in Table 4. The
degradabilities of DM, OM, NDF, ADF, and CP were lower in
the low AS pH group compared with the high AS pH group
(P < 0.001).

The effect of AS pH on VFA in RUSITEC is shown in Table 5.
The total concentration of VFA tended to be lower (P = 0.080)
in the low AS pH group compared with the high AS pH group.
The proportions of acetate, isobutyrate, and the concentration
of lactate were not affected by different AS pH (P > 0.05). The
low AS pH decreased the proportion of propionate (P < 0.001)
and increased the proportions of butyrate (P= 0.008), isovalerate
(P = 0.012), valerate (P < 0.001), and the ratio of acetate to
propionate (P < 0.001).

The effect of AS pH on the fermentation parameters at 0, 3,
6, 9, and 12 h after feeding is shown in Supplementary Table 1.
An interaction between AS pH and time affected the rumen pH
(P = 0.003); the low AS pH had lower rumen pH than high AS
pH (P < 0.001), and rumen pH was decreased at 0 and 9 h after
feeding (P < 0.001). The proportion of acetate was increased at
0 h and decreased at 3 h after feeding in the high AS pH group,
respectively (P = 0.039). The proportion of butyrate was affected
by an interaction between the AS pH and time (P = 0.037). The
low AS pH had a greater proportion of butyrate than high AS pH
(P = 0.002), and the proportion of butyrate was decreased at 0 h
and increased at 3 and 9 h between the low and high AS pH group
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TABLE 6 | Effect of AS pH on the α-diversity of the rumen bacteria and community at phylum level in RUSITEC.

High AS pH Low AS pH SEM1 P-value

AS pH Rumen bacteria

α-diversity

ACE Solid 168.34 ± 25.19 190.62 ± 25.60 17.956 0.261 0.075

Liquid 219.64 ± 12.85 179.92 ± 15.22 9.961 0.007

Chao1 Solid 162.49 ± 25.37ab 184.05 ± 16.48b 16.126 0.204 0.030

Liquid 218.33 ± 9.27a 183.69 ± 24.38ab 13.021 0.038

Simpson Solid 0.09 ± 0.22ab 0.13 ± 0.04a 0.227 0.126 0.009

Liquid 0.03 ± 0.00b 0.12 ± 0.08ab 0.038 0.098

Shannon Solid 3.38 ± 0.25ab 2.93 ± 0.19b 0.157 0.031 0.008

Liquid 4.22 ± 0.12a 3.22 ± 0.46ab 0.235 0.006

Phylum, %

Firmicutes Solid 44.65 ± 2.07 47.35 ± 8.87 4.552 0.574 0.075

Liquid 32.94 ± 1.83 31.02 ± 12.50 6.317 0.373

Bacteroidetes Solid 47.50 ± 2.63a 39.68 ± 9.56ab 4.957 0.166 0.030

Liquid 37.60 ± 1.49ab 29.74 ± 8.17b 4.150 0.107

Proteobacteria Solid 5.26 ± 1.94b 7.87 ± 4.01ab 2.229 0.286 0.009

Liquid 12.82 ± 3.43ab 27.53 ± 5.72a 3.335 0.005

Planctomycetes Solid 0.88 ± 0.80ab 0.37 ± 0.48b 0.465 0.313 0.008

Liquid 10.70 ± 2.43a 2.26 ± 1.07ab 1.328 0.001

Spirochaetes Solid 0.88 ± 0.34ab 3.15 ± 0.66a 0.371 0.001 0.005

Liquid 1.35 ± 0.49ab 0.06 ± 0.048b 0.245 0.002

Verrucomicrobia Solid 1.67 ± 0.72a 0.06 ± 0.06ab 0.023 0.004 0.082

Liquid 0.02 ± 0.04b 0.006 ± 0.01b 0.361 0.510

Actinobacteria Solid 0.02 ± 0.03 0.95 ± 1.21 0.603 0.221 0.105

Liquid 0.01 ± 0.02 0 0.012 0.391

Tenericutes Solid 0.20 ± 0.13 0.33 ± 0.23 0.132 0.386 0.364

Liquid 0.31 ± 0.12 0.06 ± 0.07 0.071 0.012

Lentisphaerae Solid 0.03 ± 0.03ab 0b 0.016 0.190 0.040

Liquid 0.40 ± 0.20a 0.03 ± 0.02ab 0.099 0.031

Synergistetes Solid 0.006 ± 0.01b 0.05 ± 0.02ab 0.010 0.004 0.060

Liquid 0.15 ± 0.10ab 0.25 ± 0.17a 0.100 0.342

Others Solid 0.01 ± 0.02ab 0b 0.011 0.391 0.311

Liquid 0.13 ± 0.12ab 0.17 ± 0.08a 0.073 0.586

Unclassified Solid 0.54 ± 0.29ab 0.25 ± 0.14b 0.162 0.134 0.006

Liquid 1.92 ± 0.54a 0.82 ± 0.12ab 0.275 0.024

a,bDifferences (P < 0.05) between the abundance of rumen bacteria within solid fraction and liquid fraction.

SEM1, standard error of the sample means.

(P < 0.001). The proportion of valerate was higher at 0, 3, 6, and
9 h than at 12 h after feeding in the low AS pH group (P= 0.009).

The effect of AS pH on the α diversity and phylum abundances
of the ruminal bacteria are shown in Table 6. The sequence
coverage sufficiently met a coverage >97% for all the samples.
Across all the samples, a total of 102,043 CCS sequences were
obtained, and an average of 6,378 CCS sequences per sample. In
total, 94% of CCS sequences were classified at the phyla level and
66% at the genus level. In the solid-associated bacteria, the ACE,
Chao1, and Simpson indexes were not affected by AS pH (P >

0.05). However, the Shannon index was greater in the high AS pH
group (P = 0.031) compared with the low AS pH group. In the

liquid-associated bacteria, the ACE, Chao1, and Shannon indexes
were greater (P < 0.05) in the high AS pH group compared with
the low AS pH group, whereas the Simpson index tended to be
higher (P = 0.098). The ACE, Chao1, Simpson, and Shannon
indexes have no difference between solid-associated bacteria and
liquid-associated bacteria.

The abundance of Firmicutes and Bacteroidetes was not
affected by AS pH treatment (P> 0.05). The low AS pH increased
the abundances of Spirochaetes (P = 0.001), Synergistetes (P
= 0.004), and decreased the Verrucomicrobia abundance (P =

0.004) in the solid-associated bacteria. In the liquid-associated
bacteria, low AS pH increased the abundance of Proteobacteria
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(P = 0.005) and decreased the abundances of Planctomycetes (P
= 0.001), Spirochaetes (P = 0.002), Tenericutes (P = 0.012), and
Lentisphaerae (P = 0.031). At the AS pH 6.0, the abundance
of Spirochaetes was greater in solid than a liquid fraction. For
the liquid and solid fraction, the abundances of Firmicutes,
Bacteroidetes, and Proteobacteria were similar in solid fraction
compared with the liquid fraction.

The beta diversities of bacteria communities within different
AS pH for each fraction were calculated and visualized
through the two-dimensional PCoA analysis using the binary-
Jaccard (Figure 1). A significant difference between the bacterial
communities in the AS pH treatment was noted. Both principal
components accounted for 34.79% (PC1) and 27.78% (PC2) of
the explained variance.

The ruminal bacteria with abundances >1% at the genus
level were presented in Table 7. The low AS pH increased
the abundance of Lactobacillus (P = 0.050) and decreased the
abundances of Schwartzia (P= 0.002) in solid-associated bacteria
compared with the high AS pH group. In the solid-associated
bacteria, the abundance of Succinivibrio tended to be greater
(P = 0.059) in the low AS pH group compared with the
high AS pH group, whereas the abundance of Ruminobacter
tended to be lower (P = 0.086). In the liquid-associated bacteria,
the abundances of Prevotellaceae_YAB2003_group (P = 0.040),
Schwartzia (P = 0.002), and Ruminobacter (P = 0.043) were
lower in the low AS pH group compared with the high AS pH
group. However, the abundances of Succinivibrio (P< 0.001) and
Prevotella_1 (P= 0.001) were higher in the low AS pH treatment
compared with the high AS pH group. At the AS pH 7.0 and 6.0,
the abundance of Prevotellaceae_YAB2003_groupwas greater in a
solid fraction than a liquid fraction (P < 0.05). The abundance of
Prevotella_1 was decreased in a solid fraction when the AS pH
was 6.0 (P = 0.008), while the abundance of Prevotella_7 was
increased (P = 0.007).

The effect of AS pH on the number of rumen bacteria is
presented in Table 8. The low AS pH decreased the number of
Ruminococcus albus, R. flavefaciens, F. succinogenes (P < 0.001)
both in the solid- and liquid-associated bacteria, respectively.
The low AS pH tended to increase the amount of Prevotella
brevis (P = 0.091) in liquid-associated bacteria. The low AS pH
decreased the amounts of Selenomonas ruminantium in solid-
associated bacteria (P = 0.022) and tended to decrease in liquid-
associated bacteria (P = 0.065). The number of S. ruminantium
was increased in solid fractions both in high AS pH and low
AS pH (P < 0.001). At the high AS pH, the amounts of P.
brevis, Butyrivibrio fibrisolvens, and total bacteria were increased
in solid fraction compared with the liquid fraction (P < 0.05).
The number of F. succinogenes was greater in solid fraction than
liquid fraction at the low AS pH (P < 0.001).

DISCUSSION

The rumen pH is the most monitored parameter for SARA
diagnosis. According to the severity of SARA, the average daily
pH threshold was 5.50–6.25 (3). In the current study, decreasing
the AS buffer capacity resulted in an average pH of 6.02. The

ruminal pH was an important factor that affect the degradation
of NDF and OM degradation in the rumen (31). In our study,
low AS pH decreased the degradabilities of DM, OM, NDF,
and ADF. These results are consistent with the previous reports
that the digestion rates of DM and NDF were reduced with
the decreasing AS pH (7.0 vs. 4.9) in vitro (32). The decreased
digestibilties of NDF and ADF at the low AS pH are mainly
attributed to the reduction of cellulolytic bacteria populations
and the ability of cellulolytic bacteria to attach to the feed
particles (33).

Reduction in the rumen pH lower than 6.0 has a negative
impact on the amount of cellulolytic bacteria (R. albus,
R. R. flavefaciens, F. succinogenes, and B. fibrisolvens) in the
rumen (15, 34). As expected, the low AS pH decreased the
amount of ruminal R. albus, R. flavefaciens, F. succinogenes, and
B. fibrisolvens in the solid- and liquid-associated bacteria with
the identical substrates chemical compositions. However, Li et
al. (8) found that the ruminal cellulolytic bacteria, such as the
amounts of F. succinogenes and R. flavefaciens were increased
when the dairy goats experience the low-peNDF diet induced
SARA. Khafipour et al. (6) found the mild grain-induced SARA
increased the populations of R. albus and R. flavefaciens. The
result of cellulolytic bacteria was not consistent between the
low peNDF-induced SARA with the high grained-induced SARA
in vivo (6). In the present study, we intended to stimulate the
low peNDF induced SARA by decreasing the AS pH in Rustitec,
which is similar to the decreased saliva secretion when the
ruminants received the low peNDF diets in vivo. The increased
cellulolytic bacteria when the cows or goats received the low
peNDF diets (decreased the roughage particle size without
changing the roughage to concentrate ratio) mainly attributed
to the increased surface area for microbial attachment (8, 35–
37). However, the particle size of feed was identical between
the treatments, and the changes of cellulolytic bacteria only
response to the different AS pH in the present study. Therefore,
the results of the present study indicated that the low AS pH
indeed decreased the number of cellulolytic bacteria when the
substrate was identical in the Rustitec. The rumen bacteria
abundance of the solid fraction is significantly higher than that
of the liquid fraction (38). The amounts of B. fibrisolvens and
F. succinogenes, total bacteria were enriched in a solid fraction in
our study. This result was in accordance with De Mulder et al.
(14), who identified that cellulolytic bacteria are prevalent in the
solid fraction.

The ruminal genus of Prevotella.app is considered to be
associated with starch degradation and growth well at low pH
conditions (6, 39). In our study, the amount of P. brevis was
not affected by AS pH in the solid-associated bacteria, but the
number of P. brevis in the liquid-associated bacteria tended to be
increased in the low AS pH group.

In the current study, the degradability of CP decreased in
the low AS pH group. Several studies have indicated that the
low AS pH decreased or unaffected CP degradability (32, 40).
The plant proteins were integrated within non-protein polymers,
such as polysaccharides, which may limit the access of proteolytic
bacteria to the substrate (41). It is possible that the low AS pH
decreased ruminal cellulolytic activity and led to a reduction
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FIGURE 1 | Effects of artificial saliva (AS) pH on the β diversity in the rumen bacteria (A,B) in RUSITEC. LH, the high artificial saliva (AS) pH in the liquid-associated

bacteria; LL, the low AS pH in the liquid-associated bacteria; SH, the high AS pH in the solid-associated bacteria; SL, the low AS pH in the solid-associated bacteria.
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TABLE 7 | Effect of AS pH on the rumen bacteria at genus level in RUSITEC.

High AS pH Low AS pH SEM1 P-value

AS pH Rumen bacteria

Lactobacillus Solid 17.35 ± 5.96ab 29.32 ± 7.76a 4.895 0.050 0.019

Liquid 4.55 ± 1.20b 19.21 ± 18.54ab 9.292 0.212

Prevotellaceae_YAB2003_group Solid 25.91 ± 4.41a 23.91 ± 11.57a 6.129 0.755 0.005

Liquid 7.51 ± 3.99b 0.64 ± 0.53b 2.014 0.040

Succinivibrio Solid 3.90 ± 1.51b 7.47 ± 4.12ab 2.193 0.059 0.012

Liquid 6.28 ± 2.14ab 25.59 ± 5.24a 2.831 <0.001

Selenomonas_1 Solid 6.20 ± 1.160 7.85 ± 2.18 1.234 0.206 0.481

Liquid 7.81 ± 1.29 8.99 ± 3.84 2.025 0.592

Prevotella_1 Solid 6.14 ± 1.45ab 3.38 ± 1.42b 1.017 0.340 0.008

Liquid 3.05 ± 0.71b 14.09 ± 3.61a 1.841 0.001

Rikenellaceae_RC9_gut_group Solid 2.96 ± 1.09b 3.16 ± 1.43ab 0.898 0.827 0.009

Liquid 8.68 ± 2.59ab 10.92 ± 3.88a 2.330 0.374

Prevotella_7 Solid 4.30 ± 2.19ab 6.89 ± 2.07a 1.507 0.137 0.007

Liquid 1.76 ± 0.90ab 0.38 ± 0.12b 0.454 0.053

Schwartzia Solid 5.20 ± 0.98a 2.34 ± 0.38ab 0.523 0.002 0.005

Liquid 2.13 ± 0.25ab 1.30 ± 0.39b 0.229 0.011

Ruminobacter Solid 1.00 ± 0.78ab 0.15 ± 0.02b 0.390 0.086 0.005

Liquid 4.66 ± 2.76a 0.01 ± 0.01ab 1.381 0.043

Succiniclasticum Solid 0.34 ± 0.27b 0.57 ± 0.40ab 0.243 0.391 0.012

Liquid 1.70 ± 0.77ab 3.01 ± 1.50a 0.840 0.171

Others Solid 18.39 ± 4.59ab 11.35 ± 2.71ab 2.651 0.038 0.013

Liquid 21.43 ± 3.36a 10.18 ± 3.59b 2.459 0.004

Unclassified Solid 8.38 ± 4.25b 3.75 ± 0.86ab 2.168 0.076 0.009

Liquid 3.04 ± 3.21a 5.67 ± 1.10ab 1.695 <0.001

a,bDifferences (P < 0.05) between the abundance of rumen bacteria within the solid fraction and liquid fraction.

SEM1, standard error of the sample means.

TABLE 8 | Effect of AS pH on the number of ruminal bacteria in RUSITEC.

High AS pH Low AS pH SEM1 P-value

AS pH Rumen bacteria

Ruminococcus Flavefaciens Solid 9.85 ± 0.89a 7.24 ± 0.98b 0.399 < 0.001 < 0.001

Liquid 9.19 ± 0.21a 7.05 ± 0.47b 0.232 < 0.001

Fibrobacter succinogenes Solid 8.59 ± 0.67a 7.86 ± 0.31a 0.223 < 0.001 < 0.001

Liquid 7.75 ± 0.22a 6.36 ± 0.45b 0.192 < 0.001

Prevotella brevis Solid 9.38 ± 0.24a 9.32 ± 0.45a 0.148 0.693 0.001

Liquid 8.85 ± 0.42b 9.09 ± 0.18ab 0.132 0.091

Ruminococcus albus Solid 10.22 ± 0.54a 8.26 ± 0.22b 0.254 < 0.001 < 0.001

Liquid 9.69 ± 0.21a 7.77 ± 0.41b 0.213 < 0.001

Selenomonas ruminantium Solid 10.78 ± 0.24a 10.50 ± 0.29a 0.453 0.028 < 0.001

Liquid 10.26 ± 0.16b 10.14 ± 0.13b 0.121 0.065

Butyrivibrio fibrisolvens Solid 8.94 ± 0.40a 8.54 ± 0.28ab 0.145 0.081 0.011

Liquid 8.40 ± 0.10b 8.55 ± 0.18ab 0.058 0.022

Total bacteria Solid 15.59 ± 0.49a 15.55 ± 0.40a 0.178 0.833 0.002

Liquid 15.03 ± 0.18b 15.34 ± 0.15ab 0.072 < 0.001

a,bDifferences (P < 0.05) between the number of rumen bacteria within the solid fraction and liquid fraction.

SEM1, standard error of the sample means.
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in the CP degradability due to the limitation of the access of
proteases to their matrix (8).

In our experiment, the total concentration of VFA was
reduced in the low AS pH treatment. This result was in
accordance with Jiao et al. (42), who found that the total
concentration of VFA (42.66 vs. 52.41 mmol/L) declined when
pH was at 5.8 compared with the pH 6.5 in vitro. The declined
total VFA concentration in the present study is mainly attributed
to the decreased OM degradability. In our study, the proportion
of acetate was increased at 0 h and decreased at 3 h after feeding
in the high AS pH group. Because the fermenters are opened
to supply new nylon bags with feed; this operation exposes
the cellulolytic bacteria to oxygen and inhibits the activity (43).
The decrease AS pH reduced the proportion of propionate
in our experiment. The results were consistent with Strobel
and Russell (44) found the concentration of propionate from
starch fermentation (2.9 vs. 1.1mM) decreased when the pH
decreased from 6.7 to 5.8. The previous studies reported the
amylolytic bacteria to produce amounts of propionate, but
many cellulolytic bacteria generate a large amount of succinate,
an intermediate that is eventually converted to propionate
(45). The decreased proportion of propionate was because
the low ruminal pH inhibited the succinate conversion to
propionate. The lower molar ratio of the propionate in the low
AS pH group also resulted in a higher acetate to propionate
compared with the high AS pH group. These results are
different from Cardozo et al. (46), who reported the ratio
of acetate to propionate was lower when pH was decreased
from 7.0 to 5.5 because the high-grain diets decreased the
acetate production and increased the propionate production in
the rumen.

In the present study, the proportion of butyrate was greater
in the low AS pH group compared with the high AS pH group.
The results were in accordance with Esdale and Satter (47),
who reported that the butyrate production was higher at pH
5.6 compared with at pH 6.2 in vitro. In addition, Shriver et al.
(48) found butyrate production increased as pH was decreased
from 6.2 to 5.8 in vivo. Calsamiglia et al. (32) identified that
the concentration of butyrate was only affected by the changes
of pH and not affected by diet compositions in vitro. The
results could be associated with the increasing abundance of
Prevotellaceae (e.g., Prevotella_1) in the liquid-associated bacteria
that resulted in the increased butyrate production in vitro (49).
In the current study, the proportion of butyrate was decreased
at 0 h and increased at 3, 6, and 9 h after feeding. At 2 h
after the start of incubation, the16S rDNA copy numbers of
amylolytic bacteria attached to the grain were increased (50),
which may promote butyrate production at 3, 6, and 9 h
after feeding.

The concentrations of isovalerate and valerate in the rumen
were related to the protein degradation and fermentation of
branched-chain AA (51). The isovalerate and valerate are also
considered as stimulating factors that enhanced the growth of
cellulolytic bacteria (52). In the current study, the low AS pH
increased the proportion of isovalerate and valerate, and the
proportion of valerate was higher at 0, 3, 6, and 9 h than at
12 h after feeding. It had a low pH, which inhibited the growth

of cellulolytic bacteria. The RUSITEC system fermenters were
opened when the bags were replaced by the new nylon bags
with feed; this operation exposed cellulolytic bacteria to oxygen
and inhibited the activity of cellulolytic bacteria (43). This
therefore would have resulted in the accumulation of valerate and
isovalerate in the fermenters and increased at 3, 6, 9, and 12 h
after feeding.

Using the sequence and bioinformatics analysis, we obtained
6,378 CCS sequences on average for each sample with good
coverage (>97.0%). In accordance with our hypothesis, both the
microbial α-diversity and β-diversity were affected by AS pH
treatment. Meanwhile, most of the alpha diversity indices (except
Simpson index) decreased with the low AS pH in the liquid-
associated bacteria, suggesting that the low pH significantly
decreased the activity and number of ruminal bacteria. These
results are in agreement with Shen et al. (53), who reported
the reduction of pH decreased the bacteria alpha diversity.
In addition, the PCoA analysis also showed that the bacterial
communities of the high AS pH and low AS pH clustered
separately, indicating their distinct bacterial compositions in
the rumen. These results were similar to the founding by Li
et al. (15) who found the bacterial compositions were different
between the sheep with high rumen pH and low rumen pH
with identical feed composition. Interestingly, the ACE, Chao1,
Simpson, and Shannon indexes have no difference between solid
fractions and liquid fractions in our study. Because the solid-
and liquid-associated bacteria do not have differences in the
taxonomic composition but can be distinguished based on the
relative abundance of species (14).

In the present study, the relative abundances of ruminal
Firmicutes and Bacteroidetes were not affected by AS pH.
The Firmicutes are predominantly composed of Gram-positive
bacteria in the rumen, which aremetabolically capable of utilizing
the fermentable carbohydrates (54). Previous studies showed
that feeding high-grain diets for cattle increased the abundance
of ruminal Firmicutes (55). However, AS pH did not affect
the abundance of Firmicutes in our study suggests that the
Firmicuteswere pH-insensitive bacteria. The Bacteroidetes are the
most abundant Gram-negative bacteria found in the anaerobic
communities of the rumen, and low pH resulted in the death
and lysis of Gram-negative bacteria (15, 54). However, the
abundance of Bacteroidetes was not affected by AS pH in the
present study. Although the Bacteroidetes were not different
in statistics, the value of Bacteroidetes decreased in the low
pH group (47.50 vs. 39.68% in solid-associated bacteria and
37.60 vs. 29.74% in liquid-associated bacteria). Wang et al.
(56) reported that feeding high-concentrate diets decreased the
ruminal pH and increased the abundance of Proteobacteria in
the rumen for cows. Furthermore, the low AS pH increased
the abundance of Proteobacteria in the liquid-associated bacteria
in this experiment. This result suggests that the phylum of
Proteobacteria can tolerate the low pH condition. For the liquid
and solid fraction, the abundances of Firmicutes, Bacteroidetes,
and Proteobacteria were similar in solid fraction compared with
the liquid fraction in our study. It is possible that the fermenters
were moved up and down by an electric motor, and promoted
the exchange of rumen bacteria in solid fraction and liquid
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fraction. The Spirochaetes commonly fermented xylan and pectin
in feed (57). After 6 h fermentation, the Spirochaetes phyla
became abundant in the forage-adherent community (58). The
Spirochaetes was greater in low pH conditions in the solid-
associated bacteria, which was also greater in high AS pH in
the liquid-associated bacteria in the current study. And the
abundance of Spirochaetes was greater in a solid fraction than a
liquid fraction. These results indicated that Spirochaetes tend to
colonize in the solid phase in the rumen.

The bacteria genus of Lactobacria was suitable for growth at
pH 6.0 (59). The previous studies indicated that the increased
non-fiber carbohydrate for ruminant promoted the growth of
amylolytic and other starch-digesting bacterial species, such
as Lactobacillus (60–62). In the current study, the relative
abundance of Lactobacillus was increased when the AS pH
decreased. Wang et al. (63) reported that the abundance
of ruminal Lactobacillus was increased when cows intake
the SARA diet. These studies indicated that Lactobacillus
affected not only the dietary compositions but also the
magnitude of pH. The Prevotella species were essential to
hemicellulose degradation in the rumen, and Prevotella_1 and
Prevotellaceae_YAB2003 (Bactenroidetes) were identified to have
the ability to degrade hemicellulose or xylan in vivo (64,
65). In the current study, the low AS pH increased the
abundances of Prevotella_1, and decreased the abundances
of Prevotellaceae_YAB2003, and Prevotella_7 in the liquid-
associated bacteria. These results indicate the sensitivity of
Prevotella strains to AS pH was inconsistent. Similarly, the
abundance of Prevotellaceae_YAB2003_group was greater in
a solid fraction than a liquid fraction. The abundance of
Prevotella_1 was decreased in solid fractions at the low AS
pH, whereas the abundance of Prevotella_7 was increased. The
Prevotellaceae comprises up to 40% of the community in the
liquid samples, and ruminal Prevotella is non-cellulolytic but
has a broad saccharolytic and proteolytic potential (14, 66). The
abundances of Prevotellaceae_YAB2003_group and Prevotella_1
were increased in liquid fraction, which primarily consumed the
soluble nutrients.

The function of Succinivibrio produced succinate, the
precursor of propionate (67). In this research, the related
abundance of Succinivibrio was higher in the low AS pH
group compared with low AS pH, whereas the proportion
of propionate was decreased. It should be presumed that
the conversion of succinate to propionate acid was inhibited
by low pH and producing less propionate. In addition, the
Schwartzia fermented succinate and produced propionate (68).
The Schwartzia abundance decreased in the low AS pH group,
which was coordinated with the results of propionate in this
study. The low AS pH decreased the abundance of Ruminobacter
(Firmicutes) in this current study. Wang et al. (69) reported
that the cow intake high-forage diets increased the ruminal
Ruminobacter abundance. Mu et al. (70) found that fed a
high grain-diet induce cow SARA increased the abundance
of Ruminobacter. These results indicated that the growth of
Ruminobacter in the rumen was affected by the combination of
pH and diet compositions.

CONCLUSIONS

The nutrients degradabilities were decreased by reducing AS pH
in the present study. The reduction of AS pH increased the
proportion of butyrate, valerate, and isovalerate and decreased
the proportion of propionate. The results of the present study
indicated the three groups of bacteria communities according
to the different sensitives to rumen pH: the abundances of
Lactobacillus, Succinivibrio, Prevotella_7 are increased with
decreasing AS pH; the amounts of R. albus, R. flavefaciens,
F. succinogenes as well as the abundances of Schwartzia
and Ruminobacter decreased with reducing AS pH; the
abundances of Selenomonas_1, Rikenellaceae_RC9_gut_group,
and Succiniclasticum were not affected by AS pH in Rustitec. In
addition, the effect of the interaction of rumen pH and diets on
the rumen bacteria community should be further investigated.
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