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In this study, we successfully prepared scallop oil (SCO), which contains high levels

of phospholipids (PL) and eicosapentaenoic acid (EPA), from the internal organs of

the Japanese giant scallop (Patinopecten yessoensis), one of the most important

underutilized fishery resources in Japan. The intake of SCO lowers the serum and liver

cholesterol contents in mice; however, whether the fatty acids (FA) composition or PL

of SCO exhibits any cholesterol-lowering effect remains unknown. To elucidate whether

the cholesterol-lowering function is due to FA composition or PL of SCO, and investigate

the cholesterol-lowering mechanism by SCO, in the present study, mice were fed SCO’s

PL fraction (SCO-PL), triglyceride (TG)-type oil with almost the same FA composition as

SCO-PL, called SCO’s TG fraction (SCO-TG), soybean oil (SOY-TG), and soybean’s PL

fraction (SOY-PL). Male C57BL/6J mice (5-week-old) were fed high-fat and cholesterol

diets containing 3% (w/w) experimental oils (SOY-TG, SOY-PL, SCO-TG, and SCO-PL)

for 28 days. The SCO-PL diet significantly decreased the serum and liver cholesterol

contents compared with the SOY-TG diet, but the intake of SOY-PL and SCO-TG did

not show this effect. This result indicated that the serum and liver cholesterol-lowering

effect observed in the SCO intake group was due to the effect of SCO-PL. The

cholesterol-lowering effect of SCO-PL was in part related to the promotion of liver

cholesterol 7α-hydroxylase (CYP7A1) expression, which is the rate-limiting enzyme for

bile acid synthesis. In contrast, the expression levels of the ileum farnesoid X receptor

(Fxr) and fibroblast growth factor 15 (Fgf15), which inhibit the expression of liver CYP7A1,

were significantly reduced in the SCO-PL group than the SOY-TG group. From these

results, the increase in the liver CYP7A1 expression by dietary SCO-PL was in part

through the reduction of the ileum Fxr/Fgf15 regulatory pathway. Therefore, this study

showed that SCO-PL may be a health-promoting component as it lowers the serum and

liver cholesterol contents by increasing the liver CYP7A1 expression, which is not seen

in SOY-PL and SCO-TG.

Keywords: Japanese giant scallop (Patinopecten yessoensis), phospholipids, n-3 polyunsaturated fatty acids,

eicosapentaenoic acid, cholesterol metabolism
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INTRODUCTION

Atherosclerosis is the main cause of cardiovascular disease
(CVD), which is associated with high morbidity and mortality
worldwide (1) and is characterized by cholesterol accumulation
in the arterial walls and the development of lesions (2). High
cholesterol and saturated fatty acids (FA) intake have been
reported to cause atherosclerosis in animals and humans (3–
7). Furthermore, excessive intake of these lipids is thought
to promote atheroprogression through hypercholesterolemia,
inflammation, and dysbiosis (8–10). Therefore, to prevent
atherosclerosis, one of the most important ways to prevent
atherosclerosis is to improve hypercholesterolemia caused by
excessive intake of cholesterol and saturated FA.

Some edible oils have been reported to prevent
hypercholesterolemia and atherosclerosis (11–20). Dietary
eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA),
which are n-3 polyunsaturated fatty acids (PUFA), reduce
the incidence and mortality of arteriosclerosis via multiple
mechanisms, including the decreased of serum triglyceride
(TG) contents, antiplatelet aggregability, and antiarrhythmic
effects (12). In contrast, dietary phospholipids (PL) have been
demonstrated to decrease the serum total cholesterol and
low-density lipoprotein cholesterol levels, and change total/high-
density lipoprotein-cholesterol (HDL-C) in humans (13, 14).
In addition, supplementation of polar lipids from gilthead sea
bream (Sparus aurata) inhibits early atherosclerosis development
in diet induced hypercholesterolemic through regulation of
platelet activating factor metabolism in rabbit (15). PL intake has
been shown to inhibit the cholesterol absorption in intestinal
epithelial cells in animals and humans studies (11, 16, 17).
Egg PL, which contains phosphatidylcholine (PtdCho) and
sphingomyelin (CerPCho), are thought to inhibit the absorption
of cholesterol and FA by inhibiting the mobilization of lipids
from mixed micelles (18, 19). Cholesterol absorption is widely
recognized to influence serum lipid contents (20). Thus, the
inhibition of cholesterol absorption in the small intestine by PL
intake is an attractive target for decreasing serum cholesterol
contents and reducing the risk of atherosclerosis development.
Our previous report showed that dietary PL containing n-3
PUFA decreased the serum cholesterol contents compared to TG
containing n-3 PUFA (21). Consequently, n-3 PUFA and PL have
attracted attention as supplement and functional food materials
to prevent hypercholesterolemia and atherosclerosis.

The internal organs of the Japanese giant scallop (Patinopecten
yessoensis) is a significant underutilized Japan’s fishery resource,
which contains a large amount of n-3 PUFA (22, 23). However,
this has not been utilized effectively due to the presence of
cadmium and diarrhetic shellfish poison (24). By removing the
cadmium and diarrhetic shellfish poison from the internal organs
of scallop, we have successfully prepared scallop oil (SCO) that
satisfies the specifications for utilization as food. SCO safety was
confirmed by the bacterial reverse mutation test, a micronucleus
test (25), and studies of single and repeated doses in rodents
(26, 27). In addition, SCO contains approximately 20 wt% of PL
and includes higher EPA than standard TG-type fish oil (26).
Our previous study showed that SCO intake lowered the serum

and liver cholesterol contents in mice (28), and this effect was
not observed in krill oil and menhaden oil intake (29). However,
it is unclear whether the FA composition or PL of SCO has a
cholesterol-lowering effect. To elucidate whether the cholesterol-
lowering effect is due to the FA composition or PL of SCO
and the cholesterol-lowering mechanism of SCO, C57BL/6J mice
were fed SCO’s PL fraction (SCO-PL), TG-type oil with almost
the same FA composition as SCO-PL, called SCO’s TG fraction
(SCO-TG), soybean oil (SOY-TG), and soybean’s PL fraction
(SOY-PL) in high-fat and cholesterol-containing diets. Since it
has been reported that female hormones affect blood cholesterol
levels, male mice were used in this experiment (30).

MATERIALS AND METHODS

Materials
SCO was prepared from the scallop internal organs, which were
collected between August and September 2017, according to
our previous report (25). SOY-PL and SCO-PL were obtained
by dissolving soybean lecithin (Kanto Chemical Co., Inc.,
Tokyo, Japan) and SCO in cold acetone and collecting an
insoluble fraction (31). Lard and SOY-TG were purchased from
Junsei Chemical Co., Ltd. (Tokyo, Japan) and Merck KGaA
(Darmstadt, Germany), respectively. The ingredients for the
experimental diet were obtained from Oriental Yeast Co., Ltd.
(Tokyo, Japan) and Fujifilm Wako Pure Chemical Co. (Osaka,
Japan). Other chemicals were purchased from Merck KGaA,
Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan), and Nacalai
Tesque, Inc. (Kyoto, Japan).

Lipid Analysis of the Experimental Oils and
Diets
After methylation with a boron trifluoride methanol complex
solution, the FA compositions of the experimental oils and
diets were analyzed using a gas chromatography (GC) system
(GC-2014; Shimadzu Co., Kyoto, Japan) equipped with an
Omegawax R© capillary GC column (cat no. 24152; Merck KGaA)
(32). After saponification with sodium hydroxide and 5α-
cholestane was used as an internal standard, the cholesterol
contents of the experimental oils were analyzed using a GC
system equipped with an SH-Rtx-5MS column (cat no. 221-
75701-30; Shimadzu GLC Ltd., Tokyo, Japan) (33). The PL
contents of the experimental oils were measured using a
phosphorus assay (34). The PL class compositions of SOY-PL
and SCO-PL were analyzed by thin-layer chromatography using
authentic PL standards, ceramide aminoethyl phosphate (CAEP),
phosphatidic acid (PtdOH), PtdCho, phosphatidylethanolamine
(PtdEtn), and phosphatidylinositol (PtdIns), according to our
previous report (29). The glycerophospholipid (GPL) subclass
composition of the experimental oils was analyzed based on the
methods described by Dawson (35), with some modifications.
Briefly, SOY-PL and SCO-PL were saponified with 0.5M KOH
at 75◦C for 30min and separated into two layers with water
and chloroform. The upper layer was used as the diacyl-type
PL fraction. The lower layer was heated at 75◦C for 2 h with
2M HCl-methanol and divided into two layers with water and
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chloroform. The upper layer was used as the plasmalogen (Pls)
fraction, and the lower layer was used as an alkyl-acyl type PL.
Each PL content was determined using a phosphorus assay (34),
and the PL subclass compositions of the experimental oils were
calculated from the phosphorus ratio.

Animal Diet and Care
Male C57BL/6J mice (4-week-old) were obtained from Japan
SLC Inc. (Shizuoka, Japan). After an acclimatization period of
7 days, we divided the mice into four groups of eight mice
each, so that their average body weight (BW) would be similar.
The mice were bred in an air-conditioned room (light on, 8:00–
20:00; temperature, 20–22◦C) with free access to drinking water.
Mice in the SOY-TG group were given the American Institute of
Nutrition 93G formula (36) modified high-fat diet [22% (w/w)
lard, 8% (w/w) SOY-TG, 0.5% (w/w) cholesterol, and 0.1% (w/w)
cholic acid]. Mice in the SOY-PL, SCO-TG, and SCO-PL groups
were fed diets in which SOY-TG was replaced by about 3%
(w/w) of each the experimental oils, respectively, to unify the
energy ratio obtained from fat. The SOY-PL and SCO-PL diets
were prepared to contain 3% PL, and the SCO-TG diet was
prepared with approximately the same n-3 PUFA content as the
SCO-PL diet. Additionally, the experimental diet was adjusted
to 0.5% cholesterol by adding cholesterol. The ingredients of
the experimental diets are listed in Supplementary Table 1.
New diets were provided every day by pair-feeding. BW was
measured daily. The feces of each mouse were collected daily for
2 days before sacrifice, and then weighed, frozen, and ground
using a conventional mill. After 28 days of experimental diet
administration, the mice that did not fast were anesthetized with
isoflurane (FujifilmWako Pure Chemical Co.) and then sacrificed
(9:00–12:00). Blood was collected, and then serum was obtained
by centrifugation at 2,000 × g for 15min. The organs including
liver, jejunum, ileum, as well as white adipose tissue (WAT) from
the epididymal, mesenteric, perirenal, and inguinal WAT were
removed, rinsed with cold saline, and weighed. The organs were
frozen in liquid nitrogen and stored at −80◦C until analysis.
A portion of the liver and mucosa of the jejunum and ileum
were preserved in RNAlater R© solution (Merck KGaA) for stable
storage of RNA.

Biochemical Analysis of Serum, Liver, and
Feces
Serum lipid parameters including TG, PL, total cholesterol,
HDL-C, and non-high-density lipoprotein cholesterol
(non-HDL-C) contents were measured using an Olympus
AU5431 (Olympus Co., Tokyo, Japan) by Japan Medical
Laboratory (Kaizuka, Japan).

Liver total lipids were extracted using by Bligh and Dyer
(37) method and then dissolved in 2-propanol. Following
the manufacturer’s instructions, liver TG content was then
determined using the Triglyceride E-Test Wako (Fujifilm Wako
Pure Chemical Co.). The liver PL and cholesterol contents were
measured using the same methods described in “Lipid Analysis
of the Experimental Oils and Diets” section. The liver BA
composition was analyzed using GC-mass spectrometry (MS), as
described in our previous report (29).

The fecal moisture content was measured by freeze-drying
(FDU-1200; Tokyo Rikakikai Co. Ltd., Tokyo, Japan). The fecal
neutral sterols, including cholesterol and coprostanol, were
measured by GC using the same methods described in “Lipid
Analysis of the Experimental Oils and Diets” section (31).
Following the manufacturer’s instructions, the fecal total bile acid
(BA) content was analyzed using the Total Bile Acids Test Wako
(FujifilmWako Pure Chemical Co.). The fecal total sterol content
was sum of neutral sterol and total BA contents. The fecal BA
composition was measured by GC-MS using the same methods
as described above (29). Feces collected on the 27 and 28 days
were used to measure water and neutral sterols contents, and BA
composition and total BA content, respectively.

mRNA Expression Analysis
RNA isolation and cDNA synthesis of the liver, jejunum, and
ileum were conducted using the TRIzol R© reagent (Thermo
Fisher Scientific Inc., Waltham, MA, USA) and GoScriptTM

Reverse Transcription System (Promega Co., Madison, WI,
USA), respectively. In addition, the mRNA expression levels were
analyzed in duplicate by a Thermal Cycler Dice R© Real Time
System (Takara Bio Inc., Kusatsu, Japan) and GoTaq R© qPCR
MasterMix (Promega Co.). The expression levels of the following
genes were measured; adenosine tri-phosphate-binding cassette
(Abc) a1, Abcg5, Abcg8, acetyl-Coenzyme A acetyltransferase 1
(Acat1), cytochrome P450 family 2 subfamily c polypeptide 70
(Cyp2c70), cytochrome P450 family 7 subfamily a polypeptide 1
(Cyp7a1), cytochrome P450 family 7 subfamily b polypeptide 1
(Cyp7b1), cytochrome P450 family 8 subfamily b polypeptide 1
(Cyp8b1), cytochrome P450 family 27 subfamily a polypeptide
1 (Cyp27a1), fibroblast growth factor 15 (Fgf15), fibroblast
growth factor receptor 4 (Fgfr4), farnesoid X receptor (Fxr), 3-
hydroxy-3-methylglutaryl coenzyme A reductase (Hmgcr), ileal
bile acid transporter (Ibat), low density lipoprotein receptor
(Ldlr), liver receptor homolog 1 (Lrh1), liver X receptor (Lxr),
niemann-pick C1 like 1 (Npc1l1), small heterodimer partner
1 (Shp1), scavenger receptor class B type 1 (Srb1), sterol
regulatory element binding factor 2 (Srebf2), and glyceraldehyde
3-phosphate dehydrogenase (Gapdh). The primer sequence was
designed using Primer3Plus (http://primer3plus.com/), and are
listed in Supplementary Table 2. The mRNA expression levels
were normalized to the Gapdh levels and expressed as the fold-
change in mRNA expression relative to the SOY-TG group.

Western Blotting Analysis
The liver tissue was homogenized with a bead beater-
type homogenizer in 10 volumes of 3mM Tris-hydrogen
chloride buffer (pH 7.4) containing 0.25M sucrose, 1mM
ethylenediaminetetraacetic acid, and the protease inhibitor
cocktail (Merck KGaA). After centrifugation (500 × g at 4◦C
for 10min), the supernatant was used for western blotting
analyses of CYP7A1 and GAPDH. First, the total protein content
was determined using the protein assay BCA kit (Nacalai
Tesque, Inc.). After the total protein (liver 5mg of protein/lane)
was separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (38), the separated proteins were transferred
to a polyvinylidene fluoride membrane. Then, CYP7A1 and
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GAPDH expression levels were detected using a specific
primary antibody (cat. no. sc-518007 and sc-32233; Santa Cruz
Biotechnology Inc., Dellas, TX, USA), a horseradish peroxidase-
conjugated secondary antibody (cat no. sc-516102, Santa Cruz
Biotechnology Inc.), and chemiluminescent substrate solutions
(ATTO Corporation, Tokyo, Japan), and detection of the band
with ImageQuant LAS 500 (Cytiva, Tokyo, Japan) according to
the manufacturer’s instructions. The relative densities of each
band were quantitatively determined using ImageQuant TL
software (Cytiva) and normalized to GAPDH.

Statistical Analysis
The data are expressed as the mean± standard error of the mean
(SEM) and assessed by one-way analysis of variance. And then
Tukey’s multiple comparison test was conducted to determine
the differences between multiple groups (p < 0.05). These
statistical tests were performed using statistical program package
the GraphPad Prism8 software for Mac (GraphPad Software, San
Diego, CA, USA).

RESULTS

Experimental Oils Composition
The lipid compositions of the experimental oils are listed in
Table 1. SCO-TG and SCO-PL contained both 77.0 mg/g of
EPA, 2.8 and 2.9 mg/g of docosapentaenoic acid, and 62.3 and
62.1 mg/g of DHA as n-3 PUFA, respectively. On the other
hand, SOY-TG and SOY-PL contained 63.3 and 34.6 mg/g of
α-linolenic acid (C18:3n-3) as n-3 PUFA, respectively. Among
the experimental oils, only SCO-PL contained 0.5 mg/g of
cholesterol. In addition, SOY-PL and SCO-PL contained 828 and
889 mg/g of PL, respectively.

The PL class composition and subclass composition of SOY-
PL and SCO-PL are listed in Table 2. The PL class composition
of SOY-PL was 36.6 wt% of PtdCho, 30.8 wt% of PtdEtn, 20.5
wt% of PtdIns, and 6.3 wt% of PtdOH, and that of SCO-PL was
63.4 wt% of PtdCho, 21.1 wt% of PtdEtn, and 8.7 wt% of CAEP.
The GPL subclass composition of SOY-PL was 99.4 mol% of
diacyl-type and 0.6 mol% of alkyl-acyl type, and that of SCO-PL
was 89.9 mol% of diacyl type, 6.4 mol% of Pls, and 3.7 mol% of
alkyl-acyl type.

The main FA compositions of the experimental diets are
shown in Table 3. FA contained in all diets was mainly composed
of palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n-
9), linoleic acid (C18:2n-6), and α-linolenic acid (C18:3n-3). The
SCO-TG and SCO-PL diets contained almost the same amounts
of EPA and DHA.

Growth Parameters and Relative Organ
Weights
Growth parameters during the feeding period of 28 days and
relative organ weights are shown in Table 4. There were no
significant differences in the initial BW, final BW, BW gain, and
food intake among the groups. However, the SCO-PL group was
significantly lower the relative liver weight than the SOY-TG
group. The relative WAT (epididymal, mesenteric, perirenal, and

TABLE 1 | Lipid profile of the experimental oils.

Experimental oils

SOY-TG SOY-PL SCO-TG SCO-PL Lard

Fatty acid composition (mg/g)

C14:0 0.6 0.4 32.7 5.4 15.0

C16:0 99.4 104.8 80.1 41.7 230.4

C16:1n-7 0.8 0.6 6.0 6.9 27.2

C18:0 37.4 22.5 24.2 27.2 125.8

C18:1n-9 229.5 46.7 527.5 5.5 413.6

C18:1n-7 12.5 7.0 15.2 12.5 29.1

C18:2n-6 512.8 328.6 61.9 N.D. 64.8

C18:3n-3 63.3 34.6 4.9 N.D. 3.2

C20:1n-9 0.5 N.D. 6.0 16.3 6.4

C20:4n-6 N.D. N.D. 4.5 19.6 N.D.

C20:5n-3 (EPA) N.D. N.D. 77.0 77.0 N.D.

C22:5n-3 N.D. N.D. 2.8 2.9 N.D.

C22:6n-3 (DHA) N.D. N.D. 62.3 62.1 N.D.

Others 8.4 7.9 43.0 24.7 12.5

PL and cholesterol contents (mg/g)

PL (mg/g) N.D. 828 N.D. 888 N.D.

Cholesterol (mg/g) N.D. N.D. N.D. 0.5 N.D.

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; N.D., not detected; PL,

phospholipids; SCO-PL, scallop oil’s phospholipids fraction; SCO-TG, scallop oil’s

triglyceride fraction; SOY-PL, soybean oil’s phospholipids fraction; SOY-TG, soybean oil.

TABLE 2 | Phospholipids class and subclass composition of the experimental oils.

Experimental oils

SOY-PL SCO-PL

PL class composition (wt%)

PtdCho 36.6 63.4

PtdEtn 30.8 21.1

PtdIns 20.5 N.D.

PtdOH 6.3 N.D.

CAEP N.D. 8.7

Others 5.9 6.7

GPL subclass composition (mol%)

Diacyl type 99.4 89.9

Pls N.D. 6.4

Alkyl-acyl type 0.6 3.7

CAEP, ceramide aminoethyl phosphate; GPL, glycerophospholipids; N.D., not

detected; PtdCho, phosphatidylcholine; PtdEtn, phosphatidylethanolamine;

PtdIns, phosphatidylinositol; PtdOH, phosphatidic acid; PL, phospholipids; Pls,

plasmalogen; SCO-PL, scallop oil’s phospholipids fraction; SOY-PL, soybean oil’s

phospholipids fraction.

inguinal WAT) weights were not significantly different among
the groups.

Serum and Liver Lipid Contents
The serum and liver lipid contents are shown in Table 5. The
SCO-PL groupwas significantly lower serumTG, PL, andHDL-C
contents than the SOY-PL group. Mice fed the SCO-PL diet had
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TABLE 3 | Main fatty acid composition of the experimental diets.

Experimental groups

SOY-TG SOY-PL SCO-TG SCO-PL

mg/g

C16:0 58.6 58.8 58.0 56.7

C18:0 30.7 30.1 30.2 30.3

C18:1n-9 109.4 102.7 119.4 101.8

C18:2n-6 55.3 48.6 40.1 38.0

C18:3n-3 5.8 4.7 3.8 3.6

C20:5n-3 (EPA) N.D. N.D. 2.6 2.6

C22:6n-3 (DHA) N.D. N.D. 2.1 2.1

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; N.D., not detected; SCO-PL,

scallop oil’s phospholipids fraction; SCO-TG, scallop oil’s triglyceride fraction; SOY-PL,

soybean oil’s phospholipids fraction; SOY-TG, soybean oil.

TABLE 4 | Growth parameters and relative organ weights.

Experimental groups

SOY-TG SOY-PL SCO-TG SCO-PL

Growth parameters

Initial BW (g) 19.9 ± 0.4 19.9 ± 0.3 19.9 ± 0.3 20.0 ± 0.2

Final BW (g) 23.8 ± 0.5 24.5 ± 0.5 24.0 ± 0.4 23.1 ± 0.4

BW gain (g/day) 0.14 ± 0.02 0.17 ± 0.01 0.15 ± 0.01 0.11 ± 0.02

Food intake (g/day) 2.3 ± 0.1 2.2 ± 0.1 2.2 ± 0.0 2.3 ± 0.0

Relative organ weight (g/100g BW)

Liver 4.54 ± 0.23b 4.42 ± 0.10ab 4.49 ± 0.11ab 3.76 ± 0.26a

Epididymal WAT 3.01 ± 0.31 3.17 ± 0.22 3.35 ± 0.17 2.84 ± 0.22

Mesenteric WAT 1.32 ± 0.08 1.37 ± 0.04 1.29 ± 0.06 1.30 ± 0.07

Perirenal WAT 0.97 ± 0.15 1.00 ± 0.07 0.92 ± 0.10 0.64 ± 0.10

Inguinal WAT 1.34 ± 0.14 1.44 ± 0.08 1.56 ± 0.12 1.21 ± 0.11

Data represent the mean ± SEM (n = 8). Values in the same row not sharing a common

superscript are significantly different (p < 0.05, Tukey’s multiple comparison test).

BW, body weight; SCO-PL, scallop oil’s phospholipids fraction; SCO-TG, scallop oil’s

triglyceride fraction; SOY-PL, soybean oil’s phospholipids fraction; SOY-TG, soybean oil;

WAT, white adipose tissue.

significantly reduced serum total cholesterol content compared
to mice fed the SOY-TG and SOY-PL diets. In addition, the
SOY-TG group was significantly higher the serum non-HDL-
C content than the other groups. The SOY-PL and SCO-PL
diets significantly decreased the liver TG content compared
to the SOY-TG diet. Compared to the SOY-TG and SCO-
TG groups, the SCO-PL group had significantly lower liver
cholesterol content.

Liver BA content is shown in Figure 1A. The SCO-PL group
was significantly higher the liver β-muricholic acid (MCA)
content than the SOY-TG group. In contrast, no significant
differences were observed in the other BA contents in the liver
among the groups.

Fecal Moisture and Sterol Contents
The fecal moisture, neutral sterol, total BA, and total sterol
contents are shown in Table 6. The fecal moisture content was
not significantly different among the groups. Fecal neutral sterol

TABLE 5 | Lipid contents in the serum and liver.

Experimental groups

SOY-TG SOY-PL SCO-TG SCO-PL

Serum (mg/dL)

TG 27 ±4ab 55 ± 10b 32 ± 4ab 25 ± 8a

PL 216 ± 19ab 274 ± 7b 220 ± 8ab 182 ± 25a

Total cholesterol 142 ± 9b 144 ± 4b 130 ± 5ab 110 ± 13a

HDL-C 90 ± 12ab 119 ± 3b 101 ± 3ab 86 ± 10a

Non-HDL-C 52 ± 13b 26 ± 2a 29 ± 2a 24 ± 3a

Liver (mg/g)

TG 74.7 ± 6.9b 49.2 ± 4.2a 58.1 ± 6.4ab 46.9 ± 7.8a

PL 18.4 ± 1.3 19.5± 0.5 21.3 ± 0.5 21.3 ± 1.1

Cholesterol 20.4 ± 3.0bc 10.8 ± 1.2ab 25.3 ± 4.2c 9.0 ± 1.2a

Data represent the mean ± SEM (n = 8). Values in the same row not sharing a common

superscript are significantly different (p < 0.05, Tukey’s multiple comparison test).

HDL-C, high-density lipoprotein cholesterol; Non-HDL-C, non-high-density lipoprotein

cholesterol; PL, phospholipids; SCO-PL, scallop oil’s phospholipids fraction; SCO-TG,

scallop oil’s triglyceride fraction; SOY-PL, soybean oil’s phospholipids fraction; SOY-TG,

soybean oil; TG, triglyceride.

was significantly increased in the SOY-PL, SCO-TG, and SCO-
PL groups compared with the SOY-TG group, in which the
cholesterol content was significantly increased in the SCO-TG
and SCO-PL groups compared with the SOY-TG and SOY-PL
groups, and the coprostanol content was significantly increased
in the SOY-PL group compared with the other groups. The SCO-
PL group was significantly higher fecal total BA content than the
SOY-TG and SCO-TG groups. In addition, the SOY-PL, SCO-
TG, and SCO-PL diets increased the fecal total sterol content
compared to the SOY-TG diet.

Fecal BA content is shown in Figure 1B. The SCO-PL group
was significantly higher the fecal chenodeoxycholic acid (CDCA)
content than the SOY-TG groups and the fecal hyodeoxycholic
acid (HDCA) content than the SOY-TG and SCO-TG groups.
The SOY-TG group was significantly lower fecal αMCA and
βMCA contents than the other groups. There were no significant
differences in the fecal CA, ωMCA, DCA, LCA, and UDCA
among the groups.

Relative mRNA and Protein Expression
Levels of the Liver, Jejunum, and Ileum
The relative mRNA expression levels in the liver (Figure 2A),
jejunum (Figure 2B), and ileum (Figure 2C) related to
cholesterol metabolism are shown in Figure 2. The SCO-PL
diet significantly increased the liver expression levels of Cyp7a1,
Cyp7b1, and Fxr compared to the other diets, Cyp27b1 compared
to the SOY-TG diet, and Cyp8b1 compared to the SOY-TG and
SOY-PL diets. Liver Abcg5 and Abcg8 expression levels in the
SOY-PL group were significantly decreased compared to those
in the other groups. In addition, the SOY-PL diet significantly
increased the liver Cyp2c70 expression level compared to the
SOY-TG group. The SCO-PL diet significantly decreased the
ileum Fgf15, Fxr, and Shp1 expression levels compared to
the SOY-TG diet. In contrast, no significant differences were
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FIGURE 1 | Bile acids composition in the liver (A) and feces (B). Data represent the mean ± SEM (n = 8). Different letters indicate significantly different at p < 0.05

(Tukey’s multiple comparison test). CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; HDCA, hyodeoxycholic acid; LCA, lithocholic acid; αMCA,

α-muricholic acid; βMCA, β-muricholic acid; ωMCA, ω-muricholic acid; SCO-PL, scallop oil’s phospholipids fraction; SCO-TG, scallop oil’s triglyceride fraction;

SOY-PL, soybean oil’s phospholipids fraction; SOY-TG, soybean oil; UDCA, ursodeoxycholic acid.

TABLE 6 | Moisture and sterol contents excretions of the feces.

Experimental groups

SOY-TG SOY-PL SCO-TG SCO-PL

Moisture (wt%) 24.5 ± 1.4 23.4 ± 2.4 21.1 ± 1.6 22.6 ± 3.8

Neutral sterol (mg/day)1 5.9 ± 0.5a 12.4 ± 0.3b 14.4 ± 0.7b 13.5 ± 0.5b

Cholesterol 5.6 ± 0.4a 7.0 ± 0.7a 13.8 ± 0.7b 13.3 ± 0.5b

Coprostanol 0.3 ± 0.1a 5.4 ± 0.8b 0.6 ± 0.1a 0.2 ± 0.0a

Total BA (mg/day) 1.5 ± 0.1a 1.6 ± 0.1ab 1.5 ± 0.1a 1.9 ± 0.1b

Total sterol (mg/day)2 7.4 ± 0.5a 13.9 ± 0.3b 15.8 ± 0.6b 15.4 ± 0.5b

Data represent the mean ± SEM (n = 8). Values in the same row not sharing a common

superscript are significantly different (p < 0.05, Tukey’s multiple comparison test).
1Neutral sterol is the sum of cholesterol and coprostanol.
2Total sterol is the sum of neutral sterols and total bile acids.

BA, bile acids; SCO-PL, scallop oil’s phospholipids fraction; SCO-TG, scallop oil’s

triglyceride fraction; SOY-PL, soybean oil’s phospholipids fraction; SOY-TG, soybean oil.

observed in jejunum Abcg5, Abcg 8, and Npc1l1 expression levels
among the groups.

Relative liver CYP7A1 expression level is shown in Figure 3.
Liver CYP7A1, which encodes the rate-limiting enzyme in the
classical BA biosynthetic pathway, expression level in the SCO-
PL group was significantly higher than that in the SOY-TG and
SCO-TG groups.

DISCUSSION

Our previous study demonstrated that SCO intake decreased the
serum and liver cholesterol content compared with n-3 PUFA-
containing oils, including tuna oil, menhaden oil, and krill oil
(28, 29). However, it is unclear whether the FA composition or PL
of SCO is responsible for this cholesterol-lowering effect. In this
study, the serum and liver cholesterol contents decreased in the

SCO-PL group compared to those in the SOY-TG group, whereas
the SCO-TG diet, which was prepared with almost the same FA
content as the SCO-PL diet, did not decrease the cholesterol
content (Table 5). This result indicated that the decrease in serum
and liver cholesterol contents observed in the case of SCO intake
is due to the effect of SCO-PL.

Several mechanisms could explain the effect of SCO-PL intake
on lowering liver cholesterol content. Enhancement of fecal sterol
excretion is the first possibility (21). The SOY-PL and SCO-
PL diets significantly increased fecal neutral sterol excretion
compared to the SOY-TG diet (Table 6). GPL, including PtdCho
and PtdEtn, intake is known to reduce cholesterol absorption
by inhibiting the hydrolysis of micellar PL (39, 40). CerPCho
and sphingoid base formed hydrogen bonds with the hydroxyl
group of cholesterol and inhibited the absorption of cholesterol
(14, 41–43). No studies have reported the inhibition of cholesterol
absorption by CAEP, a sphingolipid possessing a carbon-
phosphorus bond, and is often found in bivalves. However,
CAEP is hydrolyzed to sphingoid base during the digestive
process and can interfere with cholesterol absorption (44). In
this study, SOY-PL contained PtdCho and PtdEtn, and SCO-PL
contained PtdCho, PtdEtn, and CAEP. These presences could
have enhanced fecal neutral sterol excretion. In addition, fecal
coprostanol excretion in the SOY-PL group was significantly
increased compared to that in the other groups. Coprostanol is
produced by hydrogenating cholesterol into intestinal bacteria,
Bacteroides, Clostridium, and Bifidobacterium genera, and it is
excreted into the feces with little absorption (45). Thus, SOY-PL
intake might have increased fecal neutral sterol excretion due to
the enhancement of coprostanol-producing bacteria. In contrast,
the SCO-TG diet, which did not contain PL, increased neutral
sterol excretion compared to the SOY-TG diet. Alvaro et al. (46)
have shown that dietary n-3 PUFA changes the expression levels
of the jejunum cholesterol transporters, Abcg5 and 8 and Npc1l1,
expression levels, and that it could lower cholesterol contents
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FIGURE 2 | The mRNA expression levels of genes involved in cholesterol metabolism in the liver (A) and the mucosa of jejunum (B) and ileum (C). Data represent the

mean ± SEM (n = 8). Different letters indicate significantly different at p < 0.05 (Tukey’s multiple comparison test). The mRNA expression levels were determined using

the glyceraldehyde 3-phosphate dehydrogenase (Gapdh) expression levels for normalization. The mRNA expression levels of genes are shown relative to those

determined from the livers of mice in the control group (set at 1). The abbreviation names of these genes are listed in Supplementary Table 2. SCO-PL, scallop oil’s

phospholipids fraction; SCO-TG, scallop oil’s triglyceride fraction; SOY-PL, soybean oil’s phospholipids fraction; SOY-TG, soybean oil.

in the body. However, there were no differences in jejunum
Abcg5 and 8 and Npc1l1 expression levels among the groups
(Figure 2B). These cholesterol transporter gene expression levels
may be affected by a high-fat diet containing cholesterol and
cholic acid, and further research is needed to determine why
SCO-TG intake increases fecal neutral sterol excretion. From
these results, the enhancement of fecal sterol excretion by SCO-
PL intake could cause serum and liver cholesterol-lowering
effects, although the SOY-PL and SCO-TG groups also increased
fecal sterol excretion.

The second possible cause of lowering cholesterol content
is an alteration in liver cholesterol metabolism. The SCO-PL
diet increased the mRNA expression levels of Cyp7b1, Cyp8b1,
and Cyp27a1 in the BA biosynthetic pathway (Figure 2A).
Furthermore, liver CYP7A1 at mRNA and protein expression
levels in the SCO-PL group was significantly increased compared
to that in the other groups (Figure 3). Li et al. (47) reported that
overexpression of CYP7A1 promoted hepatic BA synthesis and
secretion into bile in mice. Moreover, Pandak et al. (48) showed
that the overexpression of CYP7A1 in hepatocytes increased
BA synthesis and lowered cholesterol content. Our previous
study showed that SCO intake increases the mRNA expression
levels of liver Cyp7a1 (29). In this study, SCO-TG intake did
not increase liver CYP7A1 expression; therefore, the increase in
Cyp7a1 expression observed SCO intake was due to the effect
of SCO-PL.

Several pathways are known to control liver CYP7A1
expression, including the FXR/SHP1 pathway (49, 50), mitogen-
activated protein kinase-c-Jun N-terminal kinase (JNK) pathway

FIGURE 3 | Liver CYP7A1 protein expression level. Data represent the mean

± SEM (n = 8). Different letters indicate significantly different at p < 0.05

(Tukey’s multiple comparison test). The protein expression level was

determined using the GAPDH expression level for normalization. CYP7A1

protein expression levels are shown relative to those determined from the livers

of mice in the SOY-TG group (set at 1). The bands of representative 4

sample/group are shown in Supplementary Figure 1. CYP7A1, cytochrome

P450 family 7 subfamily a polypeptide 1; GAPDH, glyceraldehyde

3-phosphate dehydrogenase; SCO-PL, scallop oil’s phospholipids fraction;

SCO-TG, scallop oil’s triglyceride fraction; SOY-PL, soybean oil’s

phospholipids fraction; SOY-TG, soybean oil.

(51, 52), and the pregnane X receptor pathway (53). In addition,
the ileum FXR is involved in cholesterolmetabolism; for example,
it regulates ileum FGF15 and SHP1 (54). It has been reported that
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ileum FGF15 expression is involved in liver CYP7A1 expression
(55, 56). In detail, ileum FGF15 is transported from the portal
vein to the liver and suppresses the transcription of CYP7A1
by phosphorylating JNK via FGFR4. Sayin et al. (57) have
demonstrated a negative correlation between the expression
levels of ileum Fgf15 and liver Cyp7a1 in mice. In this study,
the expression levels of ileum Fgf15 and Shp1 were lower in the
SCO-PL group (Figure 2C), and these reductions could be due
to a decrease in the ileum Fxr expression level. Moreover, there
was a negative correlation between ileum Fgf15 and liver Cyp7a1
expression levels (r=−0.42, p= 0.02, Supplementary Figure 2).
These results showed that the enhancement of liver CYP7A1
expression in the SCO-PL group was partly due to the regulation
of the ileum Fgf15 expression level. Several BA species are
recognized as regulators of cholesterol metabolism through
ligand-activated transcription factors of FXR (58). For example,
taurine-conjugated βMCA (TβMCA) has been reported to be an
antagonist of ileum FXR (59). In mice, BA is usually taurine-
conjugated in the liver (60, 61). In the present study, the SCO-
PL diet significantly increased the liver and feces βMCA content
(Figure 1B) and tended to increase the expression level of liver
Cyp2c70, which synthesizes MCA from CDCA compared with
the SOY-TG diet (p= 0.07, Figure 2A). Although the gallbladder
BA composition could not be analyzed in this study, it has been
reported that BA composition in the gallbladder is similar to
that in the liver (60). Thus, the gallbladder and ileum βMCA
content in the SCO-PL group might be higher than that in the
SOY-TG group. From these results, the increase in liver CYP7A1
expression level by dietary SCO-PL in part through the reduction
of the ileum expression level of Fgf15 due to the increase in ileum
TβMCA, which is an antagonist of FXR.

In this study, the cholesterol-lowering effect was observed
in SCO-PL but not in SCO-TG, suggesting that the substances
in SCO-PL have cholesterol-lowering effects. Both SOY-PL and
SCO-PL intake increased fecal sterol excretion, but SOY-PL
intake did not decrease serum and liver cholesterol contents.
Therefore, the promotion of liver CYP7A1 expression observed
only in the SCO-PL group could be highly associated with the
cholesterol-lowering effect. SCO-PL consisted of 6.4 mol% of
Pls, which was not present in SOY-PL (Table 2). Ding et al.
(61) reported that a diet containing 1.0 wt% of EPA-enriched
Pls improved cholesterol metabolism by enhancing the serum
and gallbladder TβMCA contents. However, the SCO-PL diet
contained 0.19 wt% Pls, and the EPA-bound form was even
smaller in this study. Therefore, it is unlikely that Pls contained in
SCO-PL affected the increase in liver CYP7A1 expression inmice.
In addition, liver CYP7A1 expression levels were not enhanced
by dietary SOY-PL, which contained PtdCho and PtdEtn. From
these results, it is highly possible that the bioactive substance
responsible for the enhancement of CYP7A1 expression is CAEP
and alkyl-acyl type GPL, which are unique to SCO-PL. The
upregulation of liver CYP7A1 expression by the intake of these
substances is not yet known. In the future, the effects of CAEP
and alkyl-acyl type GPL on the upregulation of liver CYP7A1
expression should be clarified.

We acknowledge there is a limitation in this study. The
experimental group did not contain a no oil supplemented

high-fat diet [22% (w/w) lard, 5% (w/w) SOY-TG, 0.5%
(w/w) cholesterol, and 0.1% (w/w) cholic acid]. Since we are
considering the application of SCO-PL as an ingredient for
dietary supplements, it was necessary to compare the no oil
supplemented high-fat diet group as a control. However, we
concluded that the no oil supplemented high-fat diet was
not appropriate as a control because the calorie ratios of
carbohydrate, protein, and fat were different between the no
oil supplemented high-fat and SCO-PL diets. In the future, it
is necessary to clarify the cholesterol-lowering effect of SCO-
PL in more detail by comparing it with a no oil supplemented
high-fat diet.

CONCLUSION

This study evaluated the effects of dietary SOY-TG, SOY-PL,
SCO-TG, and SCO-PL on cholesterol metabolism in C57BL/6J
mice fed a high-fat diet containing cholesterol. We found that
SCO-PL intake lowered the serum and liver cholesterol contents
compared to SOY-TG intake, but this effect was not observed
with the intake of SOY-PL and SCO-TG. This effect was partly
mediated by the enhancement of liver CYP7A1 expression levels
and fecal total sterol excretion. In addition, the increase in liver
CYP7A1 expression level by dietary SCO-PL was mediated partly
by the reduction of the ileum Fgf15 expression level. Thus, this
study indicates that SCO-PL may be used as a health-promoting
component to reduce the content of cholesterol in the body.
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