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Garlic (Allium sativum) is an important vegetable crop that is widely used in cooking and

medicine. The greening phenomenon of garlic severely decreases the quality of garlic and

hinders garlic processing. To study the mechanism of garlic greening, comprehensive

full-length transcript sets were constructed. We detected the differences in greening

between Pizhou (PZ) garlic and Laiwu (LW) garlic that were both stored at −2.5◦C

and protected from light at the same time. The results showed that 60,087 unigenes

were respectively annotated to the NR, KEGG, GO, Pfam, eggNOG and Swiss Prot

databases, and a total of 30,082 unigenes were annotated. The analysis of differential

genes and differential proteins showed that PZ garlic and LW garlic had 923 differentially

expressed genes (DEGs), of which 529 genes were up regulated and 394 genes were

downregulated. Through KEGG and GO enrichment analysis, it was found that the

most significant way of enriching DEGs was the phenylpropane metabolic pathway.

Proteomics analysis found that there were 188 differentially expressed proteins (DAPs),

162 up-regulated proteins, and 26 down-regulated proteins between PZ garlic and LW

garlic. The content of 10 proteins related to phenylpropanoid biosynthesis in PZ garlic was

significantly higher than that of LW garlic. This study explored the mechanisms of garlic

greening at a molecular level and further discovered that the formation of garlic green

pigment was affected significantly by the phenylpropanoid metabolic pathway. This work

provided a theoretical basis for the maintenance of garlic quality during garlic processing

and the future development of the garlic processing industries.

Keywords: garlic, green discoloration, transcriptome, genome expression, phenylpropane pathway

INTRODUCTION

Garlic is a popular condiment in the world. It is not only rich in nutrients, but also has many
pharmacological effects, such as anti-bacterial, anti-inflammatory, anti-oxidation, anti-tumor,
hypoglycemic, lipid-lowering and immune regulation (1–3). When it is processed into garlic
products, such as granules, powder, minced paste, oleoresin, and puree, garlic is easy to turn green,
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which despite that it being necessary for the traditional Chinese
food “Laba garlic”, it seriously affects the appearance and quality
of products, limits the commercial use of products, and reduces
the economic value of garlic (4, 5).

The mechanism of garlic green discoloration is always a
research hotspot that can be divided into four steps. The first
step is a very fast enzymatic reaction in which S-(1-propenyl)-
L-cysteine sulfoxide (1-PeCSO), the precursor of flavor, produces
water-soluble and volatile 1-propenyl containing thiosulfinate or
di(1-propenyl) thiosulfinate under the catalysis of alliinase (6). In
the second step, di(1-propenyl) thiosulfinate reacts very slowly
with amino compounds (amino acids, peptides and proteins) to
form pigment precursor (PP)-pyrrolyl amino acids (7). The third
step is the conversion of S-(2-propenyl)-L-cysteine sulfoxide (2-
PeCSO) into di(2-propenyl) thiosulfinate by alliinase. Finally,
blue pigment is formed by the reaction of thiosulfinate and PP.
The unstable blue pigment will be slowly decomposed into yellow
pigment. The reaction of pyruvic acid with PP [2-(1H-pyrrolyl)
carboxylic acids] might serve as another pathway for forming the
yellow pigment (8), which is mixed with the undecomposed blue
pigment to form the green pigment as the fourth step (5).

The side chain of 2-(1H-pyrroliyl) carboxylic acid plays a
critical role in garlic greening. The hydrophilic and hydrophobic
chains of 2-(1H-pyrrole) carboxylic acid have different greening
effect on garlic (9, 10). In addition, low temperature and pH
have important effects on garlic green pigment. Low temperature
storage is conducive to breaking dormancy of garlic bulbs,
leading to the accumulation of garlic precursor substances (1-
PECSO), which is an important compound participated in
discoloration (6, 7). The optimal pH value for garlic greening
is about 5.5. But the formation of blue pigment leads to the
change of pH value, and the absorbance at 590 nm is inversely
proportional to the change of pH value (11). Zhao et al. (12)
found that the decomposition of blue pigments was inhibited by
the acidic environment (pH 5.0). The alkaline conditions could
accelerate the decomposition of blue pigments in garlic compared
with garlic homogenate at pH 6.5.

High-throughput sequencing (RNA-seq) is widely used
in the study of transcriptional levels. It can detect the
transcriptional levels of genes in different tissues under different
conditions, and observe the changes and responses of genes
to different abiotic stresses. Transcriptome analysis is also
applied to research marker development, gene transcription,
mining of functional genes, gene structure, and evolution.
At present, the transcriptome of garlic has been sequenced
and reassembled (13). Kong et al. (14) studied the long-term
adaptation response to salt stress during garlic growth and
found that brassinosteroid might regulate lignin biosynthesis
at the transcriptional level. Rukmankesh et al. (15) studied
the transcriptomics of snow mountain garlic, screened out
candidate genes related to organic sulfur metabolism in garlic
bulbs, and analyzed the highly expressed genes involved in
photosynthesis in garlic leaves. Li et al. (16) studied the
effect of low temperature treatment on the green discoloration
of garlic at the transcription level. Through the analysis of
DEGs, they proved that the alliinase coding gene, γ-glutamyl
transpeptidase (GGT) coding gene, and δ-aminolevulinic acid

dehydratase (ALAD) coding gene might be involved in
garlic greening.

At present, there are few reports on the cause of garlic
greening at the level of gene and protein. PZ and LW garlic are
both large with white skin and crispmeat but their spicy intensity,
dormancy, and storage resistance are all different (17, 18). This
study explored the potential mechanism of green discoloration
of different garlic varieties. The genome-wide and transcriptome
analysis was performed, and the differential transcription and
expression of genes and proteins in PZ garlic and LW garlic
were obtained. Through enrichment analysis, the garlic green
change was located in the phenylpropane metabolic pathway.
This study provided a new perspective on the mechanism of
green discoloration of garlic.

MATERIALS AND METHODS

Materials
The raw garlic was top-grade white produced from Laiwu,
Shandong Province, and Pizhou, Jiangsu Province of China.
The PZ garlic was pizhoubaisuan and the LW garlic was
Baipizajiaosuan. The garlic was big with white skin, crispy flesh,
moderate spicy taste, and neat shape, which made it resistant to
transportation and stored at −2.5◦C in the dark for the same
time. Garlic had no mechanical damage and biological disease.

Cell lysis buffer (P0013), sodium pyrophosphate, EDTA,
β-glycerophosphate, phosphate-buffered saline (PBS), Folin-
Ciocalteu, methanol, acetic acid, and H3PO4-KH2PO4 buffer
(HPLC) were ordered from Beijing Solarbio Technology Co., Ltd
(China). Formic acid and acetonitrile were of chromatography
grade. All other reagents used were of analytical grade.

Extraction of Garlic Green Pigment
Mixed PZ and LW garlic cloves (20 g) were utilized to determine
the extent of discoloration, and the potential spectrometric
interference was minimized by removing the green sprouts.
Then, 5ml of 2% citric acid solution was thoroughly mixed with
the minced sprout-free garlic samples to incubate for 30min at
80◦C. Afterward, different volumes of 95% ethanol was added
to the resultant mixture after lowering to room temperature,
succeeded by 24 h-incubation at 4◦C (19). The supernatant was
scanned for the full spectrum.

Plant Treatments and RNA Isolation
Pizhou garlic and LW garlic were stored at −2.5◦C in dark
condition for 30 days. Three biological replicate samples were
taken from each of the two groups of garlic cloves, followed by
immediate freezing in liquid nitrogen and stored at −80◦C. The
frozen garlic bulb samples stored in a refrigerator at−80◦C were
taken out and crushed, placed in a precooled mortar and ground
with liquid nitrogen. Gene JET Plant RNA Purification Mini Kit
(#K0801) was used to extract total RNA from 50mg tissue of each
sample according to the instructions of the manufacturer. Then,
the extracted RNA was detected by Qubit 2.0 RNAWide Domain
Detection Kit (Invitrogen, USA) and NanoDrop 2000 (Thermo
Fisher Scientific, USA) for precise quantitative detection (20).
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The integrity of RNA was evaluated using an Agilent Bioanalyzer
2100 (Agilent Technologies, USA).

Construction and Sequencing of PacBio
Library
The Iso-Seq library was constructed by mixing the qualified
RNA from all samples in equal quantity. First, SMARTer R© PCR
cDNA Synthesis Kit was used to reverse-transcript the mixed
RNA sample. The KAPA HiFi PCR Kit was used to perform
PCR amplification. The PCR products with the length of.5 to
6.0 kb were selected using BluePippin Size Selection system (Sage
science, USA). Subsequently, the PCR products were used as
template to construct the SMRTbell library with the SMRTbell
template pre Kit 1.0. For each SMRT cell, PacBio Sequel platform
with P6-C4 polymerase was used to sequence a total of 30 ng of
the library.

Analysis of PacBio Iso-Seq Reads
We used the IsoSeq v3 software to analyze raw polymerase
reads. First, the post-filter polymerase reads were obtained by
taking out the low-quality data and adapters. Then, the circular
consensus sequence (reads of insert, ROI) was created from
the subread BAM files (21). According to 3

′
or 5

′
primer, we

further classified the transcript sequences of full-length (FL) and
non-full-length (nFL) from all the ROIs, and poly A tails were
simultaneously observed. The software of CD-Hit was used to
remove the redundancy of FLs with parameter-c.9 (22). Finally,
the highly accurate nonchimeric full-length genes (isoform level)
were created for the subsequent analysis after correction.

Transcriptomic Analysis and Function
Annotation
All unigenes were annotated from public databases, including the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database,
NCBI non-redundant protein sequences (NR) database, Gene
Ontology (GO) database, Non-supervised Orthologous Groups
(eggNOG) database, protein family (Pfam) database, and Swiss-
Prot protein database.

Illumina Library Construction and RNA
Sequencing
The Illumina libraries were constructed using Illumina TruSeq
RNA Library Preparation Kit v2 based on the instructions of the
manufacturer. Agilent 2,100 Bioanalyzer was used to analyze the
quality and quantity of cDNA libraries. The Illumina sequencing
platform (HiSeqTM4000) was used to perform the sample library
sequencing (23).

The FastQC tool (http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/) was used to check the quality of the
sequencing data. The clean reads were generated by performing
Trimmomatic software to remove the adaptor and low-quality
sequences (24). Bowtie2 v2.4.4 software was used to map high
quality reads to reference sequences generated by PacBio (25).

Analysis of Differentially Expressed Genes
The expression value of the Illumina reads of each sample was
calculated using the full-length isoform transcripts obtained by

performing SMRT Iso-Seq analysis as reference sequences via
RSEM with default parameters (26). Gene expression levels were
quantified using the fragments per kilobase of exon per million
mapped fragments (FPKM) (27). The R package DESeq2 was
used to identify the DEGs with the criteria of fold change > 2
and q < 0.05 (28). The top GO package and KOBAS (version
3.0) were used to perform GO and KEGG enrichment analyses,
respectively. And GO categories or pathways with p < 0.05 were
thought to be significantly enriched (29).

Protein Extraction and Quantification
Pizhou and LW garlic samples (60 mixed individuals in each
sample) were used to extract protein with cell lysis buffer (P0013)
containing 20mMTris (pH 7.5), 1%Triton X-100, 150mMNaCl,
and various inhibitors including β-glycerophosphate, EDTA, and
sodium pyrophosphate. The resulting protein was quantified
with label-free quantitation and MaxQuant software was used to
analyze quantitative information of peptides generated by LC-
MS detection to obtain the relative content of a corresponding
protein. Perseus software was used to generate the differentially
abundant proteins (DAPs) (30).

Quantitative Reverse-Transcription
Polymerase Chain Reaction (qRT-PCR)
Validation
To verify the reproducibility and reliability of the RNA-seq
data, we randomly selected 10 up-regulated DEGs in the
phenylpropane biosynthesis pathway (c11315/f1p23/2741,
c116256/f2p5/1450, c174936/f2p3/1715, c261046/f2p6/2013,
c3369/f1p14/2256, c44043/f1p3/1144, c61149/f1p35/2029,
c70286/f1p12/1308, c86756/f1p3/1001, c88562/f1p10/1325)
from the RNA-seq sequencing results for qRT-PCR verification.
A gDNA eraser (Clontech Laboratories, USA) was used to
remove the DNA in the RNA while the purified RNA was reverse
transcribed using Takara PrimeScript RT Kit, and the cDNA
obtained was used for real-time fluorescence quantification
(qRT-PCR). Gene-specific primers were designed using Primer
Premier 5.0 software (Supplementary Table 1). The qRT-PCR
experiment was performed using Maxima SYBR Green qPCR
Master Mix (Thermo Fisher Scientific) Kit and was completed
on the Applied Biosystems 7500 fast real-time PCR system using
actin as a reference gene (14). The 2−11Ct method was used to
calculate the expression of differential genes, and each treatment
was repeated 3 times (31).

Analysis of Metabolites in Phenylpropane
Pathway
Analysis of Total Polyphenols

The total polyphenols contents of PZ garlic and LW garlic were
measured by the following methods.

Two grams of crushed garlic were added with water for a final
volume of 50ml, mixed well and left to stand for half an hour.
Then, 1ml of supernatant was mixed evenly with 0.5ml Folin-
Ciocalteu reagent. After 5min, 1.5ml of 10% Na2CO3 solution
was added and fixed the volume to 10ml with deionized water.
This mixed solution was then placed in a 75◦C water bath or
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10min and, afterward, allowed to stand at room temperature
for 60min. Afterwards, its absorbance at 765 nm was measured
against a blank reagent using gallic acid as the standard. Each
procedure was repeated three times (32).

Analysis of Phenolic Acids

The following methods were used to measure the total (free and
bound) phenolic acids of PZ garlic and LW garlic.

Seventy-five grams of peeled garlic cloves was homogenized in
a blender with a mixture of 75ml methanol (containing 2 g/L of
butylated hydroxyanisole) and 10% acetic acid (85:15). The garlic
homogenate was ultrasonicated for 30 min. Then, the samples
were alkaline hydrolyzed by adding 50 mL of deionized water
containing 22 mM ethylenediaminetetraacetic acid (EDTA) and
7.5 mL of deionized water containing 2% ascorbic acid and 25ml
of 10M NaOH solution. This mixture was incubated at 30◦C
for 30min. The solution was then adjusted to a pH of 2 with
6M HCl, and the phenolic acids were extracted three times with
150mL of ethyl acetate. The combined extracts were blown dry
and dissolved in 10ml of methanol. Finally, the samples were
filtered and injected into the HPLC. Each procedure was repeated
3 times (33).

The high-performance liquid chromatography with diode
array detector system apparatus (Shimazu, Tokyo, Japan)
coupled with an Agilent C18 column (250mm × 4.6mm, 5µm)
was used to separate the phenolic Acids and measured the
relative contents of phenolic Acids. The mobile phases consisted
of solvent A (0.1% formic acid in water) and solvent B (100%
acetonitrile) at a 1 ml/min flow rate. A gradient elution program
was used as follows: 0–8min, 0–12% B; 8–30min, 12–50% B; 30–
40min, 50–100% B; 40–45min, 100–100% B; 45–55min, 100–
12% B; and 55–60min, 12–12% B. The column temperature was
maintained at 25◦C and the injection volume was 20 µl. The
detection wavelengths were set to be 280 nm.

RESULTS

Green Discoloration of PZ Garlic and LW
Garlic
Two absorbance maxima at 440 and 590 nm were indicated
in the absorption spectrum of a methanol extract with garlic
green pigment in the previous studies (5, 10, 34). We also
monitored the absorbance of crude methanol extracts containing
pigment at different concentrations to support this observation.
The absorbance maxima of green pigment remained at 440
and 590 nm, although the green pigment concentration varied
(Figure 1A) (35). Because our conclusions were consistent with
previous reports, we proceeded to determine the degree of
garlic greening using the absorbance maxima 440 and 590 nm
as indicators.

Pizhou garlic and LW garlic were stored at −2.5◦C in dark
condition for 30 days. Then, storage conditions were adjusted
to 4◦C for 15 days to break dormancy, and green discoloration
difference between PZ garlic and LW garlic were observed. With
the extension of cold treatment time, the absorbance values at 440
and 590 nm of two groups of garlic increased along with their

degree of green change, but the degree of green change of PZ
garlic was always higher than that of LW garlic (Figure 1B).

Transcriptome Assembly and Function
Annotation
In this study, we obtained 60,876 unigenes. Distribution analysis
of length showed that the number of unigenes between 1,001–
1,200 bp was the largest, followed by 1,201–1,400 bp (Figure 2A).
All unigenes were annotated from six databases, and there
were 2,9950, 9,333, 20,069, 27,852, 13,870 and 20,585 unigenes
significantly matched in the databases NR, KEGG, GO, eggNOG,
Pfam and Swiss-Prot, respectively (Figure 2B). In the six
databases, a total of 30,082 unigenes were functionally annotated
to at least one database (Supplementary Table 2). In addition,
a total of 4,960 unigenes were annotated to all databases
(Figure 2B).

DEG Identification, GO Enrichment
Analysis, and KEGG Enrichment Analysis
We used FPKM to normalize gene expression (Figure 3A;
Supplementary Table 3). As shown in Figure 3A, distribution
of unigene expression showed that the expression patterns of
all samples were similar. We performed differential expression
analysis of PZ vs. LW based on FPKM value and unigene
with p < 0.05. An absolute value of log2FC > 1 was
defined as differential expression gene (DEG). A total of
923 DEGs, such as 529 up-regulated DEGs, and 394 down-
regulated DEGs in PZ and LW garlic were observed (Figure 3B;
Supplementary Table 4). KEGG enrichment analysis of DEGs
was performed for further investigating functions, and 264 up-
regulated DEGs were found to be enriched in 91 pathways
and 138 down-regulated DEGs were enriched in 38 pathways
in PZ garlic (Supplementary Table 5). There were 14 and 9
pathways, which were remarkably enriched (p < 0.05), in up
and down DEGs, respectively (Figure 3C). Interestingly, up-
regulated DEGs were remarkably enriched to phenylalanine
metabolism, phenylpropanine biosynthesis, sucrose, and starch
metabolism. In purine metabolism pathway, down-regulated
DEGs were remarkably enriched in protein processing in carbon
metabolism, endoplasmic reticulum, and spliceosome pathways
(Figure 3C; Supplementary Table 5). GO term enrichment
analysis of DEGs indicated that the up-regulated DEGs
identified in this work were remarkably enriched into 143 GO
terms, and downregulated DEGs were significantly enhanced
into 74 GO items (Supplementary Table 6). The top 10 GO
terms of Biological Process were shown in Figure 3D. The
up-regulated DEGs were remarkably enriched in benzene-
containing compound metabolic process, phenylpropanoid
metabolic process, and secondary metabolic process pathways.
The downregulated DEGs were remarkably enhanced in
oxidation-reduction process, oxylipin metabolic process, and
malate dehydrogenase activity pathways (Figure 3D).

Characteristic Analysis
Since phenylpropane metabolism was significantly enhanced
in up-regulated DEGs, we further explored the functions of
DEGs in the pathway (Figure 4A). In Figure 4B, Z-score was

Frontiers in Nutrition | www.frontiersin.org 4 November 2021 | Volume 8 | Article 764133

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Wu et al. Transcriptome in Garlic Greening

FIGURE 1 | Extraction of garlic green pigment. (A) Measuring absorption spectrum of garlic green pigment. Mixed samples of Pizhou (PZ) garlic and Laiwu (LW) garlic

were used for green pigment measurement. 440 nm indicated yellow pigment crests and 590 nm indicated blue pigment crests. (B) Green color change of PZ garlic

and LW garlic. PZ garlic on the left and LW garlic on the right.

FIGURE 2 | Characterization of full-length transcriptome. (A) The distribution of all gene length. (B) Functional annotation of all genes from NR, KEGG, GO, eggNOG,

Pfam and SwissProt databases.

used to show the expression patterns of genes and reflect
the expression trend of genes in different samples (36, 37).
It was found in KEGG enrichment analysis that 22 DEGs
in phenylpropanoid biosynthesis pathway in PZ garlic were
up-regulated compared with LW garlic (Figure 4B; Table 1).
No downregulated differential genes were associated with this
pathway, indicating that it might play an important role in the
greening process of garlic.

In order to study whether the results of transcriptome
analysis affect the changes of protein level, we performed
proteome analysis. Proteome analysis showed that a total of
188 differentially abundant proteins (DAPs) were identified in
comparison of PZ vs LW, among which 162 DAPs were up-
regulated and 26 DAPs were down-regulated. In the DAPs,
there were 10 up-regulated DAPs related to phenylpropanoid
biosynthesis (Figure 4C; Supplementary Table 7), which further
verified the transcriptome results. Among 22 DEGs and 10
DAPs associated with phenylpropane pathway, 11 genes are

common. Therefore, phenylpropanoid biosynthesis might play
an important role during the process of garlic greening.

Validation of the Differential Expression by
qRT-PCR
The expression levels of 10 up-regulated DEGs in
phenylpropanoid biosynthesis pathway were verified by
qRT-PCR for the change folds, which were consistent with
the results of Illumina sequencing (Figure 5). The correlation
between these two methods was.85. These results suggested that
the expression proofing characterized by Illumina sequencing
was reliable (38).

Analysis of Compounds Involved in
Phenylpropane Pathway
We measured the relative contents of total polyphenols and
phenolic acids in two groups of garlic, which were compounds
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FIGURE 3 | Identification and functional analysis of differentially expression genes (DEGs). (A) Expression level of all genes. (B) Volcano map showed the distribution

of all differently expressed genes (DEGs). (C) KEGG pathways significantly enriched (p-value < 0.05) by up and down-regulated DEGs were shown. (D) The top 10

GO terms (rank by P-value) of biological process were showed.

of the phenylpropane pathway. We measured that the phenolic
acids in garlic mainly include caffeic acid, ferulic acid, and
p-coumaric acid. With the extension of garlic storage time
at low temperature, the contents of total polyphenols, caffeic
acid, ferulic acid, and p-coumaric acid increased (Figure 6).
The contents of these compounds in PZ garlic were higher
than that in LW garlic, which was consistent with the intensity
of green discoloration, further confirming the RNA-seq data
and conclusions.

DISCUSSION

Garlic discoloration is one of the important factors affecting
the processing quality of garlic (39). In this study, it was found
that PZ garlic and LW garlic turn green when stored at −2.5◦C
for the same time. This phenomenon was because GGT activity
were increased during cold storage. GGT hydrolyzed peptides
to produce isoallicin. The increase of isoallicin content led to

the increase of green discoloration of garlic (40). In previous
studies, ALAD and alliinase all played an important role in garlic
greening besides GGT (41).

Through transcriptomic analysis of the green discoloration
difference between PZ garlic and LW garlic, we found that
the DEGs were significantly enhanced in the phenylpropane
metabolic pathway. Phenylpropane metabolism was a key
pathway in plant secondary metabolism and played an important
role in the defense response to abiotic stresses such as high and
low temperature, salt and drought, and ultraviolet and heavy
metals (42). Secondary metabolites produced by this pathway
include antimicrobial and antioxidant phenolic compounds and
flavonoids, lignin, the structural barrier substance, phenolic
acids, pigments, and other substances (43). Temperature has
an important effect on phenylpropane pathway. Herrera et al.
(32) studied the effects of cold treatment of garlic cloves before
garlic planting and temperature as thermal time in accumulated
growing degree days during plant growing on the growth and
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FIGURE 4 | Differentially expression genes involved in Phenylpropanoid biosynthesis. (A) The key genes of Phenylpropanoid biosynthesis. (B) Expression patterns of

differently expressed genes (DEGs) involved in Phenylpropanoid biosynthesis. The DEGs are 4-coumarate—CoA ligase (4CL), beta-glucosidase (BGL),

cinnamyl-alcohol dehydrogenase (CAD), caffeic acid 3-O-methyltransferase (COMT), trans-cinnamate 4-monooxygenase (CYP73A), phenylalanine ammonia-lyase

(PAL), peroxidase (PER), and coniferyl-aldehyde dehydrogenase (CALDH). (C) Differentially abundance proteins (DAPs) involved in Phenylpropanoid biosynthesis.

development of garlic. Low temperature treatment of garlic
bulbs before planting can accelerate the harvest period of garlic
and increase the content of total phenols and anthocyanins
in the cataphylls of garlic bulbs. The interaction between
low temperature treatment and planting date increased the
concentration of total flavonoids. In this study, the enrichment
of phenylpropane pathway showed the stress response of garlic
to low temperature environment.

In this study, 22 up-regulated DEGs were significantly
enriched in phenylpropanemetabolic pathway, including three 4-
coumarate-CoA ligase (4CL) encoding genes, four β-glucosidase
encoding genes, and one cinnamyl-alcohol dehydrogenase
encoding genes, one caffeic acid 3-O-methyltransferase
encoding gene, two trans-cinnamate 4-monooxygenase
(CYP73A) encoding genes, six phenylalanine ammonia-
lyase (PAL) encoding genes, four peroxidase encoding genes,
and one gene encoding coniferyl-aldehyde dehydrogenase. PAL,
CYP73A and 4CL are all key enzymes in the phenylpropane
metabolic pathway. PAL (c3369/f1p14/2256, c11315/f1p23/2741,
c1076/f3p52/2334, c14606/f1p46/3127, c87606/f1p10/1076,
c68310/f1p8/2095) can catalyze phenylalanine to produce
cinnamic acid. Then, through the catalysis of CYP73A
(c88562/f1p10/1325, c70286/f1p12/1308) and 4CL
(c61149/f1p35/2029, c261046/f2p6/2013, c9430/f1p36/1338),
p-coumaric acid and p-coumaric acid coenzyme A and

secondary metabolites are generated (44). N-substituted 3,4-
dimethylpyrroles play an important role in the formation
of garlic green pigment. We speculated that metabolites in
phenylpropane pathway such as phenols will affect the side chain
of 2-(1H-pyrrolyl) carboxylic acids, side chains substituted at
pyrrole, and conjugated double bonds with two pyrrole rings.
Thus affecting the garlic green discoloration. Cold storage stress
caused the change of β-glucosidase level (c86756/f1p3/1001,
c24450/f1p15/3426, c26268/f1p14/1850, c32513/f1p279/2128),
regulated sugar metabolism, and altered the composition of plant
cell wall (16). Peroxidase (c44043/f1p3/1144, c12491/f1p3/1162,
c22433/f1p2/1336, c317700/f1p2/1273) regulated the contents
of O−

2 and H2O2 in cells, avoided the membrane damage of
plant cells under pressure, and provided conditions for the
stability of the structure and function of various organelles in
cells (35). These stress-response enzymes encoding genes might
be responsible for the discoloration of garlic.

Through KEGG enrichment analysis and GO term
enrichment analysis, DEGs of PZ and LW garlic were mainly
enriched into phenylpropane metabolic pathway. In addition,
DEGs were also enriched in starch and sucrose metabolic
pathways, glycolysis pathway, and amino acid biosynthesis
pathway. In response to low temperature stress, PZ garlic and
LW garlic showed different green variation, and the DEGs
of PZ garlic and LW garlic were enriched in phenylpropane
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TABLE 1 | DEGs in the phenylpropanoid biosynthesis.

Gene ID Gene name Desription Regulation

c61149/f1p35/2029 4CL 4-coumarate–CoA ligase Up

c261046/f2p6/2013 4CL 4-coumarate–CoA ligase Up

c9430/f1p36/1338 4CL 4-coumarate–CoA ligase Up

c86756/f1p3/1001 BGL Beta-glucosidase Up

c24450/f1p15/3426 BGL Beta-glucosidase Up

c26268/f1p14/1850 BGL Beta-glucosidase Up

c32513/f1p279/2128 BGL Beta-glucosidase Up

c116256/f2p5/1450 CAD Cinnamyl-alcohol dehydrogenase Up

c11693/f1p13/1676 COMT Caffeic acid 3-O-methyltransferase Up

c88562/f1p10/1325 CYP73A Trans-cinnamate 4-monooxygenase Up

c70286/f1p12/1308 CYP73A Trans-cinnamate 4-monooxygenase Up

c3369/f1p14/2256 PAL Phenylalanine ammonia-lyase Up

c11315/f1p23/2741 PAL Phenylalanine ammonia-lyase Up

c1076/f3p52/2334 PAL Phenylalanine ammonia-lyase Up

c14606/f1p46/3127 PAL Phenylalanine ammonia-lyase Up

c87606/f1p10/1076 PAL Phenylalanine ammonia-lyase Up

c68310/f1p8/2095 PAL Phenylalanine ammonia-lyase Up

c44043/f1p3/1144 PER Peroxidase Up

c12491/f1p3/1162 PER Peroxidase Up

c22433/f1p2/1336 PER Peroxidase Up

c317700/f1p2/1273 PER Peroxidase Up

c174936/f2p3/1715 CALDH Coniferyl-aldehyde dehydrogenase Up

FIGURE 5 | qRT-PCR was used to verify the RNA-seq data. The hist shown

fold change of PZ/LW.

metabolic pathway. Phenylpropane metabolic pathway was a
defensive response to low temperature, so low temperature may
cause garlic green change through phenylpropane metabolic
pathway. Starch and sucrose metabolic pathways can affect
the amino acid metabolic pathway, which may accelerate the

transformation from carbohydrate metabolism to amino acid
anabolism and provide precursors for garlic greening (45).
Glycolysis oxidizes sugars in organisms to produce ATP, NADH,
and pyruvate. The production of ATP makes garlic green.
Pyruvate can provide carbon source for the production of
amino acids, and then promote garlic greenness stored at low
temperature (46).

In addition, the stability of garlic green pigment is
primarily affected by light, temperature, pH, and oxygen.
Garlic discoloration can be reduced by heat treatment,
high-pressure steam treatment, pH adjustment, the addition
of chemical additives (47), and freeze-dried fresh onion
powder (48).

CONCLUSION

In this study, PZ garlic and LW garlic were used as materials
to compare the changes of their transcriptional levels during
the greening process. This study clarified the mechanism
related to garlic greenness and concluded that low temperature
may cause garlic greening through phenylpropane metabolic
pathway by analyzing the genomes, DEGs, gene function
annotation, and metabolic pathways of PZ garlic and LW garlic.
Proteomic analysis verified that the results of transcriptomics
were consistent with the changes of protein level. In the future, we
will detect changes in the content of corresponding metabolites
through metabolic analysis. These results would expand our
understanding of the mechanism of garlic greenness, and lay
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FIGURE 6 | Relative contents of different compounds involved in phenylpropane pathway. (A) Total polyphenols content. (B) Caffeic acid content. (C) Ferulic acid

content. (D) p-coumaric acid content.

a foundation for the following screening and verification of
important functional genes, along with revealing the regulation
mechanism of gene expression. Moreover, we can inhibit
garlic greenness by silencing or over expressing genes in
the future.
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