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Mycobiota is not only associated with healthy homeostasis in the human gut but

also helps to adapt to the environment. Food habits, alcohol consumption, intake of

probiotics, and contaminated food with a mycotoxin, often lead to the alteration in

the mycobiota composition. Impaired immunity of the host may affect fungal symbiosis

leading to mycosis. The human gut adapts to the commensalism fungi belonging to

the phylum Ascomycota and Basidiomycota. Diet habits such as plant-or animal-based,

phytoestrogens enriched plant products, fat-rich diets also influence the colonization of

certain fungal species in the mammalian gut. Food habits or mycotoxin-contaminated

food or fungal peptides have an impact on bacterial-fungal interaction and human

health. The mycobiota population such as Fusarium, Humicola, Aspergillus, and Candida

are altered due to alcohol intake in alcoholic liver disease. The role of associated

gut mycobiota due to irregular bowel habits or lifestyle change has been observed in

inflammatory bowel disease. In this review, it has been observed that Saccharomyces,

Aspergillus, Fusarium,Cladosporium,Candida, andMalasseziawere the common genus

in the human mycobiota. Therefore, this study focused on how diet habits and alcohol

intake, among others., influence mycobiota composition that may affect the human

immune system or overall health.

Keywords: mycotoxin, phytoestrogens, alcohol intake, gut mycobiome, diet habit, COVID-19, mucormycosis

INTRODUCTION

The human system harbors many diverse and unculturable species such as bacteria, protozoan,
viruses, and fungi, to name a few, which constitute microbiota (1, 2). These species live on
and inside the human body, but in comparison with the bacteria, the diversity and abundance
of fungi are relatively lower (3). Thus, fungal microbiota or are often less explored (4, 5). The
association of the fungal community to human health is a well-known fact (6). The relationships
between organisms within a microbial community (i.e., symbiosis) or the unbalance of microbial
community composition (i.e., dysbiosis) and their role within a host is an active area of research.
Dysbiosis not only permits or promotes the growth of certain fungal species, but is also associated
with alteration in internal homeostasis, and influences the systemic immunity of the individuals (7).
The alteration of mycobiota composition may depend on types of food intake or due to the recent
rise in immune-compromised patients. In addition, fungal communities may also be beneficial in
micronutrient extraction, as well as in the production of enzymes and vitamins, to aid digestion
(3). Thus, understanding the relationship between host-fungi and food-fungi seems critical for
good health.
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Recently, there has been a focus on characterizing bacteria
in the healthy individual and with disease conditions, with a
limited effort on fungal microbiota due to their lower abundance
and culturing complications (8). Studies on human microbiota
have revealed that predominant mycobiota in the human system
belongs to Ascomycota and Basidiomycota phyla with commonly
observed genus from Saccharomyces, Aspergillus, Fusarium,
Cladosporium, Candida, and Malassezia, among others (8, 9).
Based on the recent development, this mini-review addresses
the symbiosis or dysbiosis of human mycobiota associated with
food habits or other factors (Figure 1) and their impact on
human health.

Food Habits
Dietary intake/choice of food is an important factor that
determines microbial composition in the human gut (10).
Maintaining the balance among microbes including fungal
species in the gut is critical for better gastrointestinal health (11).
The human mycobiota diversity is influenced by the diet of an
individual, including fermented food products, bread, as well
as alcoholic beverages (12). Yeast cells are the most common
microorganism for fermented food products, e.g., cheese (13),
bread (14), beer (15), and others (16). Other species such as
Debaryomyces hansenii, a yeast species, have been detected in
salt fermented products and Penicillium roqueforti in blue cheese
(17). Studies on the decreased intake of bread and beer have been
shown to minimize the amount of Saccharomyces cerevisiae in
human stools (18). In a controlled study, it was examined that
Penicillium was correlated with a plant-based diet and Candida
was enriched in animal-based diet participants (12). To decipher
the relation between obesity with diets, the variation in the
human gut microbiome in obese was assessed and compared
with that of non-obese subjects by ITS-based sequencing (19, 20).
The fungal species found in non-obese were Pichia, Candida,
Aspergillus, Mucor, and Saccharomyces, S. cerevisiae being the
most abundant. No specific changes in fungal species were
observed in obese patients, except the absence of a minor phylum
Zygomycota. In obese patients, Candida and Penicillium were
abundant, while Mucor was lacking. In non-obese patients,
the Mucor species suggested being associated with weight loss
(19). In other studies in obese subjects, the risk of developing
cardiovascular diseases and type 2 diabetes was reported (8).
The fat-rich diet has affected mycobiota composition in the gut
(e.g., the low abundance of S. cerevisiae) and possibly led to
a shift in microbiota composition in mice (20). Furthermore,
this has been found in correlation with a low abundance of S.
cerevisiae in obese subjects in comparison with the gut of control
subjects (19).

To understand the impact of dietary intake on the interaction
among fungal and bacterial species, fecal samples from Indian
and Japanese adults were subjected for sequencing (21). Indian
population having plant-rich polysaccharides in their diet
showed the abundance of Prevotella and Candida in comparison
with the Japanese population. Therefore, vegetarian or animal-
based diet or both pertaining to good health or diseased-state
concerning mycobiota needs more research work (22, 23). In
particular, fungal species producing toxins, such as aflatoxin,
ochratoxin P, zearalenone, patulin, etc. may be carcinogenic or

severely harmful to the host (24, 25). These toxins, either from
consumed foods or from the resident mycobiota may lead to
adverse effects including their impact on host immune response
(26, 27). Thus, the mycotoxin produced from the gut mycobiota
also needs investigation. These findings presented here provided
a general understanding of how diets (plant- or animal-based,
fat-rich, or fermented product) might influence the dynamics of
gut mycobiota of the host. Thus, consumption of a balanced diet
that could manifest the suitable microbial composition in the gut
likely to promote good health.

Several veggies, legumes, grains, especially in soy, are
structurally and/or functionally similar to mammalian
estrogens, called phytoestrogen (28). It can interfere with
steroid biosynthesis (29), thus modulating the free circulating
endogenous hormones including estrogens. Stimulatory or
inhibitory effects on the growth of the fungal communities
have been observed by estrogen/17-β-estradiol (30). For
instance, it has been reported the stimulation of the growth
of Candida albicans by 17-β-estradiol (31). Elevated estrogen
levels in the host and occurrence of Candidiasis are often
associated (32). The stimulatory effect of 17-β-estradiol allows
C. albicans to colonize on mucosal surfaces, including the
reproductive tract (33). Overgrowth of C. albicans in the mucosal
surfaces leads to Vulvovaginal candidiasis, characterized by
scratching and inflammation (34). On the other hand, 17-β-
estradiol showed an inhibitory effect on Paracoccidioides, a
thermoregulated dimorphic fungus causing systemic mycosis
(paracoccidioidomycosis) in Latin America (35). It has been
observed that females are about 13–70 times less likely than
males to develop the clinical disease and women are resistant to
paracoccidioidomycosis (36). Furthermore, 17-β-estradiol has
been shown to block/delay themorphogenesis of Paracoccidioides
via stress responses (Heat shock proteins), signaling pathways
through kinase nodes (37). Thus, endogenous hormone or
dietary intake of phytoestrogen may have a profound effect
on a few fungal species, and during the disease state, the
estrogen level may need manipulation via restricted diet
or supplements.

Alcohol Intake
Alcohol is often consumed along with food around the world.
Owing to chronic alcohol intake, the composition of bacterial
and fungal species is altered. Alcoholic liver disease (ALD) is
responsible for half of all cirrhosis deaths. Chronic ethanol intake
(up to 8 weeks) increased the fungal richness and diversity
among mice. The mycobiota population increased significantly
in particular such as Fusarium, Humicola, Aspergillus, and
Candida. ALD raised the plasma level of β-glucan in mice (38).
It increases the translocation of microbial products of fungal
species from the intestinal lumen to the systemic circulation
that causes inflammation of the liver. This leads to hepatocyte
damage and facilitates the development of ethanol-induced liver
disease. However, anti-fungal treatment to mice suppressed
fungal overgrowth but also affected liver disease. The distribution
of mycobiota was seen in patients with alcoholic hepatitis and
compared with that of patients with alcohol use disorder (39).
C. albicans was primarily observed in patients with alcoholic
hepatitis, while normal patients were tested for Penicillium.
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FIGURE 1 | Factors affecting mycobiota composition of the individuals commonly belong to phylum Ascomycota and Basidiomycota. The different morphotypes of

fungal species are illustrated in colors for presentation purposes. The modulated fungal species during the disease state and other conditions are listed in the panel.

Moreover, anti-S. cerevisiae antibodies in serum (ASCA) were
measured to determine the systemic immune response to fungal
products or fungi. Patients with alcoholic hepatitis had higher
levels of ASCA relative to patients with alcohol consumption
disorder and non-alcoholic patients. ASCA were also observed
in other subjects such as IBD (40, 41) celiac diseases (42), thus
antibodies against S. cerevisiae in serum could act as a marker
for the inflammatory response (43). Additionally, the fungi-
bacteria association has been observed to correlate positively
in alcoholic hepatitis patients (44). Thus, screening of fungal
species or antibodies against them could be recommended in
these subjects to assess the health risk.

Food Habits in Rural and Urban
Populations
The fungal composition of our gut is largely affected by the
consumption of packed food such as dairy products, meat
products, and frozen vegetables in urban environments vs. fresh
food products in local rural environments (45). To understand
the influence of the environment on fungal composition
in humans, a cohort of 151 Amerindians living in remote
communities (French, Guinea) was studied at 4-year intervals.
They showed a rich diversity of fungi relative to people living in
western cultures. People living in industrial areas have C. albicans
as a predominant species in their intestines (11). Furthermore,
Candida krusei and S. cerevisiae were found to be abundant in
remote communities. C. albicans were more common in females

and crowded areas. C. krusei and S. cerevisiae were known to be
associated with foodborne by plants and water. It was proposed
that there may be cross-transmission of the strains of C. albicans
between humans and animals (11). A wide diversity of fungi has
been found in the human gastrointestinal (GI) tract and detected
in stool samples. Fungi found in stools are highly affected by
food or the oral cavity. S. cerevisiae-free diet renders this strain
undetectable in stools. The level of C. albicans in the stool has
correlated with the cleaning of teeth (18). The study of Sun
et al. (46) also studied the fecal mycobiome using metagenomic
sequencing to associate fungal communities in the rural and
urban populations of China. In brief, S. cerevisiae was more
abundant while Candida dubliniensis was low in abundance in
urban compared with rural population suggesting that distinct
food habits in the shaping of gut mycobiota composition. The
enrichment of fungal species in the gut of these populations may
modulate the metabolism of the host to confer good health need
more such studies.

IMPACT OF MYCOBIOTA COMPOSITION
ON HUMAN HEALTH

The mycobiota is a part of human microbiota and plays
important role in regulating innate and adaptive immune
homeostasis (47–49). While the mycobiota composition of
the host may have an independent effect on the microbial
environment of the intestine and immune development (50),
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the balance of microbial communities in providing immunity to
protect from invading pathogens to the immune dysregulation
is critical for health benefits to human (47, 51). The dynamics
of fungal species, such as Malassezia, Candida, Aspergillus,
Cladosporium, Saccharomyces, and Penicillium, among others,
are reported in various health conditions (Table 1). Therefore,
mycobiota associated with gastrointestinal diseases were
discussed here.

Gut Mycobiota and Associated Diseases
The chronic and excessive intestinal inflammation due to the
resident or foreign antigens causes inflammatory bowel disease
(IBD) (67). It is categorized into two main clinical conditions,
namely Crohn’s disease (CD) and ulcerative colitis (UC), which
are due to the activation of the immune response against
certain microbiota in the gut influenced by environmental
factors (7, 68). It is characterized by inflammation of the
gastrointestinal tract, altered bowel habits, and abdominal pain.
The fungal diversity of the gastrointestinal tract is contributed
by many species, including Penicillium, Candida, Aspergillus,
Saccharomyces, Cryptococcus, and Malassezia (57). In pediatric
subjects, stool samples were collected from IBD patients and
healthy subjects and were characterized by deep sequencing
of rRNA gene segments specific to the fungal domain. Pichia
jidanii, Candida species, and Torula yeast were abundant
in IBD patients. The healthy subjects showed Clostridium
cladosporioides dominance (56). In IBD patients, particularly CD
was screened with antibodies against S. cerevisiae, suggesting an
inappropriate immune response to this fungus (57). In addition,
the study of Jain et al. (69) showed the colonization ofD. hansenii,
a yeast species, at intestinal wounds of mice and inflamed
mucosal tissue of CD human subjects, and mucosal healing
dysfunction. Thus, inflammation in the gut either because of

yeast colonization and/or immune suppressive therapy needs
more studies. Genetic variation such as polymorphism in
CLEC7A, a gene encoding for Dectin-1, can induce UC in
mammals due to a weak immune response against fungi
(55). Dectin-1, a pattern recognition receptor for β-glucan, is
involved in adaptive immune response via T-helper cells, and
the polymorphism in the receptor makes the host susceptible
to invasive infections (70). The work of Tang et al. (71) used
Dectin-1 deficient mice to demonstrate that Dectin-1 regulates
regulatory T (Treg) cell differentiation under the influence
of microbiota composition, implying the role of Dectin-1 in
intestinal immunity. Chitooligosaccharide (COS), a derivative of
chitosan, possesses antimicrobial activity. The alteration in the
diversity of mycobiota was observed in colorectal cancer (CRC)
patients before and after COS induction. In addition, it has been
associated with decreased symptoms of colitis-induced CRC (72).
The data showed that the abundance of two phyla in intestinal
mycobiota: Ascomycota and Basidiomycota (73).

Fungal species such as Candida and Aspergillus release
mycotoxins into non-neuronal tissues that pass through
the bloodstream. These toxins target astrocytes and
oligodendrocytes, as a result of which the blood-brain barrier is
weakened followed by degradation of myelin (74). The above
studies showed mycobiota plays a critical in modulating the
metabolism of host and intestinal immunity. It was suggestive
that the intestinal environment could be managed by modulating
themycobiota composition to achieve a healthy gut environment.

MYCOBIOTA AND IMPACT ON HOST
IMMUNE SYSTEM

Fungi are also part of oral microbial communities along with
bacterial species and these microbes enter to human gut

TABLE 1 | Impact on human health due to the alteration in mycobiota composition.

Food habits Abundance of fungal species References

Salt fermented food products Debaryomyces hansenii (17)

Blue cheese Penicillium roqueforti (17)

Bread and beer S. cerevisiae (18)

Plant-based diet Penicillium (12)

Animal-based diet Candida (12)

Plant rich polysaccharides Prevotella and Candida (21)

The potential impact on human health Mycobiota composition

Obese patients Abundance of Candida and Penicillium and low abundance of Mucor (20)

Candidiasis Abundance of Candida- elevated estrogen levels (32)

Alcoholic liver disease (ALD) Increased fungal load—Candida, Fusarium, Humicola, Aspergillus (38, 39)

Mucosal site infections Presence of mycetes, Aspergillus, Penicillium, and Trichosporon sp. (3, 34, 52–54)

Increased Candida sp.

Inflammatory bowel disease (IBD): Crohn’s disease (CD)

and ulcerative colitis (UC)

Increased levels of Candida, reduced levels of Cladosporium sp. (55–57)

Decline in Saccharomyces cerevisiae

Oral and lung infection Overgrowth of Candida, Aspergillus, Cryptococcus, and Fusarium (58–60)

Asthma Increase in Alternaria and Aspergillus sp. (61–63)

Allergic fungal rhinosinusitis (AFRS) Sensitization to Aspergillus, Bipolaris, Curvularia, Alternaria, and Fusarium (64, 65)

Allergic bronchopulmonary Aspergillosis (ABPA) Increased IgE concentration against Aspergillus and Penicillium (66)
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through ingested foodstuff (75). The fungal mycobiome has been
explored in the oral cavity from healthy individuals and reported
a total of 101 species, 74 cultivable, and 11 non-cultivable
(58). Candida was followed by Cladosporium, Aurobasidium,
Saccharomyces, Aspergillus, Fusarium, and Cryptococcus, among
the most common species. Four of these species, namely
Candida,Aspergillus, Fusarium, andCryptococcus, are pathogenic
to immunocompromised humans when present in abundance
(76–79). In the oral microenvironment, C. albicans associates
with Streptococcus species to promote bacterial colonization
(80), and synergistic interaction between fungal-bacterial species
contribute to the development of multi-microbial biofilm
(81–83). Thus, interspecies interaction and microbial biofilm
formation in the oral cavity surfaces need more such studies,
consequently, enable better strategies to treat oral diseases. In
rural areas or unhygienic environments, human beings are often
exposed to fungal spores that disturb the mycobiota composition
under healthy conditions (84). In adverse conditions, inhaled
fungal spores cause severe health deterioration (7). In another
study, the mouth and lung fungal microbiota was compared
between healthy individuals and recipients of lung transplants
(60). Candida species were found in the oral wash of
lung transplant recipients because of antibiotic therapy and
immunosuppressant. There was limited fungal ITS amplification
in the bronchoalveolar lavage of healthy individuals, whereas
detectable fungi of Candida, Aspergillus, or Cryptococcus were
present in lung transplant recipients (59). Thus, balanced oral
microbial communities are required to be a healthy oral system. If
microorganisms are altered may enhance the risk of oral diseases.

The human immunity system is affected by microbiota
composition, and secondary metabolites and/or peptides
produced by them (85, 86). To understand the role of the fungal
component in modulating immunity, when the Influenza A
virus was infected in antibiotic-treated mice, they were more
vulnerable to colitis-induced dextran sodium sulfate (DSS) and
displayed decreased CD8+ T cells. The protective immunity
resumes adequately when commensal fungal species, such as S.
cerevisiae or C. albicans was administered. It was concluded that
the immune response may have been produced by mannan, an
abundant component of the fungal cell wall. It was therefore
noted that the function of the immunocyte was dependent on
the composition of the mycobiota in the organism (87). Mucosal
and systemic fungal infections cause CD4+ T cells to respond
to induce Th17 or Th1 cells (47). During the dysbiosis of gut
microbiota, the CD4+ T cells dysfunction has been observed
in childhood atopic subjects (88). C. albicans and Aspergillus
fumigatus are pathogenic fungi and elicit antigen-presenting cells
to produce effector T-helper cells against these microorganisms
(47, 89–91). On the other hand, S. cerevisiae, a non-pathogenic
yeast, and A. fumigatus were observed inducing both the Th1
and Th17 subsets of CD4+ T cells (92, 93). Thus, pathogenic
or non-pathogenic fungal spores can promote T-cell response.
However, systemic antibodies in humans against major inducers
such as C. albicans showed protection against disseminated C.
albicans or Candida auris (94). Furthermore, the production
of CARD9-dependent antibodies repertoire in shaping host
immunity implicated the role of fungal communities in the
human gut (94). Therefore, certain mycobiota composition,

their interactions, and/or fungal cell wall components in the
microbial environment allow individuals to may remain healthy.
On the other hand, dysbiosis or the alteration of mycobiota
structure and/or function may occur as a consequence of
infection, e.g., COVID-19. The study of Zuo et al. (95) observed
a significant change in the fecal mycobiota in COVID-19 patients
in comparison with control subjects. These patients showed an
increased abundance of opportunistic fungal pathogens, such
as C. albicans, C. auris, Aspergillus flavus, and Aspergillus niger,
in their fecal samples. Thus, impaired immunity during the
infection and delay in recovery of immunity allows opportunistic
pathogens to colonize in the host. Additionally, patients
recovered from the COVID-19 infection but probably not
their immune system since there were still shown infections
with black fungi/mucormycosis with high mortality (96).
Therefore, microbial symbiosis or balance of bacteria-fungi-virus
communities in the host in shaping innate or acquired immunity
to the host presents future research opportunities.

CONCLUSION AND PERSPECTIVES

Microbial micro-environment in the human system and
its physiological diversity, or the factors that influence its
colonization inside the body, is still at a primitive stage. The
dynamics of fungal species belonging to Malassezia, Candida,
Aspergillus, Cladosporium, Saccharomyces, and Penicillium,
among others, were among the most common genera associated
with symbiosis or dysbiosis in humans. Morphological and
metabolic changes in these species are essential for survival
within hosts and need better understanding. The bacterial
predominance in the oral cavity or intestines to achieve optimal
health and the role of fungi in gastro-intestinal ecology that fungi
influence bacterial activities through various interactions needs
thorough investigation. Moreover, exploration of genes encoding
proteins produced by fungal species metabolizing certain
substrates could result in food recommendations. Furthermore,
the identification of coordinated expression of protein from the
resident microbes in the gut microenvironment may assist our
understanding of the relationship between bacteria-fungi or host-
microbe. In vitro or in vivo experiments should be performed
to identify human microbial communities for a normal healthy
condition and those associated with the disease. In particular, it is
possible to examine the microbiome composition of individuals
with neurological disorders to assess their diet and lifestyle, which
promote healthy brain activities and actions. Overall, a sound
understanding of the biological properties of themycobiota could
increase our quality of life in coordination with diet, lifestyle,
and climate.
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