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Obesity is associated with the leading causes of death in the worldwide. On the other

hand, the intake of vegetables, fruits and fish is related to the reduction of obesity

and other metabolic syndromes. This review aims to highlight the role of ingestion

of polyphenols and omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in reducing

obesity and related metabolic diseases (RMDs). The consumption of vegetables, fish

and by-products rich in polyphenols and α-linolenic acid (ALA), as well as oils rich

in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with

a decrease in obesity and its RMDs in consumers. Furthermore, we discussed the

adequate amount of extracts, powder, polyphenols, ω-3 PUFAs administrated in animal

models and human subjects, and the relevant outcomes obtained. Thus, we appeal to

the research institutions and departments of the Ministries of Health in each country to

develop a food education joint project to help schools, businesses and families with the

aim of reducing obesity and other metabolic diseases.

Keywords: vegetable foodstuffs, fish foodstuff, metabolic diseases, α-linolenic acid, eicosapentaenoic acid,

docosahexaenoic acid

INTRODUCTION

Obesity is an abnormal accumulation of fat in cells that interferes with the maintenance of an
individual’s health. It is a chronic disease characterized by lower amounts of energy expenditure
than ingestion, leading to body weight gain over time due to excessive increase in adipose tissue
mass (1), triggering pro-inflammatory agents (2). Furthermore, obesity is linked with several
diseases such as insulin resistance, systematic inflammation, diabetes mellitus (DM), hypertension,
coronary heart diseases (CHD), adipocyte hypertrophy, non-alcoholic fatty liver disease (NAFLD),
and others (3, 4). Weight can be calculated from the mathematical formula of the body mass index
(BMI = mass/height × height), being considered overweight that can progress to obesity when
BMI≥ 25 and≥ 30 kg/m2 (1, 2). In the adult population, the occurrence of obesity and overweight
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is 39 and 50%, and it is mainly explained by the easy access to
high-calorie foods (fast food) and sedentary lifestyle (5).

Systemic complications in obese patients are associated with
increased abdominal fat, severe organ and tissue failure due to an
increased pro-inflammatory cytokine storm, lipopolysaccharide
and oxidative stress conditions (6). In addition, several studies
have reported a decrease in obesity and its RMDs due to
consumption of vegetables (leaves, seeds, nuts, fruits, vegetable
oils, by-products) and fish (mainly marine fish, oils, by-
products) rich in polyphenols and ω-3 PUFAs: ALA, EPA,
and DHA (7–13). Furthermore, obesity and its RMDs lowering
can be explained by consequence of synergistic actions of
polyphenols and ω-3 PUFAs improving several metabolic
health pathways (14, 15). Due to the synergistic actions of
the polyphenols and ω-3 PUFAs, some products that are
found, like fish and vegetables, and their by-products can
potentially improve and control obesity and its RMDs as
anti-glucose tolerance, anti-oxidative, anti-atherosclerosis, anti-
inflammation, anti-weight gain, hepato-protective, vascular-
protective, cardiovascular-protective, anti-hypertension, anti-
diabetic effects, thus improving the human health (13, 16–
21). The beneficial effects of foods that contain polyphenols,
ALA, EPA and DHA in their composition are summarized in
Figure 1.

However, despite the reported benefit of polyphenols
and ω-3 PUFAs reported, obesity and its RMDs high
incidence can be correlated with inadequate food intake

FIGURE 1 | Overview of polyphenols, α-linolenic (ALA), eicosapentaenoic (EPA), and docosahexaenoic acids (DHA) natural sources. The polyphenol compounds

obtained from vegetables are active natural antioxidants, which slow up or reduce the high speed of degradation of ALA, EPA, and DHA, quenching singlet oxygen

and reacting or eliminating the free radicals, prolong the half-life of these acids during their storing and confection of food. The ingestion of polyphenols, ALA, EPA,

and DHA in natural conditions prevent obesity and its related metabolic diseases, including these presented in the scheme. However, the benefit does not occur when

polyphenols, ALA, EPA, and DHA are denaturated during the extraction process, storage, and food confection. Through the biosynthesis processes with the actions

of enzymes, ALA is converted to EPA and DHA. The synergistic effects of polyphenols, EPA and DHA in the body promote health with preventing and reducing obesity

and its related diseases for the consumers. ↓, significant decrease; DM, diabetes mellitus; CHD, cardiovascular heart diseases.

(22), the lower cost of unhealthy food acquisition (23)
and cultural behaviors barriers (24) allied to unfavorable
educational programs impact negatively on healthy food
acquisition (25).

In this review, we aimed to emphasize the benefit of
polyphenols and ω-3 PUFAs regular intake and their sources and
to propose joint actions allied to consumer’s behavior change
for reducing obesity and its RMDs (systematic inflammation,
cardiovascular diseases, hypertension, diabetes mellitus, high
insulin level, metabolic syndrome, and others).

THE MAIN POLYPHENOLS SOURCES

Vegetables, fruits, seeds, almonds, and cereals are widely known
in diets and supplementations for their enormous benefits on
health improving, preventing, and reducing obesity and its RMDs
(9, 13). Health benefits are associated with the effect of bioactive
substances, mainly represented by compounds with antioxidant
action that are responsible for functions such as the half-life
of products and their by-products (residue products as peel,
pulp and seed) (12, 16, 26–30). The main polyphenol substances
occurs in leaves, flowers, roots, bulbs, and rhizomes of several
wild edible plants (31, 32). In addition, polyphenol is present in
fruits as apple, grapes, pear, cherries, berries, coffee, cereals and
chocolate (33), citrus, mangoes, garlic, onions (34), tomatoes,
potatoes, carrots, leaves (tea), and vegetables (broccoli, cabbages,
pumpkin, spinach, and lettuce). In addition, these plants (35)
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TABLE 1 | Effects of polyphenols intake on obesity and its related metabolic diseases outcomes in animal model.

Vegetable/fruit Host Diet Main outcomes

Camellia sinensis (Tea) Mice ICR (7 weeks old) male

obese (39)

Six leaf drinking tea types: green,

black, yellow, white, oolong and post-

fermented (13–15

g/kg/day) for 9 weeks

Body weight ↓

White fat ↓

Hepatic steatosis ↓

Obesity effects ↓

Anti-inflammatory ↑

IL-6 ↓

iNOS ↓

Vitis vinifera (Grape) Mice C57BL/6J (12 weeks old) obese

(40)

Grape powder (23 g/kg/day) for 18

weeks

Inflammation ↓

Adipocyte tissue↓

Grape powder extract (150

mg/kg/day) for 18 weeks

Inflammation ↓

Glucose tolerance ↓

Wistar rats (5 weeks old) male obese

(41)

Grape seed proanthocyanidin extract

(25 mg/kg body weight/day) for 3

weeks

Adipocyte number ↑

Body weight ↔

Adipose tissue ↔

Adipocyte size ↓

Wistar rats albino male diabetic (42) Grape seed extract (50 mg/kg/day)

for 3 weeks

Blood glucose ↓

Cholesterol ↓

Inflammation ↓

Hyperglycemia ↓

DM ↓

Bactris setosa (Tucum) and

Vitex cymosa (Tarumã)

Mice C57BL/6J (5 weeks old) male

diabetic (43)

Extract (100 mg/kg/day) for 8 weeks Obesity ↓

Insulin resistant ↓

Hyperinsulinemia ↓

Adansonia digitata (Baobab) Wistar albino rats (8 weeks old)

diabetic (44)

Extract (200 and 400 mg/kg/day) for

6 weeks

HDL-c ↔

Adipose tissue↓

Diabetic ↓

Olea europaea (Olive) Wistar Kyoto rats (8 weeks old)

hypertensive (45)

EVOO (759 mg/kg/day) for 10 weeks Blood pressure ↓

Cardiac hypertrophy ↓

AEF ↑

TC ↓

Pro-inflammatory ↔

Mice C57BL/6J (5 weeks old) male

diabetic (46)

EVOO (447 mg/L/day) for 24 weeks Pro-inflammatory ↔

β-cell apoptosis ↓

β-cell number ↑

Insulin resistance ↑

Islet glucose ↑

Glucose homeostasis ↑

Curcuma longa (Turmeric) Mice C57BL/6J (3–5 weeks old) male

obese—diabetes (47)

Extract (0.03 mg/kg/day) for 6 weeks Adiponectin ↑

HNF-kB ↓

Inflammation ↓

Obesity ↓

Solanum lycopersicum

(Tomato)

Mice C57BL/6N (4 weeks old) male

obese (48)

Vinegar beverage (14 mL/kg/day) for

6 weeks

Obesity ↓

Insulin resistance ↓

Euterpe oleracea (Açai) Mice C57BL/6 (4 weeks old) male

obese (49)

Seed extract (300 mg/kg/day) for 12

weeks

Obesity↓

Adipose tissue↓

NAFLD ↓

Cholesterol ↓

Coffea arabica (Coffee) Wistar rats (8–9 week old) male

obese (50)

Coffee extract (5 mg/kg/day) for 8

weeks

Obesity ↑

Cardiovascular ↓

Hepatic dysfunction ↓

Hypertension ↓

Malus domestica (Apple) Wistar rats male obese (51) Apple polyphenols (146 mg/kg) for 8

weeks

Adipose tissue ↓

Glucose tolerance ↓

Obesity ↓

Fatty acid oxidation ↑

Leptin level ↓

(Continued)
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TABLE 1 | Continued

Vegetable/fruit Host Diet Main outcomes

Tamarindus indica

(Tamarind)

Sprague-Dawley rats (12 weeks old)

male obese (52)

Tamarind fruit extract (50 mg/kg/day)

for 10 weeks

Obesity ↓

Leptin ↓

Antioxidant ↑

Lipid metabolism ↔

Brassica oleracea var. italica

(Broccoli)

Wistar rats (6–8 weeks old) male

obese (53)

Broccoli extract (14 mg/kg/day) for 10

weeks

Body weight ↓

Adipose tissue ↓

NAFLD ↓

↑, significant increase;↔, unchanged; ↓, significant decrease; IL-6, interleukin- 6; iNOS, inducible nitic oxide synthase; TC, total cholesterol; DM, diabetes mellitus; HDL-c, high-density

lipoprotein cholesterol; HNF-kB, Hepatic nuclear factor-kB; NAFLD, non-alcoholic fatty liver disease; AEF, aortic endothelial function; EVOO, extra virgin olive oil.

are natural sources of anthocyanins and stilbenes (resveratrol
and piceatannol) (26), catechin, quercetin, kaempferol (27),
umbelliferone, epicatechin, phenolic acids (gallic, ellagic,
chlorogenic, caffeic, and coumaric) (34), hydroxytyrosol, tyrosol
(35), curcumin, rutin, chrysin (36), myricetin, isorhamnetin,
hesperidin, narirutin, naringin, apigenin, luteolin, pelargonidin,
cyanidin, delphinidin, genistein, daidzein (37), ellagitannins,
and others (38). The effects of vegetables, fruits and polyphenols
on obesity and its RMDs in animal models are summarized
in Table 1.

Several studies have been reported on obesity and
its RMDs lowering using different extracts from leaves,
flowers, fruits, seeds, rhizome, powder, and EVOO obtained
from wild and cultivated plants regularly administrated
at 3 mg/kg/day to 23 g/kg/day for 3–24 weeks to animal
models (Table 1). Controversially, other studies using dairy dose
administrated from the green tea polyphenols (10–29 mg/kg),
catechin (200 and 400 mg/kg) (54), caffeic acid, quercetin
(2 or 4%) (55), and proanthocyanin grape seed extract (4
g/kg/2 weeks) (56), reported liver, kidney and gastrointestinal
toxicity, which can evolve to inflammation or death, due to
high reactive oxygen species and oxidative stress formation. In
addition, some studies with humans administered polyphenols
showed the same results that can be explained by genetic effects,
ethnicity, gender, eating habits, length of time, lifestyle, and
others (57). Therefore, the reported high health benefits of
regular consumption of polyphenol-rich plants and vegetables
are widely recommended to prevent, control and reduce obesity
and RMDs in humans and animals (57). Likewise, the health
benefit for humans with obesity, that administered vegetables,
fruits and polyphenols for 4–12 weeks are summarized
in Table 2.

THE MAIN ω-3 PUFAs SOURCES

The main sources of ω-3 PUFAs, including ALA, EPA
and DHA are green leafy vegetables, seaweed, seeds,
nuts, vegetable oils, fish and fish oils (68–77). The
vegetable and fish origin ω-3 PUFAs are summarized
in Table 3.

ALA is abundantly obtained in vegetable foodstuff and
microalgae (7–94%) followed by vegetable oils (6–58%) and
freshwater fish (1–4%) (69, 70, 73–77). While EPA and DHA

are the majority in fish oil (7–13% and 9–18%), marine fish (3–
6% and 13–33%), microalgae (13–31% and 2–14%), macroalgae
(3–27% and 1–5%), and fish of freshwater (0.4–3% and 2–9%)
(69, 71–74, 76).

The ω-3 PUFAs and ω-6 PUFAs are essential fatty acids
(cannot be biosynthesized by the mammalian body, including
humans) are required from the diet (78, 79). In the human
body, through to physiology mechanism reactions, which ALA
is converted to long chain PUFAs (LC-PUFAs, fatty acids ≤

C20) and very-long-chain fatty acids (VLCFAs, fatty acids ≥

C22) (78, 79), which the ALA converted rate to EPA and DHA
is 5–8% (80). The biosynthetic process of VLCFAs production,
starting by ALA from the diet to the bloodstream is illustrated
in Figure 2.

When consumed and going through several physiological
reactions in the body, EPA and DHA present positive
effects such as anti-inflammation, vasodilation, bronchodilation
and antiplatelet aggregation (78). Beyond, both acids are
correlated with cyclooxygenase, prostacyclin, thromboxane,
leukotrienes, lipoxins, and resolvins, which play a crucial role
in several beneficial physiologic actions (78, 79, 81). The
consumption of an ω-3 PUFAs-rich balanced diet, including
ALA, EPA, and DHA is correlated with health-improving
and decreasing and or preventing obesity and its RMDs,
such as adipose tissue fat accumulation, insulin resistance,
inflammation, hypertension, atherosclerosis, CVD, CHD, and
DM (4, 78, 79).

However, due to the presence of double bond in carbon-
3 of methyl end (ω-3), including ALA, EPA, and DHA,
ω-3 PUFAs family is susceptible to oxidation by light,
temperature, metal ions and microorganism degradation
during oil extraction and storage by autoxidation reactions
(photochemical and photosensitized oxidation) with 4-
Hydroxy-2-hexenal production (82, 83). These reactions result
in enzymatic oxidation with increase the production of E-
series resolvins from EPA, and D-series Resolvins (DHA),
prostaglandins, thromboxanes, leukotrienes, epoxy products
(84, 85). Besides, the ω-3 PUFAs decrease in amount during
food confections by thermal processing, while in inversely
proportion occurs the increasing of degradation and hazard
oxidized substances that damage cell membranes (86, 87).
The oxidation products are higher in fried, followed by
roasted, and boiled foods, which present the same proportion
of oxidative products when compared to raw food (88, 89).
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TABLE 2 | Effects of polyphenols from vegetables and fruits intake on obesity and its related metabolic diseases outcomes in human subjects.

Vegetable/fruit Host Diet Main outcomes

Vitis vinifera (Grape) Men and women (20–60 years old)

obese (58)

Grape powder (4,600 mg/day) for 9

weeks

LDL-c ↓

IL-1β ↑

IL-6 ↑

Vaccinium macrocarpon

(Cranberry)

Men and women (30–70 years old)

obese (59)

Cranberry extract beverage (450

mL/day) for 8 weeks

Glucose regulation ↑

HDL-c ↑

Serum insulin ↓

CVD ↓

Inflammation ↓

Mangifera indica (Mango) Women (25–45 years old) obese Peel powder of mango (1 g/2 × day)

for 12 weeks

LDL-c ↓

Triglyceride ↓

HDL-c ↑

Olea europaea (Olive) Women (27 years old) obese (60) EVOO (25 mL/day) for 9 weeks HDL-c ↑

BW ↓

Blood pressure ↓

Inflammation ↓

Oxidative stress ↓

Dyslipidemia ↓

Citrullus lanatus

(Watermelon)

Men and women (18–55 years old)

obese (61)

Watermelon fruit (2 cups = 152

g/day) for 4 weeks

BW ↓

Blood pressure ↓

CVD ↓

Blood lipid profile ↑

Antioxidant status ↑

Ilex paraguariensis (Yerba

mate)

Men and women (35–60 years old)

obese (62)

Yerba mate tea (500 mL/2 × day) for

4 weeks

Serum level ↑

HDL-c ↑

Atherosclerotic

diseases protection ↑

Lippia citriodora and

Hibiscus sabdarifa

Women (36–69 years old) obese (63) Combination polyphenol extract (500

mg/day) for 8 weeks

BW ↑

Fat metabolism ↑

Adiposity ↑

Citrus sinensis (Orange) Women (29–43 years old) obese (64) Orange juice (250 mL/×day) for 12

weeks

Total cholesterol ↑

LDL-c ↑

Inflammation ↓

Fragaria ananassa

(Strawberry)

Men and women (20–50 years old)

obese (65)

Strawberry powder (2 servings = 160

g/day) for 7 weeks

CVD ↑

Stroke ↑

Diabetes ↑

Cinnamomum verum

(Cinnamon)

Men and women (40–50 years old)

obese (66)

Cinnamon extract (250 mg/2 × day)

for 12 weeks

Diabetes ↑

CVD ↑

Free radical ↑

Helianthus annuus

(Sunflower)

Men and women (18–65 years old)

obese (67)

Sunflower seed extract (500 mg/day)

for 12 weeks

BW ↑

BMI ↑

Cholesterol ↑

Lipid metabolism ↑

↑, significant increase; ↔, unchanged; ↓, significant decrease; LDL-c, low-density lipoprotein cholesterol; HDL-c, high-density lipoprotein cholesterol; CVD, cardiovascular disease;

WC, waist-circumference; BMI, body mass index; TG, triglyceride; BW, body weight; BG, blood glucose; DM, diabetes mellitus; EVOO, extra virgin olive oil; IL-6, interleukin-6;

IL-1β, interleukin-1β.

The frying and roasting food confections release the most
oxidative products (4(RS)-4-F4t-NeuroP, 4-Hydroxy-2-
hexenal production, and others), which are correlated
with obesity, CVD, inflammation, hypertension, and others
diseases (82, 83).

Therefore, the application of natural antioxidant compounds
such as carotenoids, tocopherols, tocotrienols, phytostanols,
phytosterols, and ascorbic acid are recommended due
to their symbiotic and synergistic interactions decrease
oxidation and thermal degradation, prolonging the
shelf life of ω-3 PUFAs during the period of storage
(90–92).

DIETARY EPA AND DHA DIETS BENEFITS
ON OBESITY AND ITS RMDs

Diets consumption rich in vegetables and fish and their by-
products are correlated with reducing obesity and its RDMs
effects for presenting ALA, EPA, and DHA in their composition
(4, 78, 79), and for animal models are summarizing in Table 4.

Obesity and its reduction in RMDs have been reported
in animal studies that consumed for 3–20 weeks EPA from
vegetable/fruit and cafeteria diets (33 mg/g/day to 1,000
mg/kg/day), EPA mixed with DHA (2–5,300 mg/g and 3–9,400
mg/g/day), ALA (92 g/kg/day), ω-3/ω-6 (1:1), and linoleic acid
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TABLE 3 | Contents of n-3 PUFAs and their vegetable and fish sources used in human food.

Source Food ω-3 PUFAs (%) References

ALA EPA DHA

Vegetable Moringa oleifera (flower, pod, leaf) 18.8–54.3 0 0 (68)

Brassica spp. 7.0–20.0 0 0 (69)

Lactuca sativa (baby-leaf) 44.0–55.0 0 0 (77)

Solanum spp. (leaf) 50.0–54.0 0 0 (70)

Flax and chia seed 22.8 0 0 (69)

Vegetable oil Linum usitatissimum (seed) 53.0–58.3 0 0 (69)

Brassica spp. (seed) 6.8–20.2 0 0 (69, 75)

Glycine max (seed) 6.0–15.9 0 0 (69)

Macroalgae Phaeophyta spp. 0 6.6–14.4 0.8–1.5 (71)

Rhodophyta spp. 0 2.9–27.3 4.9 (71)

Microalgae Chroomonas mesostigmatica 60.3 30.5 1.7 (72)

Guillardia theta 56.7 14.9 3.0 (72)

Hemiselmis sp. 53.2 21.2 5.1 (72)

Proteomonas sulcata 58.5 12.7 12.6 (72)

Rhodomonas salina 48.8 17.2 11.2 (72)

Storeatula major 41.9 16.0 10.0 (72)

Teleaulax spp. 43.3–46.2 23.6–26.0 12.7–14.3 (72)

Fish of freshwater Pimelodus spp. 1.3–3.9 0.4–1.3 1.9–8.2 (73)

Ageneiosus brevifilis (Palmito) 0.9 0.7 8.7 (73)

Aspius aspius (Asp) 2.2 2.6 5.2 (74)

Barbus barbus (Common brarbel) 3.4 2.9 5.6 (74)

Acipenser ruthenus (Sterlet) 4.3 2.9 3.8 (74)

Esox lucius (Northern pike) 2.6 1.6 7.6 (74)

Fish of marine water Caranx hippos (Crevalle jack) 0 3.1 17.6 (74)

Thunnus thynnus (AB tuna) 0 4.8 32.5 (76)

Scomberomorus maculatus (AS mackerel) 0 5.6 12.6 (76)

Fish oil Sardine pilchardus (sardine) 0 10.1 10.7 (69)

Brevoortia tyrannus (menhaden) 0 13.2 8.6 (69)

Salmon spp. (salmon) 0 13.0 18.2 (69)

Gadus morhua (cod liver) 0 6.9 11.0 (69)

PUFAs, Polyunsaturated fatty acids; ALA, α-linolenic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid.

(LA) plus ALA (2:1) (93, 94, 99, 100, 102–104). These positive
effects observed are correlated with ω-3 PUFAs that improve
and repair several organs for normal function linked to hepatic
organ for better lipogenesis, insulin resistance, lipid homeostasis,
adipocytes function, β-oxidation, and increasing leptin and
adiponectin production, pro-inflammatory mediators reducing
from LA and arachidonic (AA) acids (78, 79, 81). However, some
studies reported a discrepancy effect of ω-3 PUFAs to diabetes,
cholesterol, plasma glucose (105), overweight and obesity (106),
inflammatory cytokines (107), cardiovascular diseases, and
others (108). These ω-3 PUFAs fail results can be associated
with its preparation, doses quantity, administration duration
period, subject target, statistics, and other factors (109, 110).
Therefore,ω-3 PUFAs regular consumption is recommended due
to numerous studies that demonstrated strong positive effects
against several metabolic diseases in animal models and human
subjects, as summarized in Table 5.

Furthermore, lowering obesity and its RMDs were observed
for human subjects daily administered 2× 2 g of flaxseed powder,
as well as in proportion of 4:1 and 2:1 of LA and ALA for 1 and 2
weeks (111, 112), EPA daily dosed 3 × 300mg or 3 × 600mg,
dose of 1,800mg during 12 weeks and 5 years (114–116), and
doses of EPA and DHA during 8–25 weeks in proportions of
1:1.5, 1.5:1, and 1:4 (117–119).

POLYPHENOLS AND ω-3 PUFAs
MECHANISMS ON OBESITY AND ITS
RMDs

Increasing of obesity and its RMDs are already observed from
childhood to elderly individuals and have become a public health
problem in modern society (120, 121). A practical alternative
against obesity and its RDMs in humans can be associated
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FIGURE 2 | Biosynthesis pathway of very-long-chain polyunsaturated fatty acids (LC-PUFAs) and very long-chain fatty acids (VLCFAs) in the human body starting by

the α-linolenic acid (ALA) obtained from the diet. The LC-PUFAs and VLCFAs biosynthesis process occurs in hepatic cell mitochondria and peroxisome. These acids

reach the bloodstream, which are conducted to different body parts for health benefits.

with diet-rich in polyphenols and ω-3 PUFAs in composition,
including their by-products (112). In the body, polyphenols
and ω-3 PUFAs (DHA and EPA) physiologically act protecting
and inhibiting cascade inflammatory reaction processes that can
evolve into obesity, diabetes, CVD, hypercholesterolemia, and
others metabolic diseases (122, 123). Thus, mechanisms that
polyphenols and ω-3 PUFAs are involved in the body, which are
crucial to prevent several metabolic diseases, which can be used
as adjuvant therapy, are summarized in Figure 3.

In the liver, PUFAs are metabolized and converted into
prostaglandins (PGE2) and leukotrienes, which reach the
inflammation site being converted into lipoxins, resolvins,
protectins, and maresins, which will stimulate type 2
macrophages more so than the type 1 kind, leading to the
production of anti- inflammatory interleukins (124, 125).
Likewise, polyphenols are absorbed in the intestine after being
hydrolyzed by intestine enzymes and the host’s microbiota
(126). Then, the resulting molecules can interact with free
radicals and inhibit enzymes involved in the AA pathway,
modulating the inflammatory response and blocking the AA

pathway (14). Besides that, endothelial cells are also being
stimulated by both products from polyphenols and ω-3 PUFAs
metabolization to produce NO and H2S in the first case, which
will aid the resolution of the inflammatory situation and the
tissue regeneration, or trigger signaling cascades by interacting
with cell membrane receptors such as vascular endothelial
growth factor (VEGF) or blocking p-AKT, NF-κB, and MMP-9
activities (122, 127).

The mechanisms involved in balancing the inflammatory
process are the change of the phospholipid fatty acid composition
of the cell membrane, inhibition of the NF-κβ activation,
thus reducing the expression of pro-inflammatory genes and
production of resolving mediators by macrophages (122).

CONSUMER BEHAVIOR CHANGES ON
OBESITY AND ITS RMDs

Choosing daily healthy food type intake is the chief component
and managed by humans to improve their own and all
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TABLE 4 | Effects of EPA and DHA intake on obesity and related metabolic diseases outcomes in animal models.

Host Diet Main outcome

Rats Wistar (6 weeks old) overweight male (93) EPA ethyl ester of cafeteria diets (1,000

mg/kg/day) for 5 weeks

Body weight ↓

Adipose tissue ↓

Inflammation ↓

Insulin resistance ↓

Rats JCR:LA-cp (3 weeks old) obese male (94) EPA (5,300mg) + DHA (9,400mg/kg/day) for 3

weeks;

Body weight ↓

TG ↓

LDL-c ↓

HDL-c ↑

Rats Wistar (8 weeks old) liver triacylglycerol

and insulin resistance male (95)

Fish oil: EPA (328mg) + DHA (440mg)/kg/day)

for 4 weeks

Hepatic β-oxidation ↑

Hepatic lipogenesis ↓

Mice C57BL/6J (5 weeks old) metabolic

syndrome male (96)

Fish and algal oils EPA + DHA oral

administrated for 11 weeks

1. EPA (0.03mg) + DHA (0.06mg)/kg/day

2. EPA (0.05mg) + DHA (0.05mg)/kg/day

3. EPA (0.06mg) + DHA (0.03mg)/kg/day

Body weight ↓

LDL-c ↓

Steatosis ↓

Inflammation ↓

TG ↓

TC ↓

Mice C57BL/KsJ-leprdb/leprdb (7 weeks old)

obese and DM male (97)

EPA (15mg) + DHA (8mg)/g/day) for 6 weeks Adipose tissue ↓

Mice Elovl2 -/- weight gain (98) Low sucrose + DHA (10,000 mg/kg/day) for 4

weeks

BW ↓

Mice Elovl2 -/- or Wilde-type weight gain (98) High sucrose + DHA (10,000 mg/kg/day) for 4

weeks

BW ↑

Mice C57BL/6J (6 weeks old) obese male (99) HFD-EPA (2mg) + DHA (5mg)/g/day for 8

weeks

Adipose tissue ↓

Inflammation ↓

Rats Sprague-Dawley (3 weeks old) obese and

insulin resistance male (100)

ω-3 + ω-6 PUFAs (83,000 +83,000

mg/kg/day) for 16 weeks

Blood lipid ↓

Body and visceral fat ↓

Glucose tolerance and insulin

sensitivity ↑

Pro-inflammatory cytokines ↓

Mice C57BL/6J (3 weeks old) metabolic

syndrome male (101)

ALA (92 mg/kg/day) for 10 weeks Positive hepatic expression ↑

Metabolic parameters ↑

Glycemic parameters ↑

Rats Sprague-Dawley (3 weeks old)

inflammation bowel male (102)

LA + ALA (2 g + 1 g/100 g/day) for 12 weeks Colonic inflammation ↓

Colon length ↑

Pro-inflammatory cytokines ↓

Colon ω-3 PUFAs ↑

Rats Wistar (3 weeks old) metabolic syndrome

male (103)

Supplement marine algae

Phaeodactylum tricornutum (EPA =33

mg/g/day) for 8 weeks

BW ↓

Fat mass ↓

Inflammation ↓

Insulin resistance ↓

TC ↓

Triacylglycerol ↓

Leptin ↓

Mice C57BL/6J (6 weeks old) hepatic steatosis

and metabolic syndrome male (104)

Fruits and vegetable powder mixed (EPA = 340

mg/g) for 20 weeks

Weight body ↓

Hepatic steatosis ↓

Inflammation ↓

Blood and liver ceramides ↓

↑, significant increase; ↓, significant decrease; LA, linoleic acid; ALA, linolenic acid; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; ω-3 PUFAs, omega-3 polyunsaturated

fatty acids; HFD, high-fat diet; LDL-c, low-density lipoprotein cholesterol; HDL-c, high-density lipoprotein cholesterol; TC, total cholesterol; TG, triglyceride; DM, diabetes mellitus; BW,

body weight.

family healthy lifestyle (128). Among the several factors of
healthy lifestyle or prevalence of obesity and its RMDs can be
associated with regular or irregularly and healthy or unhealthy
daily food consumed in each meal (22, 129). In addition,
it may also be associated with the lower purchase price of
unhealthy foods on the market compared with healthy ones,
whose edible parts (leaves, peel, flesh, seeds, and others)

are wasted in homes, restaurants and other food enterprises
due to their lack of nutritional knowledge (130, 131). In
addition, also it is known that refined sugar is often always
added to edible vegetables, fruits, natural juices and other
by-products and other beverages, which can be associated
with obesity, overweight, CVD, and other metabolic diseases
prevalence (132).
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TABLE 5 | Effects of EPA and DHA intake on obesity and its related metabolic diseases outcomes in human subjects.

Host Diet Main outcome

Men and women DM (57–68 years old) (111) Flaxseed powder ω-3 PUFAs–ALA-rich (5 g/2

× day) for 4 weeks

HDL-c ↑

LDL-c ↓

TC ↓

Triglycerides ↓

Men and women hypercholesterolemic (36–65

years old) (112)

LA (20 or 40 g) + ALA (10 g)/day for 1 week TC ↓

LDL-c ↓

Triglycerides ↓

CVD risk ↓

Inflammation ↓

Men and women CVD (≥ 30 years old) (113) EPA (600 g) + DHA (1,500mg)/day from

microalgae Schizochytrium sp. oil for 4 weeks

LDL-c ↑

HDL-c ↑

LDL/HDL ↔

CVD ↔

Men and women obese and DM (≥ 85 years

old) (114)

EPA (1,800 mg/day) in capsule for 12 weeks BMI ↓

Insulin ↓

LDL-c ↓

HDL-c ↓

TC ↓

TG ↓

Men and women major coronary artery disease

(mean 62 years old) (115)

EPA (600 mg/3 × day) for 5 years DM ↓

Hypertension ↓

LDL-c ↓

HDL-c ↓

TG ↓

Men and women hypercholesterolemic ≥ 6.5

mmol/L (≥ 40 years old) (116)

EPA (300 mg/3 × day) capsuled for 5 years Stroke ↓

LDL-c ↑

HDL-c ↓

TG ↓

Women (8–20 weeks gestation) obese (≥ 27

years old) (117)

EPA (800mg) + DHA (1,200mg)/day for 25

weeks

Inflammation ↓

Men and women (28–60 years old)

hypertensive and/or diabetic (118)

EPA (300mg) + DHA (200mg)/day capsuled

for 8 weeks

Inflammation ↔

TC ↔

TG ↓

BG ↓

Women pre-menopausal elevated triglyceride

(< 18 or > 40 years old). (119)

Tuna oil DHA (135mg) + EPA (35mg)/day for 8

weeks

TG ↓

Blood pressure ↓

HDL-DHA ↑

LDL-DHA ↓

VLDL-TG ↓

↑, significant increase; ↓, significant decrease;↔, unchanged; BMI, body mass index; BG, blood glucose; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; LDL-c, low-density

lipoprotein cholesterol; HDL-c, high-density lipoprotein cholesterol; VLDL, very low- density lipoprotein; TC, total cholesterol; TG, triglyceride; DM, diabetes mellitus; CVD, cardiovascular

diseases; ALA, α-linolenic acid; LA, linolenic acid; ω-3 PUFAs, omega-3 polyunsaturated fatty acids.

Thereby, Figure 4 summarizes food types that improve
healthy life (green line), which oil rich in ω-3 PUFAs, oleic acid
and short-chain fatty acid are widely recommended (4). Daily
at least 400mg of natural and/or native fruits and vegetables
(133), while weekly 3 × 150 g of fish are recommended (134).
Furthermore, fruits, vegetables and fishes are natural sources
of macro- and microelements, vitamins, resistant nutrients,
free sugars and fibers, which play a crucial role in microbiota
balance, satiety, gut health and act as antioxidants in the
body, improving and/or impeding obesity and others prevalent
metabolic diseases (135–137).

Paradoxically, nowadays, meals rich in vegetables and fruits
are associated with poor and traditional peoples, while meat
and sweetened ones are associated with rich and modern life
(24, 138, 139). The consumption of foods marked by the red

line (Figure 4) must be reduced, because they are sweetened
and fatted, including long-chain saturated fatty acids (mainly
myristic and palmitic acids),ω-6 PUFAs and industrialized trans-
fatty acids present high amounts of calories in their composition,
which are primarily associated with obesity and its prevalent
RDMs (134).

Hence, for human behavior changes, joint activities between
Universities, Research Centers, Health Ministries, and others
will be legally necessary constitution of Departments that
could be responsible by outline joint projects and approaches
for health promotion through seminars, and lectures to
implement in schools (Primary and Secondary), enterprises
and families to promote healthy food cooking, sale, and
intake to pave the way to reduce obesity and its RMDs
prevalence (140–144).
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FIGURE 3 | Mechanism involved in an inflammatory condition and its resolution using ω-3 PUFAs and polyphenols dietary. The action of products from PUFAs

metabolization (hepatic biosynthesis or tissue under inflammation), lipoxins, resolvins, protectins, and maresins on macrophage profile change and the endothelial

cells. As a result, there are anti-inflammatory interleukins, nitric oxide (NO) and hydrogen sulfite (H2S) being produced, which will provide the resolution and tissue

regeneration. Products from polyphenols metabolization are also connected with this anti-inflammatory pathway to several organs in the body. M1, type 1

macrophages; M2, type 2 macrophages; IL, interleukin; TNF-α, tumor necrosis factor-alpha. Green lines mean resolution of the inflammatory process and red lines

mean the uncontrolled inflammatory process leading to an inflammatory cascade.

FIGURE 4 | Healthy food (green line) intake reduce obesity to normal conditions, while unhealthy food (red line) conduces to obesity and its related metabolic diseases.

CONCLUSION

The consumption of vegetables, fruits, seed and fish and/or
supplements rich in polyphenols and ω-3 PUFAs is widely
correlated with reducing of obesity and its related metabolic

diseases prevalence. Thus, for behavior change, it is necessary
to draw out a joint projects of research institutions and
the Health Ministries to schools, enterprises and families to
promote healthy food intake to reduce obesity and its related
metabolic diseases.
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