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The Solanum genus is the largest in the Solanaceae family containing around 2,000

species. There is a great number of edibles obtained from this genus, and globally, the

most common are tomato (S. lycopersicum), potato (S. tuberosum), and eggplant (S.

melongena). Other fruits are common in specific regions and countries, for instance,

S. nigrum, S. torvum, S. betaceum, and S. stramonifolium. Various reports have

shown that flavonoids, phenolic acids, alkaloids, saponins, and other molecules can be

found in these plants. These molecules are associated with various health-promoting

properties against many non-communicable diseases, the main causes of death

globally. Nonetheless, the transformations of the structure of antioxidants caused by

cooking methods and gastrointestinal digestion impact their potential benefits and must

be considered. This review provides information about antioxidant compounds, their

bioaccessibility and bioavailability, and their health-promoting effects. Bioaccessibility

and bioavailability studies must be considered when evaluating the bioactive properties

of health-promoting molecules like those from the Solanum genus.

Keywords: solanum, antioxidant, bioactive, bioaccessibility, bioavailability, eggplant

INTRODUCTION

The numerous species of the Solanum genus are distributed mainly in tropical and subtropical
areas around the globe; these are used in folk medicine or food crops. The positive effects on
the human health of these plants are linked to their content of phenols, alkaloids, saponins,
terpenes, flavonoids, coumarins, and carotenoids (1, 2). Some have been reported with anticancer,
antioxidant, antidepressant, antihypertensive, anti-inflammatory, hypolipidemic, hypoglycemic,
hepatoprotective, anti-obesogenic, and antidiabetic properties (1–4).

In addition, there are reports regarding the bioaccessibility and bioavailability of these
molecules. Bioactive compounds are subjected to modifications during processing and
gastrointestinal digestion. Moreover, those that permeate the intestinal barrier are metabolized, and
then most are distributed for excretion. Thus, the bioavailability of bioactive molecules is often low
(5). The low bioavailability of bioactive compounds can hinder their potential bioactive effects on
human health. Thus, they are important factors to consider during in vitro and in vivo evaluations.
The present document focuses on consumables matrices and those with potential bioactive effects.
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A summary of the compounds identified and isolated from
Solanum species and their potential bioactive properties can be
found in Table 1.

Phenolic Compounds
Phenolics have at least one aromatic ring with one hydroxyl
group in their structure. Phenolics can be classified into
flavonoids and non-flavonoids (25). One of the most common
species worldwide is S. lycopersicum, which is reported with large
concentrations of phenolic like chlorogenic acid, resveratrol,
quercetin, and myricetin (31–33). Moreover, S. tuberosum,
has been reported with high concentrations of phenolics in
the peels, mainly phenolic acids, especially chlorogenic acid
(34). Furthermore, S. melongena, where hydroxycinnamic acid
derivatives are reported as major phenolics (35). Also, S.
nigrum had as major compounds myricetin, 3,4-dicaffeoylquinic
acid, 3-caffeoylquinic acid, 5-caffeoylquinic acid, and 4,5-
dicaffeoylquinic (36). S. betaceum had chlorogenic acid and
3-O-caffeoylquinic acid as major compounds (37). The S.
stramonifolium plant reports high concentrations of phenolics,
and the root extract presents anticancer effects (38). Less
common species such as S. scabrum and S. burbankii have
the presence of petunidin, delphinidin, and malvidin (39).
Some health-related effects of the main phenolics present
in this genus are antioxidant, anti-inflammatory, antidiabetic,
cardioprotective, and anti-obesity. Phenolic compounds from
diverse sources are highly unstable during the gastrointestinal
digestion and have low bioavailability (3, 40).

Alkaloids
Alkaloids are compounds with at least one nitrogen atom
in their structure. They can be classified according to their
origin, chemical characteristics, or depending on the biosynthetic
pathway from which they were derived. However, we can
mostly find them classified as true alkaloids, protoalkaloids,
and pseudoalkaloids (41). The genus Solanum is within the
Solanaceae family and is recognized for its alkaloid content
and anti-proliferative effects. Other health-promoting effects
attributed to alkaloids are antioxidant, antidiabetic; they are
considered potential drugs for treating neurodegenerative
disorders such as Huntington disease, Parkinson’s disease,
epilepsy, schizophrenia, and Alzheimer’s disease (2, 42, 43).
In S. tuberosum, dehydrochaconine, chaconine isomers, α-
chaconine, solanidadienol chacotriose, solanidadiene solatriose,
solanidenol chacotriose, α-solanine, leptine II, α- solanine, α-
chaconine, dehydrocommersonine, commersonine, demissine,
sisunine, are distributed in different parts of the plant (12, 44–
48). Likewise, in S. lycopersicum, the compounds α-tomatine and
dehydrotomatine are synthesized mainly in the fruit and can
also be found in aglycone form as tomatidienol and tomatidine.
Esculeoside A and B, dehydrotomatoside also are isolated from
the fruit (44, 49–51). In S. melongena, α-solamargine, α-solanine,
solasonine, and solasodine have been reported in fruit, root,
and peel (1, 44, 49, 50). In addition, Lelario, De Maria (52)
reported presence of solanidenetriol chacotriose, solanidenedio
chacotriose, dehydrosolamargine, solanandaine isomer I, II
and II, solanandaine, robenoside B, spirosolenol chacotriose,

malonyl-solanandaine, solanidatetraenol chacotriose, arudonine,
and malonyl-solamargine. Other species of therapeutic interest,
such as S. torvum have shown the content of solasodine,
solasonine, and solamargine (53–56). Likewise, S. nigrum
presents solanine and other steroidal glycoalkaloids, such as
solasodine, α and β-solamargine, β2-solasonine, solasonine,
solamargine, and 12β, 27-dihydroxy solasodine (57–59).

Saponins
Saponins are glycosidic compounds consisting of an aglycone
(sapogenin) linked to one or more o oligosaccharide moieties.
Saponins are classified according to their structure into steroidal
or triterpenoid (60, 61). Most saponins are poorly absorbed
in the intestine, have foaming properties in aqueous solutions,
exert a hemolytic effect, and cause a bitter taste and astringency
(60). Nonetheless, they have been proved to have potential
health benefits with anti-insulin resistance and anti-obesogenic
effects (62). Saponins obtained from Solanum species have
shown antitumor, anti-inflammatory, antiviral, antimycotic,
antioxidant, hypoglycemic, and hypolipidemic activities (63).
In S. melongena, the presence of saponins has been reported
especially in the seeds; cholestane-type steroidal melongosides-
N, O, P, R, S (64), as well as furostanol-type steroidal saponins,
melongoside T-V (63). Saponins isolated from S. melongena peels
showed inhibition of the enzyme lipase, which was more effective
than the drug used as control (orlistat) (8). Diosgenin is present
in dietary Solanum species and has been isolated to study its
health-promoting effects: modulating oxidative stress, improving
lipid profile, and regulating mitochondrial dysfunction pathway
(65). In S. surattense at least 11 different saponins have been
isolated and shown in vitro cytotoxic activities against cancer
lines (66). The fruits from S. torvum have various steroidal
saponins, proven to have anticancer effects against breast, liver,
gastric, and lung cancer lines (9, 67).

Carotenoids
Carotenoids are lipophilic isoprenoid compounds, classified as
cyclic or acyclic according to the presence or absence of an end
ring on their structure (68–71). The most common carotenoids
found in blood plasma are lycopene, β-carotene, and lutein
(72). Several health benefits have been attributed to carotenoids
like immunomodulators (73, 74), improving eye (75, 76), heart
health (77), protecting skin from UV damage, improving brain
functions during childhood (78), cancer prevention (79), among
others (69). In the Solanum genus, S. lycopersicum has been
an outstanding source of carotenoids, lycopene being the most
common (2, 70). Thus, the tomato fruit and its products are
the principal sources of lycopene for humans (71). Other types
of carotenoids are found in different tomato cultivars are β-
carotene, phytoene, and phytofluene (80–82). S. phureja has
zeaxanthin, violaxanthin, antheraxanthin, lutein, and β-carotene
(83). A worldwide important crop S. tuberosum is a great
source of β-carotene, astaxanthin, and zeaxanthin (71). Less
common sources of carotenoids have been found, for example,
S. betaceum (yellow tamarillo) and S. sessiliflorum (cocona).
The yellow tamarillo is known for its carotenoid content, being
β-cryptoxanthin, β-carotene, zeaxanthin, and lutein, the most
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TABLE 1 | Phytochemicals of Solanum species and their biological effects.

Solanum

species

Part Isolated compound Metabolite

concentration

Effect References

S. melongena Root Cannabisin D

Cannabisin F

Cannabisin G

Grossamide

Melongenamide B

Melongenamide C

Melongenamide D

IC50 values:

5.1.1µM

16.2µM

50.5µM

26µM

44.4µM

16.4µM

58.5 µM

Anti-inflammatory: reduced NO production in

LPS-stimulated RAW 264.7 macrophages

(6)

N-trans-Feruloyltyramine IC50 value: 5.3µM Anti-diabetic: inhibits enzyme α-glucosidase. (7)

Peel Isolated saponins (no specified) 1.2–9.9mg Anti-obesogenic: inhibits enzyme pancreatic lipase. (8)

S. torvum Aerial Torvoside M IC50 value:

25.2–34.2µg/mL

Anti-cancer: cytotoxic activity against cancer cell lines

MGC-803, HepG2, A549, and MCF-7.

(9)

Neochlorogenin

6-O-[β-D-xylopyranosyl-(1→3)-β-D-

quinovopyranoside]

IC50 Value:

2.87µM

Anti-neutrophilic inflammatory: reduced O2- generation. (10, 11)

Fruit 25(S)-26-O-β-D-glucopyranosyl-5αfurost-

22(12)-en-3β,6α,26-triol-6-O-[α-L-

rhamnopyranosyl-(1 →

3)-O-β-D-quinovopyranoside]

25(S)-26-O-β-D-glucopyranosyl-5α-furost-

22(12)-en-3-one-6α,26-diol-6-O-[α-L-

rhamnopyranosyl- (1 →

3)-O-β-D-quinovopyranoside]

25(S)-26-O-β-D-glucopyranosyl-5α-furost-

22(12)-en3β,6α,26-triol-6-O-β-D-

quinovopyranoside

5α-pregn-16-en-20-one-3β,6α-diol-6-O-[α-

Lrhamnopyranosyl-(1

→ 3)-β-D-quinovopyranoside]

IC50 values:

30–260µM

Anti-cancer: cytotoxic activity against human melanoma

cell lines.

(13)

Root Torvanol A IC50 value:

9.6µg/mL

Antiviral: activity against herpes simplex virus type 1

(mechanism not specified)

(14, 15)

Seeds Tovanol A 10 and 30 mg/kg Antidepressant and anxiolytic: modulation of the

noradrenergic, dopaminergic, serotonergic and

gabaergic mechanisms.

Fruit Methyl cafeate 3 mg/mL Antiproliferative: Increased activity of caspases-3 and

PARP. Bcl-2 protein is down regulated; Bid and Bax are

up regulated.

(16–20)

S. cernuum Leaf Cycloeucalenone, 24-oxo-31-norcycloartanone 300 and 600

mg/kg

Analgesic and anti-inflammatory: Produced inhibition on

writhing by acetic acid.

(21)

S. lyratum Whole Solajiangxin A-C ED50 value:

1.9–3-7µg/mL

Anti-cancer: cytotoxicity against mouse lymphocytic

leukemia, human nasopharyngeal and human colon

adenocarcinoma.

(22)

S.

septemlobum

Whole Septemlobin A-C IC50 value:

3.8–7.5µM

Anti-cancer: inhibited growth of three cancer cell lines

(P-388, HONE-1, HT-29)

(23)

S. anguvi Fruit Gallic acid

Chlorogenic acid

Caffeic acid

Rutin

Quercetine

17.54 mg/g

21.90 mg/g 16.64

mg/g 14.71 mg/g

7.39 mg/g

Antioxidant.

Free radical scavenging, iron-chelation activity. Inhibit

cerebral and hepatic lipid peroxidation.

(24)

S. betaceum Fruit Keracyanin, Pelargonidin 3-rutinoside,

Tulipanin, Delphinidin 3-O-α-l-rhamnosyl-(1–5,

25)-β-dglucoside-3
′

-O-β-d-glucoside

Not specified Antioxidant.

Capabilty of capturing free radicals due to the presence

of hydroxyl groups in the ortho position.

(26, 27)

S.

elaeagnifolium

Aerial Kaempferol 8-C-β-d-galactoside 25–75 g/kg Hepatoprotective.

Curative effect against histopathological and

histochemical damage in liver. Aminorates elevation

of aminotranferases.

(28)

S.

americanum

Aerial N-trans-pcoumaroyloctopamine,

N-trans-p-coumaroyltyramine

IC50 values:

2.3µM

2.7 µM

Anti-diabetic: inhibits enzyme α-glucosidase. (29)

S.

capsicoides

Seed Carpesterol GI50 values:

24–32µg/mL

Antiproliferative: Inhibits proliferation of human cancer cell

lines (glioma, breast, kidney, ovary and erithrolukemic).

(30)
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abundant (84). Cocona is rich in lycopene and presents higher
levels of β-carotene than tomato (85). Carotenoids are pro-
vitamin A compounds, a key vitamin for growing, seeing,
protecting against diseases, and for reproduction (2).

BIOACCESSIBILITY OF ANTIOXIDANTS IN
SOLANUM EDIBLES

It is important to consider the structural changes antioxidants
suffer after ingestion. Processing is a starting point in this
journey, from cutting or mashing to boiling, baking, or even
freezing, that can help release antioxidant compounds, thus
increasing their bioaccessibility. Cooking in water can reduce
the content of hydrosoluble compounds but cooking with oil
can cause synergy and increase the bioaccessibility of lipophilic
antioxidants. High temperatures break down cell walls and
could increase phytochemicals bioaccessibility, but thermolabile
compounds are highly degraded (86). Bioaccessibility is studied
using different models to simulate gastrointestinal digestion,
allowing researchers to calculate the portion of phytochemicals
available for absorption. Phytochemicals can be released from
the food matrix due to the simulated conditions based
on the physiological data of digestion: electrolytes, digestive
enzymes, dilution, pH, and time of digestion (87). Therefore,
gastrointestinal digestion can degrade and transform antioxidant
compounds, especially those that are highly sensitive to pH
changes, such as anthocyanins. Digestive enzymes can also
breakdown phytochemicals; like phenolic compounds attached
to sugars. Enzymes like the lactase phloridzin hydrolase can
hydrolysate sugar moieties from glycosylated bioactive molecules
(5, 88).

Eggplant total phenolic content (TPC) was reported before
and after four different cooking methods: baking, boiling, frying,
and grilling. Antioxidant activity was determined using the ABTS
assay, and reducing capacity was quantified using the FRAP
(ferric reducing/antioxidant power) assay. Results indicated that
TPC was improved >300% by frying, 67% by baking, and 42%
by boiling. Grilling eggplant decreased TPC by 34.5%. Raw,
boiled, and baked eggplant samples subjected to in vitro digestion
showed bioaccessibility of TPC of 112.5, 93.4, and 101.8%,
respectively; this suggests that phenolic compounds were released
after in vitro digestion. Fried undigested samples showed the
highest amount of TPC, but once the simulated digestion was
performed, the bioaccessibility was 67%, the lowest compared to
the other three samples. Grilling and in vitro digesting eggplant
showed that bioaccessibility of TPC went up to 217.4%. The
ABTS and FRAP results were consistent with the TPC in all
digested and undigested samples. There were two exceptions: the
digested boiled samples in the ABTS assay and the raw samples in
the FRAP assay. The boiled digested samples increased by 336.4
%; this could be because the phenolic compounds reactive to the
ABTS radical were released only after the simulated digestion.
Moreover, in the second case, a bioaccessibility of 24% was
attributed to a failure in extracting the reducing compounds
during digestion, assuming the solvent used with the raw samples
was more efficient than in vitro digestion (35). Thus, it is

suggested that cooking can break down cell walls releasing
antioxidants and can increase their bioaccessibility; however, they
can also be more susceptible to degradation.

Drying methods have been assessed to preserve the phenolic
content and the antioxidant capacity of S. melongena. Freezing,
drying tunnel, and drying oven methods were evaluated,
combined with slicing and mincing the eggplant. Results indicate
that sliced eggplant dried at 45–50◦C in a drying oven was
the best option to obtain a flour rich in bioactive compounds.
In the same study, freezing the material had a negative effect
on this objective (89). A study was conducted using tomato
products to determine the bioaccessibility of lycopene. The
tomato pulp was processed by high-pressure homogenization
and microwave heating into different end-products in the
presence of three different oils: coconut, olive, and fish. High-
pressure homogenization, followed by heating at 90◦C, increased
the bioaccessibility of lycopene. It hypothesized that these
processes damage the cellular barriers allowing lycopene to be
more bioaccessible (90).

The bioaccessibility of β-carotene in grape tomatoes ranged
between 14 and 31%, considering they used two different
digestion methods (91). Common home processes like paste
processing and drying significantly increased total lycopene,
phenolic, and flavonoid content, as well as the total antioxidant
capacity. It is suggested that thermal processing disrupts
cell membranes and cell walls, releasing lycopene from the
insoluble portion of the matrix (92). Synergic interactions have
been identified to benefit bioaccessibility. For instance, red
cabbage was co-digested with different vegetables, enhancing
bioaccessibility of total anthocyanins by 10–15% when samples
were carotenoid-rich, like tomatoes. In contrast, the carotenoid
bioaccessibility was decreased by 42–56%. This example of
phytochemical interaction shows that some combinations
exert synergy and others antagonism in bioaccessibility (93).
Anthocyanins are highly sensitive to pH changes that naturally
occur in the digestive tract, which has led to developing
techniques to improve bioaccessibility and bioactivity, such as
microencapsulation (94).

After boiling, the bioaccessibility of polyphenols in white and
purple potatoes was evaluated. All polyphenols in the samples
increased during the gastric phase of the in vitro digestion but
decreased during the intestinal phase. Nonetheless, the boiled
undigested samples had lower content of polyphenols. It is
discussed that common chemical extractions underestimate the
polyphenol content that could be released in the intestine.
p-Coumaric acid in the purple potato was not detectable in
the gastric phase, but it was detected in the intestinal phase,
and it was 16x higher than in the boiled undigested samples.
Also, caffeic acid in white potato was the only phenolic
that increased its bioaccessibility in the intestinal phase. It
is hypothesized that soluble polyphenols accumulate in cell
vacuoles, which are released by pepsin action during gastric
digestion. Chlorogenic acid interacts with starch, increasing
its bioaccessibility and delaying absorption because it is only
released once digested (95).

Two purple potatoes (Amachi and Leona) were subjected
to simulated digestion, showing that the total anthocyanin
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TABLE 2 | Bioavailability of compounds in Solanum species.

Bioavailability

Solanum species Material Compounds Intake Final concentration References

S. lycopersicum Tangerine tomato juice (higher in cis lycopene) Lycopene 10mg 690.9 nmol h /L (109)

Red tomato juice /higher in trans lycopene) 10mg 81.6 nmol h /L

Tomato paste 23.6mg 35.6 nmol/L (110)

Fresh tomato 22.2mg 18.8 nmol h /L

Tangerine sauce 13mg 870.2 nmol h /L (111)

B-carotene 17mg 304 nmol h /L

Leaves juice Pro-vitamin A 0.33mg (112)

S. melongena Leaves juice 0.25mg

S. xanthocarpum Fruit β-carotene 45mg 78–l.23 µmol*h /L. (113)

S. lycopersicum Fresh tomato β-carotene 2.35mg 62 nmol*h/L (114)

Lycopene 13mg 58 nmol*h/L

*“per” 78-l.23 µmol “per” h “per” liter.

concentration was over 30-fold higher in Amachi compared
to Leona digests. In descending colon digesta, concentrations
in Leona were 7-fold higher than in Amachi. This data
was relevant because of the interest in testing anthocyanins
against tumorigenic colon cells (Caco-2). Amachi digesta caused
cytotoxicity in non-tumorigenic cells, while Leona’s only caused
cytotoxicity in tumorigenic cells. Also, it is suggested that
microbial metabolism can decrease anthocyanin levels (96).

The bioaccessibility of phenolic compounds in S. nigrum

leaves to evaluate the effect of heating in the release of phenolic
compounds has been studied. The phenolic compounds
myricetin, quercetin-3-O-robinoside, 3,4-dicaffeoylquinic acid,
3-caffeoylquinic acid, and rutin were the most abundant.
The boiling process improved the phenolic content but
decreased after the in vitro digestion (36). These results
differ from other species of the genus where phenolics
were also put through simulated digestion, but the process
increases the content. The discrepancies are attributed to
the interaction of certain phenolics like chlorogenic acid
with starch, which was not abundant in the samples (95).
Despite the decreased content of phenolic compounds in
S. nigrum samples after digestion, they still had bioactivity
against oxidative stress and prevented DNA oxidative
damage (36).

The fruits of S. betaceum are known as a functional ingredient;
their phytochemicals have been linked to metabolic syndrome
prevention. In this subject, simulated digestion was carried out
using the fruit’s seeds, pulp, and skin, and bioactive effects such
as enzyme inhibition and antioxidant activity were analyzed.
Phenolic acids, anthocyanins, condensed tannins, carotenoids
(only in pulp) were quantified and showed enzyme inhibitory
properties. The extracts were able to inhibit α-glucosidase, α-
amylase, and lipase before and after digestion, and the seeds
extract inhibition power was improved after digestion. The seed
extracts showed to be the most bioactive, and this was linked to
the presence of condensed tannins that was higher than in skin
and pulp samples (97).

IMPLICATIONS OF THE BIOAVAILABILITY
OF SOLANUM ANTIOXIDANTS AND THEIR
HEALTH-PROMOTING PROPERTIES

The bioavailability of most compounds is crucial to the bioactive
effect, and is affected by factors like the individual factors
and characteristics of the consumer, interaction with other
compounds, delivery matrix, preparation processes, bioactive
type/category, chemical structure, and others (98, 99). The
pharmacological concept of bioavailability considers liberation,
absorption, distribution, metabolism, and excretion, generally
known as LADME (100). For all of these factors and the low
absorption in the gastrointestinal tract, phytochemicals have
low bioavailability (5). Information about the bioavailability of
specific phytochemicals is still limited, but we can predict the
bioavailability of phytochemicals by using the Lipinski’s rule
(101); which predicts the drug-likeness of the passive absorption
of a molecule considering five chemical characteristics: a
molecular weight ≤500, partition coefficient (LogP) <5,
hydrogen bond donors <5, and a maximum of 10 hydrogen
receptors (102) (See Supplementary Table 1).

The evaluation of the bioavailability of phenolic compounds
has led to determine that their glycosylation directs the route
of their absorption; glycones are transported through active
absorption and aglycones through passive diffusion. After their
absorption in the intestine, most phenolics are extensively
metabolized by xenobiotic enzymes abundant in enterocytes and
liver for their excretion through bile, feces, and urine (5). Even
though most phenolics are easily degraded during their passage
through the gastrointestinal tract, some are highly absorbable.
Caffeic acid is 95% absorbed in the small intestine and stomach.
Also, chlorogenic acid, the caffeic acid ester form, is absorbed
in the colon after the microbiota transforms it into several
metabolites (103, 104). The fact that chlorogenic acid usually
reaches the colon has been considered beneficial for gut health
because it promotes the growth of Bifidobacterium species (105).
Therefore, chlorogenic acid is considered highly bioavailable for
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humans; it is estimated that 33% is absorbed intact in the stomach
and 7% in the small intestine after hydrolysis (106).

Alkaloids found in Solanum have low bioavailability.
Therefore, some studies have been focused to improve their
absorption, mainly delivery via liposomes, nanoparticles, gels,
and emulsions. Transdermal delivery has also been another
option, seeking to obtain effective products and avoiding side
effects (2, 107). Furthermore, most saponins are hydrosoluble
due to their glycosidic groups. They have an amphiphilic
nature and, therefore, the ability for self-micellization in the
gastrointestinal environment and have shown to be stable to pH
variations during digestion. Some saponins can be chemically
hydrolyzed by acid or alkali, forming sapogenins, prosapogenins,
sugar residues, or monosaccharides. When gastric digestion is
simulated, some saponins show deglycosylation, dehydration,
hydration, and oxygenation, leading to the presence of different
structures connected to saponins’ anticarcinogenic activities.
Nevertheless, the bioavailability of saponins has not been
widely studied (61, 104, 108). Moreover, carotenoids found
in cultivars of tomato and their products have been widely
studied, and there are valuable results in this context (See
Table 2). Pro-vitamin A (β-carotene) has also been evaluated in
eggplant. Although it is hypothesized that bioavailability can be
reduced when these compounds interact with some vitamins,
aspirin, and sulphonamides (69, 113), because these groups
of phytochemicals may compete for absorption; for example,
co-consumption of lutein has a negative effect on the absorption
of β-carotene and vice versa (99, 115) (Table 2).

CONCLUSIONS

Plants of the Solanum genus contain bioactive compounds
that are antioxidant agents and have different mechanisms of

action to prevent or lessen diseases and their complications.
The bioactive potential of diverse materials has been
proven, but there is constant interest in evaluating the
transformations during their digestion and absorption. The
amount of compound or mixture of compounds needed
to achieve the desired effect is also a matter of research to
formulate effective and safe phytopharmaceuticals. Fruits,
roots, and aerial parts of plants among the Solanum genus
can benefit human beings by improving their health when
consumed as part of the daily diet, as a nutraceutical,
or biopharmaceutical.
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