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Bifidobacterium animalis subsp. lactis BB-12 (BB-12) is an extensively studied probiotics

species, which has been reported to improve the human gut microbiota. This study aimed

to confirm the effects of BB-12 on high-fat diet (HFD)-induced gut microbiota disorders.

The probiotic BB-12 was consumed by human microbiota-associated rats and changes

in gut microbiota were compared using next generation sequencing of the fecal samples

collected from the normal chow group, the HFD group, and the BB-12-supplemented

group. The enterotypes switched from Prevotella dominant to Akkermansia dominant

as a result of switching diet from normal chow to HFD. BB-12 conferred protection on

the gut microbiota composition of the rats by increasing the abundance of Prevotella

and decreasing the abundance of Clostridium, Blautia, and Bacteroides in 0–3 weeks.

In addition, Prevotella-dominant enterotype was maintained, which provides improve

obesity effects. A decrease in body weight and the Firmicutes/Bacteroidetes ratio were

also observed at week 3. While in 4–8 weeks, the enrichment of short-chain fatty

acids-producing bacteria such as Eubacterium and Parabacteroides and probiotics

such as Bifidobacterium was observed. The results revealed that BB-12 against

obesity by regulating gut microbiota in two phases. After a short-term intervention,

BB-12 supplementation suppressed the transition from the healthy to obesity state

by protecting Prevotella-dominant enterotype, whereas after a long-term intervention,

BB-12 ameliorates obesity by enriching beneficial bacteria in the gut.

Keywords: Bifidobacterium animalis subsp. lactis BB-12, gut microbiota, obesity, Prevotella, enterotypes

INTRODUCTION

Obesity is one of the major health crises, especially among children and adults, at the global level.
Obese people are at increased risk of morbidity and obesity-related comorbidities such as diabetes,
metabolic syndrome, and cardiovascular diseases (1). Human gut microbiota is considered as a key
element of good health, as it has marked influence on immune homeostasis and body physiology
and functionality. There are multitude of studies, which have provided evidence of its correlation
with health and diseases, especially obesity andmetabolic disorders (2, 3). Many studies have shown
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dysbiosis of the human gut microbiota in obese individuals
(4). In many previous studies, when germ-free (GF) mice
were inoculated with feces or the microbiota of obese human
subjects, they developed symptoms such as increased weight and
many obesity-associated metabolic phenotypes (5, 6). Dietary
elements have the ability to alter the community structure of gut
microbiota. A complicated “three-way” connection among gut
microbiota, host health, and the environmental inputs has been
proposed. Dietary pattern is one of the environmental inputs
modifying the composition of the gut microbiota (7). A study
showed that dietary change may alter the structure of human gut
microbiota up to 57% (8). High-fat diet (HFD) may exacerbate
obesity by changing the structure of gut microbiota and by
promoting obesogenic bacteria (9, 10); dietary intervention with
probiotics may attenuate adipocyte size in mice fed a HFD and
control weight gain (11). Thus, improving the gut microbiota
is an effective strategy for the prevention and management of
diet-induced obesity.

The use of probiotics is one of the main dietary strategies to
modulate gut microbiota, as they are generally recognized as safe
for human use (12, 13). Most studies have shown that probiotics
maintain the intestinal microbiome homeostasis and redress
particular disease states associated with microbiota dysbiosis
(3, 14). Members of the genus, Bifidobacterium, are widely used
as probiotics because of their ability to prevent and treat a
wide spectrum of animal and human gastrointestinal disorders
such as colonic transit disorders and intestinal infections (15).
Bifidobacterium animalis subsp. lactis BB-12 (BB-12) is the
most documented probiotic species among all the members of
the genus Bifidobacterium because they exhibit excellent gastric
acid and bile tolerance, contain bile salt hydrolases, and have
strong mucus adherence properties—all the valuable probiotic
characteristics (16). BB-12 has been used in a plethora of
successful clinical trials on a range of people including infants,
children, adults, and elderly and a lot of beneficial effects
have been reported such as management of infantile colic (17),
improvement of immune system (18), reduction of the risk of
infections in early childhood (19), and balancing of the disturbed
gut microbiota as a result of severe acute malnutrition (20).
Besides, BB-12 has been used in dietary supplements, fermented
milk products, and infant formula worldwide (21). There are
only a few studies, which have reported the effect of BB-12
in ameliorating obesity. The effects of many other probiotic
strains on obesity have been verified and reported; for instance,
the influence of probiotic supplementation on reducing body
weight, body mass index (BMI), and fat percentage (22–25).
Some special probiotics belonging to the genus Lactobacillus
[such as L. casei strain Shirota (LAB13), L. gasseri, L. rhamnosus,
and L. plantarum] and Bifidobacterium (such as B. infantis, B.
longum, and B. breve B3) species have been successfully used to
improve obesity and its medical complications in animals (23).
Lactobacillus rhamnosus GG supplementation has been reported
to reduce the body weight gain in children (26). These studies
support that probiotics may ameliorate obesity as a safe and
effective methods.

In this study, female GF Sprague-Dawley (SD) rats were
used to build human microbiota-associated (HMA) rats, which

were used to explore changes in gut microbiota following a
feeding response to HFD. The impact of administration of BB-
12 on obesity was studied as a dietary intervention strategy. 16S
ribosomal RNA (16S rRNA) sequencing was used to evaluate
the changes of gut microbiota composition. The purpose of this
study is to investigate how BB-12 supplementation could further
influence host obesity via modification of the gut microbiota
structure and composition.

MATERIALS AND METHODS

BB-12 Preparation
The probiotic strain BB-12 was purchased from Chr Hansen,
Denmark and prepared by suspending lyophilized powdered
bacteria in sterile water. All the suspensions of BB-12 for oral
gavage were freshly prepared.

Human Fecal Microbiota Preparation
Fresh fecal samples were collected from a 49-year-old female
volunteer after receiving a written informed consent. The
volunteer was a metabolically healthy obese person with BMI
29.3 kg/m2 (27); in addition, the volunteer had no special
diet requirements or lifestyle, normal blood lipid profile,
normotension, euglycemia and no chronic diseases, and had not
taken any antibiotics/probiotics for the last at least 3 months.
Then, first feces of the volunteer were collected in the morning
and suspended into 0.1M phosphate-buffered saline (PBS) buffer
(pH 7.2), before it was fed to rats.

Rat Models and Sample Collection
All the experimental procedures involving animals in this study
were performed according to the principles and guidelines
established by the Centers for Disease Control and Prevention,
China. GF female SD rats (n = 16, 8 weeks old) were purchased
from the Institute of Laboratory Animal Science of Chinese
Academy of Medical Sciences (CAMSs) and Peking Union
Medical College (PUMC) and raised in sterile microisolators.
After a 5-day acclimatization period, the fecal suspension was
administered via oral gavage every 2 days for three times to build
HMA-rats model. Then, the rats were randomly divided into 3
groups: the normal chow (NC) group (n = 5), the HFD group
(n = 5), and the group receiving probiotic supplement (BB-12)
(n = 6). HFD was D12492 (containing 60% fat; Research Diets
Incorporation, New Brunswick, NJ, USA), while the NC was
D1245B (containing 10% fat, Research Diets Incorporation) and
the gavage volume of BB-12 was 9 × 107 colony-forming unit
(CFU)/kg·body weight (bw). More details are shown in Figure 1.

We recorded the body weight and collected feces once a week
during this study. All the rats were sacrificed with lethal dose of
diethyl ether at the end of 8 weeks and orbital blood samples
and colonic contents were collected. All the samples were stored
at −80◦C until further use, except orbital blood. The blood was
centrifuged (3,000 rpm, 20min) to obtain serum and serum
levels of triglyceride (TG), total cholesterol (TC), low-density
lipoprotein cholesterol (LDL-C), and high-density lipoprotein
cholesterol (HDL-C) were determined using an automatic blood
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FIGURE 1 | Group information of HMA-SD rat models. After 5 days of adaptation, human fecal suspension was intragastrically administered every 2 days three times

to build the HMA-rats model. Then, the 16 HMA-SD rats were randomly divided into 3 groups for a 8-week trial. The normal chow (NC) group, 8 weeks of NC and

daily administration of sterile water gavage, as negative control; the high-fat diet (HFD) group, 8 weeks of HFD and sterile water gavage; the BB-12 group, 8 weeks of

HFD and BB-12 gavage. HMA-SD, human microbiota-associated-Sprague-Dawley; SW, sterile water; TKM, Tibet kefir milk; 16S rRNA, 16S ribosomal RNA. Yellow

triangle up solid, sampling sites for 16S rRNA sequencing; red triangle up solid, sampling sites for serum lipid profile.

chemical analyzer, Roche Applied Science, Rotkreuz, Switzerland
(COBAS INTEGRA 800, Roche).

Analysis of Gut Microbiota by Next
Generation Sequencing (NGS)
Microbial DNA was extracted from fecal samples and
colonic contents using the DNA Stool Mini Kit (BGI
Corporation Ltd., Beijing, China). The V4 hypervariable
region of the bacterial 16S rRNA gene was amplified using
aliquots of the isolated DNA from each sample using the
primers 515F (GTGCCAGCMGCCGCGGTAA) and 806R
(GGACTACHVGGGTWTCTAAT) on an Illumina MiSeq PE250
Platform (Illumina, San Diego, United States). Paired-end reads
were first merged to tags and then all the tags were clustered
to operational taxonomic unit (OTU) at the 97% sequence
similarity level. OTUs were taxonomically classified by the
Ribosomal Database Project (RDP) classifier (2.2), which was
trained on Greengenes database using 0.18 confidence values as
the cutoff.

Statistical Analyses
Statistical analyses were performed using R programming
language. The methods described by Arumugam et al. (28) were
used for enterotypes (ETs) analysis of gut microbiome. Bacterial
functional gene redundancies were predicted with Tax4Fun2
with R package (29). The linear discriminant analysis effect size
(LEfSe) algorithm was used to identify the differential abundance
of bacterial taxa. The differential Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analysis was
performed with the online interface Galaxy (http://huttenhower.
sph.harvard.edu/galaxy). Co-occurrence relationships between
the gut microbiota and the different KEGG orthology or gene
pathways were determined based on the Pearson’s correlation
coefficients. A parametric test (one-way ANOVA followed by the
Tukey’s post-hoc test) was applied when normality assumptions
and homogeneity of variance were satisfied. Non-parametric data
were assessed using the Wilcoxon rank-sum test. p < 0.05 was
considered as statistically significant (∗p < 0.05, ∗∗p < 0.01,

∗∗∗p < 0.001). Graphic presentations were generated using the
R package “ggplot 2” (30).

RESULTS

Effect of BB-12 Supplementation on the
BW and Blood Lipids
The BW gains of the rats in the HFD group (364.2 ± 11.1 g)
were significantly higher than the BW of the rats in the NC
group (307.6 ± 12.6 g), which showed that the model of obesity
was successfully constructed (Supplementary Figure 1A). The
BW of BB-12-fed rat (355.5 ± 4.8 g) was similar to the body
weight of HFD rats at week 8. However, at the third week, the
body weight was decreased in BB-12-fed rats (298.0 ± 4.7 g)
compared with the rats in the HFD group (317.8 ± 8.1 g). As
shown in Supplementary Figures 1B–E, there was no significant
difference in blood lipid profile as a result of either feeding with a
HFD or NC, with or without BB-12.

Effect of BB-12 Supplementation on the
Community Structure of Gut Microbiota
16S ribosomal RNA gene sequencing of 159 samples (143
fecal samples and 16 colonic samples) from 16 SD rats was
performed. Species richness and alpha diversity were determined
with OTUs, which were identified in the fecal samples
(Supplementary Figure 2). Observed species and Chao1 indices
reflect species richness, while Shannon and Simpson indices
represent microbial alpha diversity. The Wilcoxon analysis
revealed no significant difference in alpha diversity among the
three groups after 8 weeks of feeding period. However, the alpha
diversity increased in the BB-12-fed rat group compared with the
HFD group at the third week.

Relative abundances of the gut microbiota at the phylum
level are given in Figure 2A. A total of 9 bacterial phyla were
identified by NGS. Among them, Bacteroidetes, Firmicutes, and
Verrucomicrobia were the three most dominant phyla in all the
groups. In the NC group, all the three dominant phyla were
relatively stable during the feeding period. In the HFD group,
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FIGURE 2 | Gut microbiota taxonomic profiles. (A) Relative abundances of microbial composition at the phylum level and relative abundances of top 10 genera; 0–8

represents 0–8 weeks and C represents colonic content samples. (B) Absolute abundances of microbial taxa (genera level) compared between the NC, HFD, and

BB-12 groups. Different letters (a or b) above the box indicate significant difference (p < 0.05) or (p < 0.01).

Verrucomicrobia increased in the first week, while Bacteroidetes
decreased and then remained relatively stable in the following
feeding period. In the BB-12-fed rats group, Bacteroidetes showed
an increasing trend in the first week and then started decreasing
until 4 weeks and became stable afterward. Verrucomicrobia
increased in the first 4 weeks and remained stable during the
following feeding periods. The correlation analysis between BW
and Firmicutes/Bacteroidetes (F/B) ratio is shown in Figure 3,
where a weak but significantly positive correlation was found
between BW and F/B ratio.

At the genus level (Figure 2A), a total of 68 bacteria genera
were identified in all the groups. Among them, Prevotella,
Akkermansia, Bacteroides, Oscillospira, Parabacteroides,
Ruminococcus, Clostridium, Phascolarctobacterium, Blautia,
and Eubacterium were the top 10 dominant genera in all the
groups. In the NC group, bacterial community composition of all

the top 10 genera was relatively stable during the feeding period.
In the HFD group, changes in bacterial community structure
were noticed only a week following feeding. For example, the
abundance of Bacteroides and Akkermansia increased in the first
week and then remained stable at a high level. An opposite trend
was noticed for the abundance of Prevotella, which decreased
in the first week and then remained stable at the same low level
over the following feeding weeks. In the group, where rats were
fed with the BB-12 group, the abundance of Prevotella increased
in the first week and then started decreasing until 4 weeks
and remained stable whereas the abundance of Akkermansia,
Bacteroides, Parabacteroides, Blautia, and Clostridium increased
after 4 weeks of BB-12 supplementation.

The absolute abundance analysis (Figure 2B) of bacterial
community composition showed distinct abundance profiles of
rats as a result of HFD and BB-12 supplementation. Compared
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FIGURE 3 | Correlation analysis between body weight and Firmicutes/Bacteroidetes ratio. The graph shows arbitrary data for the NC group (gray circles and density

curves), the HFD group (light yellow circle and density curves), and the BB-12 group (light blue circle and density curves).

with the NC group rats, the absolute abundance of Clostridium,
Akkermansia, Blautia, and Bacteroides increased in the HFD
group rats, while the abundance of Prevotella decreased in the
HFD group rats. Compared with the HFD group rats, changes
of gut microbiota in the BB-12-fed rats group could be divided
into two parts: (1) period from weeks 1 to 3, in which BB-12
supplementation resulted in a decrease in the absolute abundance
of Clostridium, Akkermansia, Blautia, and Bacteroides whereas
it resulted in an increase in the abundance of Prevotella and
(2) period from weeks 4 to 8, in which there was no significant
difference between the HFD group and BB-12 group in terms of
these bacterial groups.

Principal component analysis (PCA) is shown in Figure 4.
The gut microbiota communities of the rats belonging to the
NC group remained relatively stable during the 8 weeks feeding
period (Figure 4A). In the HFD group, samples from all the 8
weeks clustered together except for 0 week before feeding test
(Figure 4B). In the BB-12-fed rats group (Figure 4C), samples

could be divided into 4 clusters from 0 to week 3 and then
clustered together in one group from weeks 4 to 8. Weekly
distributions between 3 groups were shown in Figures 4E–M. All
the samples were clustered together at 0 week (Figure 4D). In all
the 8 weeks of the feeding period, rats of the HFD and NC groups
could be divided into two clusters. Bacterial absolute abundance
pattern in the BB-12-fed rats group was closely related to the NC
group rats from weeks 1 to 3 whereas it was close to bacterial
absolute abundance pattern in HFD rats from weeks 4 to 8.

Linear discriminant analysis effect size of colonic contents
microbiota is shown in Figure 5. At the genus level, Anaerofustis,
Butyricicoccus, Lactonifactor, Oceanobacillus, Prevotella, and
Turicibacter were enriched in rats of the NC group. Anaerofilum,
Anaerotruncus, Blautia, Butyricimonas, Collinsella, Holdemania,
Lactococcus, Morganella, Oscillospira, Planomicrobium, and
Proteus were enriched in the HFD group whereas Bacteroides,
Bifidobacterium, Clostridium, Eggerthella, Eubacterium, and
Parabacteroides were enriched in rats of the BB-12 group.
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FIGURE 4 | Principal component analysis (PCA) of bacterial community composition based on relative abundances of 16S rRNA from 159 samples. (A–C) Show the

NC, HFD, and BB-12 group, respectively; letters A–I in the figures represent the fecal samples from 0 to 8 weeks and J represents colonic content samples. (D–L)

represent the fecal samples at 0–8 weeks, respectively and (M) represented the colonic contents samples; the numbers 1–3 in (D–M) represent the NC, HFD, and

BB-12 group, respectively.

Effect of BB-12 Supplementation on ETs
All the 159 samples were divided into 2 clusters: enterotype 1
(ET1) and enterotype 2 (ET2) (Figure 6A). ET1 was dominated
by Prevotella as the most enriched genus (Figure 6B) and
included 77 samples (Figure 6E). As shown in Figure 6C,
Akkermansia was the core genus in ET2, which included 82
samples (Figure 6E). All the samples in the NC group belonged
to ET1. In the HFD group, rats could first be characterized
as belonging to ET1 at week 0 and then to ET2 at week 1.
In the BB-12-fed rats group, rats belonged to ET1 at weeks
0 to 3 could be characterized as belonging to ET2 at week
4. F/B ratio of the ET2 groups was higher than the samples
in the ET1 group (Figure 6D). The BW of rats in the two
ET groups was analyzed and no significant difference in first
4 weeks was noticed. The BW of rats in the ET2 group was
higher than the ET1 group from weeks 4 to 8 (Figure 6F).
Manhattan plots were used to examine differences between ET1
and ET2 at the OTU level (Figure 6G). Compared with ET2,

308 OTUs were enriched in ET1 and 283 OTUs were diminished
and the differences in OTUs mainly spanned 9 phyla, with the
phyla Bacteroidetes and Firmicutes accounting for the majority of
the differences.

Effect of BB-12 Supplementation on
Functional Properties of Bacterial
Community
Tax4Fun2 was used to infer functional biological pathways
associated with the ETs in bacterial communities. We performed
the KEGG analysis of the microbial contents of colon and fecal
samples. Tax4Fun2 predicted a total of 7,201 KEGG Orthology
(KO) genes from the microbial communities associated with
the two ETs. In gut microbiota, the KEGG functions (pathway
level 3) of rats in ET1 differed from those in ET2 (Figure 7A).
Samples could be grouped into two clusters: cluster 1 and
2, which corresponded to ET1 and ET2, respectively. LEfSe
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FIGURE 5 | Linear discriminant analysis (LDA) effect size (LEfSe) analysis of bacterial community composition based on relative abundances of 16S rRNA from 16

colonic contents samples. (A) LEfSe cladogram representing different abundant taxa; and (B) LDA scores as calculated by LEfSe analysis. Only taxa with LDA scores

of more than 2 were presented.

analysis revealed significant differences in pathways in the
two ETs. Glycan biosynthesis and metabolism, metabolism
of cofactors and vitamins, lipid metabolism, amino acid
metabolism, and biosynthesis of other secondary metabolites
enriched in the ET2 group and metabolism of terpenoids
and polyketides, metabolism of other amino acid, energy
metabolism, nucleotide metabolism, xenobiotics biodegradation
and metabolism, and carbohydrate metabolism enriched in the
ET1 group (Figure 7B).

Correlation between genus (relative abundance >1%) and
metabolic pathways was analyzed as shown in Figure 8.
Bacteroides, Clostridium, and Parabacteroides showed a strong
positive correlation with lipid metabolism (r > 0.7, p < 0.001).
Amino acid metabolism, glycan biosynthesis and metabolism,
lipid metabolism, and metabolism of cofactors and vitamins
showed a strong negative correlation with Prevotella (r < −0.7,
p < 0.001).

DISCUSSION

Rodent models of HFD-induced obesity are widely used in
a plethora of studies, as they mimic human obesity and gut
microbiota dysbiosis as a result of consuming fats (31). In this
study, the composition of the initial gut microbiota was found
to be similar to that of most mammalian gut microbiota with
Bacteroidetes and Firmicutes as dominant bacterial groups (32).
HFD perturbs the gut microbiota and develops a stable microbial
overwhelmed by low levels of Prevotella and a high level of
Akkermansia, Bacteroides, Blautia, and Clostridium, which has
negative implications on host phenotype, as an example, this
microbial consortia lead to an increase in body weight (33). As
a major genus in the phylum Bacteroidetes, Prevotella has a direct
correlation with die, as more consumption of carbohydrates
and fiber leads to an increase in Prevotella content whereas fat
and amino acids reduce it (34). In agreement with previous
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FIGURE 6 | Enterotype (ET) analysis based on the genus-level bacterial composition of the gut microbiota. (A) 159 samples were divided into two different ETs; (B,C)

represent the relative abundance of Prevotella and Akkermansia in each ETs, respectively; (D) represents the Firmicutes/Bacteroidetes ratio into two different ETs; (E)

distribution of ETs by each group; (F) represents the body weight in different ETs; (G) Manhattan plot showing OTUs being enriched in ET1 or ET2; each dot or triangle

represents a single OTU. OTUs enriched in ET1 or ET2 are represented by filled or empty triangles, respectively (FDR adjusted p < 0.05). OTUs are arranged in

taxonomic phylum. OTUs, operational taxanomic units; FDR, false discovery rate; CPM, counts per million; ET1, enterotype 1; ET2, enterotype 2. *p < 0.05; **p <

0.01; ***p < 0.001.

findings, we found a higher level of Prevotella in the NC
group rats compared with the HFD group rats. Gut microbiota
changes in rate as a result of BB-12 intervention that could
be divided into two phases: At 0–3 weeks, structure of the
gut microbiota was similar to the microbiota structure of the
NC group rats whereas structure of the gut microbiota was
similar to the microbiota structure of the HFD group rats from
weeks 4 to 8. Some studies have shown that long-term HFD
can alter the overall gut microbiota and shape the structure

of the gut microbiota (35). So, it can be deduced the similar
gut microbiota between the HFD group and the BB-12 group
at weeks 4 to 8 may be due to the long-term HFD, which
may be difficult for BB-12 to regulate. A higher abundance
of Prevotella was observed in the BB-12-supplemented group
compared to the HFD group from weeks 0 to 3. One important
characteristic of Prevotella is to produce high levels of short-chain
fatty acids (SCFAs), which against obesity by increasing energy
expenditure in the liver (36, 37). So, increasing the abundance
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FIGURE 7 | Prediction of the function of bacterial communities based on 16S rRNA sequencing. (A) The third level of the Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway was shown in the heatmap. (B) Analysis for the KEGG pathway (level 2) using LEfSe.

of Prevotella may be attributed to BB-12 supplementation as
an effective strategy to improve obesity. In addition, some
harmful bacterial contents were also decreased in BB-12-fed rats
compared with HFD rats at 0–3 weeks. For instance, Blautia,

which is associated with obesity as a result of its ability to produce
acetate (38, 39), Clostridium difficile, which leads to healthcare-
associated diarrhea by producing virulence determinants (40),
and Bacteroides, which is associated with an increasing risk of
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FIGURE 8 | Heatmap of the Pearson’s rank correlation coefficient between the KEGG pathway (level 2) and gut microbiota.

obesity (41). At the end of the feeding period, the community
structure of gut microbiota in the BB-12-fed rats group was
similar with the HFD group rats and the similar community
structure may be shaped by a long-term HFD induction (42).
We also found some beneficial bacteria being enriched in
rats of the BB-12-fed group. For example, Eubacterium, which
is known for producing butyrate and can attenuate diet-
induced obesity, insulin resistance, and hyperlipidemia (43, 44),
Parabacteroides species, which have been reported as SCFAs-
producing bacteria and exert anti-inflammatory effects (45),
and Bifidobacterium, which is beneficial in general health and
well-being (46). All the three genera enriched in the BB-12-
fed group rats can help to improve obesity and its related
disorders. Abundance of Akkermansia increases in the HFD
group rats in agreement with previous studies (47, 48) and the
increased Akkermansia abundance induced by HFD may help to
improve inflammation (49). Most studies have shown a positive
association of Akkermansia with the improvement of metabolic
disorders (32), especially, Akkermansia muciniphila, which is
known as one of the next generation probiotics (50). In fact,
the relationship betweenAkkermansia and obesity is complicated
and there are many other factors, such as aging and health status,
which affect the abundance of this species in a gut (51). Thus,
more mechanistic studies are needed to study the role of this
species in obesity.

Enterotypes is one of the important microbial clustering
techniques to investigate gut microbiota. ET1, ET2, and ET3 have
been identified as the three dominant ETS in the human gut
by metagenome sequencing with the dominance of Bacteroides,
Prevotella, and Ruminococcus, respectively (28). Studies have

shown that ETs are strongly related to long-term dietary habits
(52). In this study, we found that the ETs are diet-dependent
factors. Microbiota of rats belonging to the NC group with
control diet was regarded as ET1 with Prevotella as the dominant
genus and rats of the HFD groups had ET2 microbiota with
Akkermansia as the dominant genus. BB-12 supplementation
protected the Prevotella-dominant ET to against HFD induced.
Recent studies have shown that Prevotella-dominant ET shows
greater responses than other ETs for the administration of
probiotics including the greater reduction of obesity-related
markers (53). This suggested that ET was able to maintain
a fine interaction with BB-12 supplementation and showed a
correlation with HFD-induced obesity.

The F/B ratio proved to be another mean to instigate the
gut microbiota of rats. Most studies have shown that the
host adiposity is related to an increase in the ratio of F/B
because Firmicutes and Bacteroidetes play an important role in
metabolism of carbohydrates, lipids, and amino acids (10). In
this study, a weak but significantly positive correlation was found
between BW and F/B ratio. Besides, it was higher in the HFD
group rats than the NC group rats due to the higher abundance of
Bacterioides in the NC group. Differences in F/B ratio also existed
in the two ETs; the ET2 group had higher F/B ratio than the ET1
group. Previous studies have shown that the F/B ratio is higher in
obese individuals than in lean individuals (54). Thus, the changes
in ETs corresponded well with changes in the F/B ratio.

Understanding of disruption of the gut microbiota functions
is important in the pathogenesis of obesity. 16S rRNA functional
annotation and correlation analysis have shown that bacteria
from the phyla Firmicutes and Bacteroidetes are associated with
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carbohydrate metabolism, lipid metabolism, and amino acid
metabolism. Studies have shown that gut microbiota can alter
amino acids metabolism (aromatic and branched-chain amino
acids metabolism), which is associated with insulin resistance
and type 2 diabetes (55). Disturbance of lipid metabolism has
also been associated with human obesity (56). In this study, we
found a difference in the metabolic patterns of the two ETs.
Prevotella-dominant ET has been proved to be associated with
carbohydrate-rich diet (57). The same results have been achieved
in this study, as carbohydrate metabolism was enriched in ET1
as well as it showed a strong positive correlation with Prevotella
abundance. It is further illustrated that diet may be an influencing
factor for the gut metabolism because of its influence on ETs
and BB-12 supplementation provides protection of Prevotella-
dominant ETs.

Overall, ET changed from ET1 to ET2 by HFD intervention
andmarked by a decrease in beneficial bacteria such as Prevotella.
For antiobesity, it is necessary to suppress the transition from
healthy to obesity as well as to improve from the obese
state. BB-12 treatment ameliorated obesity in two different
phases; in the first period (weeks 0–3), BB-12 protected the
gut microbiota community structure to counteract obesity by
promoting the growth of beneficial bacteria (such as Prevotella)
and by decreasing the growth of harmful bacteria (such as
Clostridium, Blautia, and Bacteroides), which clearly means a
suppression of the transition from the healthy state to the
obese state. An increase in alpha diversity and a decrease
in BW were observed at week 3. In the second period
(weeks 4–8), some beneficial bacteria were enriched (such
as SCFAs-producing bacteria Eubacterium and Parabacteroides
and probiotics Bifidobacterium) in the BB-12-fed rats group
compared to the rats of the HFD-fed group, despite similar gut
microbiota community structure. Our results provided further
evidence of the role of BB-12 in maintaining gut microbiota and
in ameliorating obesity through gut microbiota balance.
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