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In order to solve the increasingly serious environmental problems caused

by plastic-based packaging, carrageenan-based films are drawing much

attentions in food packaging applications, due to low cost, biodegradability,

compatibility, and film-forming property. The purpose of this article

is to present a comprehensive review of recent developments in

carrageenan-based films, including fabrication strategies, physical and

chemical properties and novel food packaging applications. Carrageenan

can be extracted from red algae mainly by hydrolysis, ultrasonic-assisted and

microwave-assisted extraction, and the combination of multiple extraction

methodswill be future trends in carrageenan extractionmethods. Carrageenan

can form homogeneous film-forming solutions and fabricate films mainly

by direct coating, solvent casting and electrospinning, and mechanism of

film formation was discussed in detail. Due to the inherent limitations of

the pure carrageenan film, physical and chemical properties of carrageenan

films were enhanced by incorporation with other compounds. Therefore,

carrageenan-based films can be widely used for extending the shelf life

of food and monitoring the food freshness by inhibiting microbial growth,

reducing moisture loss and the respiration, etc. This article will provide useful

guidelines for further research on carrageenan-based films.

KEYWORDS

carrageenan, food packaging, film-forming methods, film properties, formation

mechanism

Introduction

Food packaging is to separate food items from the surrounding environment,

preventing microorganisms, oxygen, and water from contacting food, thus

ensuring food quality and extending food shelf life (1, 2). It is estimated that

approximately 36% of food packaging materials are petroleum-based plastics,

including polyethylene (3, 4), polypropylene (5, 6) and polystyrene (7), due

to their low cost, ease of manufacture, and better mechanical properties.
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Meanwhile, the production of petroleum-based packaging

materials still increases at 8% per year, with recycling rate

<5% (8). Most plastics degrades in incineration and landfill,

resulting in the production of microplastics smaller than 5mm

in diameter. High concentrations of microplastics will alter

phytoplankton community structure, and therefore affect food

chain and entire ecosystems (9, 10).

With growing awareness of environmental protection, an

alternative food packaging material of bio-based polymers has

received much attention, because of abundant resource (11),

non-toxicity (12), and easily degrade within a few weeks at a

specific temperature and humidity (13, 14). Polysaccharides (15–

18), lipids (19, 20), and protein (21–24) are usually used as

film-forming substrates for biodegradable packaging materials.

In this regard, a hydroxyl-riched carrageenan is considered

as a highly promising material, due to excellent gelling and

film-forming properties. Carrageenan-based composite films

are frequently designed by incorporating functional substances,

such as polyphenols and enzymes, into carrageenan substrates

(25–27). Over the past 2 years, researches focusing on

carrageenan-based films have increased sharply. It was found

that the number of publications in the research area of food

science technology in 2019-2022 was more than five times

that before 2019, when keywords like “carrageenan film” or

“carrageenan coating” or “carrageenan packaging” were entered

into search box of “topic” within scientific database “Web of

Science”. However, only one review published in 2020-2022,

which focused on the effect of nanomaterials (such as TiO2,

SiO2, and copper sulfide) on carrageenan films, the properties of

nanomaterial-enriched carrageenan films and their applications

(28). Our study offers an overview of the latest comprehensive

development of carrageenan-based biodegradable films for food

packaging, focusing on high-level studies over past 3 years

(Figure 1).

In order to discuss this topic logically, the source,

extraction methods and characteristics of carrageenan were

firstly summarized, and then the carrageenan gelation process

and driving forces for the formation of carrageenan-based

films are highlighted. Finally, properties and applications of

carrageenan-based films were discussed in detail (Figure 2).

Properties and preparation of
carrageenan

Carrageenan is composed of alternating copolymers of 3,6-

anhydrous-galactose (3,6-AG) and D-galactose linked by α-1,3

and β-1,4-glycosidic bond (27, 29, 30). According to different

number and position of sulfate groups, carrageenan can be

divided into six basic forms, namely kappa (κ)-, lambda (λ)-,

Iota (ι)-, Mu (µ)-, Theta (θ)- Nu (ν)- and ξ (xi)- carrageenan

(31). With alkaline pretreatment, µ-, ν- and λ-carrageenan

can be translated into κ-, ι-, and θ-carrageenan, respectively

(Figure 3). Among them, κ-, ι-, and λ- carrageenans are the

most widely used commercial products, which have one, two

and three sulfate ester groups in each disaccharide repeat

unit, respectively (32). In general, κ-carrageenan exhibits the

strongest gelling ability because it contains about 25–30% sulfate

groups and 28–35% 3, 6-anhydrogalactose contents (30).

All types of carrageenans are insoluble in organic solvents,

oils, and fats, but soluble in water. The water solubility of

carrageenan is influenced by multiple factors, such as the sulfate

group on the molecule and the content of 3, 6-anhydrogalactose

(33). Compared with other commercial carrageenans, κ-

carrageenan exhibits lower aqueous solubility, because of

low sulfate ester groups and high 3, 6-anhydrogalactose

contents (34).

Carrageenan is extracted from red algae, such as Eucheuma

Cottonii (35), Mastocarpus stellatus (36), and Hypnea

musciformis (37), by multiple methods, including hydrolysis,

ultrasonic-assisted and microwave-assisted extraction. The

hydrolysis extraction is the most frequently used method,

and the carrageenan yield can reach 27% (38). However,

the extraction steps are complicated, solvent-consuming

and time-consuming. In contrast, ultrasonic-assisted and

microwave-assisted extraction methods possess shorter

extraction time, lower energy consumption, and higher

extraction yields, which have drawn an increasing attention.

Ultrasonic-assisted extraction is a physical technology that can

generate high pressure and high temperature in a short period

of time, thereby generating high-intensity shear force, free

radicals and shock waves, and resulting in physically destroying

the plant cell wall (39, 40). A 50–55% carrageenan yield can be

achieved within 15min at the ultrasound power of 150W (38).

Since algae with high moisture contents are highly susceptible

to microwave radiation, the microwave-assisted extraction is

also an auxiliary method that can heat sample and solvent

rapidly (41). The parameter settings are critical and have a

considerable effect on the carrageenan yield. For example, the

yield of carrageenan at a microwave temperature of 105 ◦C is

30.7% higher than that at 85 ◦C (42). Also, the carrageenan

yield under neutral extraction conditions is approximately

37% higher than under alkaline conditions (43). Furthermore,

all of these methods could change the structure, bioactivity,

and composition of carrageenan. Therefore, the combination

of multiple extraction technologies will be future trends in

carrageenan extraction methods.

Film-forming of carrageenan

The gelation process of carrageenan

The gelation of carrageenan is a complex process, involving

the coil-helix transition and then the helix aggregation

(Figure 4). In the initial stage, the carrageenan in the sol state
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FIGURE 1

The network visualization of keyword relevance in high-level publications.

mostly exists in the form of irregular coils. Then the low-

temperature cooling process induces formation of hydrogen

bonds between the galactosyl units, which promotes the twisting

of the anhydrogalactose sequence in a helix manner (44–46).

As for the helix aggregation stage, double helices arranged

laterally in a trigonal unit structure are interconnected by

intermolecular interactions to form individual junction region

in units of six to 10 molecules (44, 47), thereby resulting in

forming cubic structured carrageenan gels (45). The number of

molecules in the bonding area is affected by the cooling rate,

and a large bonding area with more molecules is likely to be

formed at the slower cooling rates (48). The higher the number

of molecules in the junction zone, the more rigid the gel is.

Therefore, themulti-molecular junction region of κ-carrageenan

exhibits rigidity when disturbed by shear force, whereas the ι-

carrageenan gel, consisting of only two molecules in the linkage

region, has a more flexible structure and is less sensitive to

shear (41, 49, 50).

Main driving forces in the formation of
carrageenan-based films

Electrostatic interaction

In general, some salt ions, such as K+ and Ca2+, have

been introduced into the film forming process (33). Because

salt ions can partially neutralize the negative charge of sulfate

groups in the carrageenan ionic chain through electrostatic

interactions, thus reducing the electrostatic repulsion between

sulfate groups, and facilitating a disorder-order conformational

transition (24, 51). Other components have also been added

into the carrageenan matrix through electrostatic interactions,

such as gelatin and sodium caseinate. Disordered κ-carrageenan

combined electrostatically with gelatin to facilitate the gelation

process, leading to a high temperature of κ-carrageenan/gelatin

conformational transition than that of pure carrageenan in

film-forming process (52). In addition, sodium caseinate and

negatively charged λ-carrageenan have been proposed to
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FIGURE 2

Properties of the carrageenan-based film and its application in

food packaging.

fabricate edible films. The cross-linking of polymer chains

formed by electrostatic interactions could reduce the water

vapor permeability of the film and improve moisture barrier

properties (53).

Hydrogen bonds

As one of the most common non-covalent bonds, hydrogen

bond is widely distributed in structure of the carrageenan film

and critical for formation of pure carrageenan films. It is mainly

explained by that the abundant hydroxyl groups in carrageenan

molecules can form intramolecular or intermolecular hydrogen

bonds with each other. Moreover, other polysaccharides have

commonly been added to carrageenan for improving the

properties of the resulting films (45, 54, 55). Agar molecules

and κ-carrageenan molecules can be intertwined through

hydrogen bonds to form agar/κ-carrageenan mixed double

helixes (56). Similarly, arrowroot starch molecules and amylose

can combine with carrageenan molecules through hydrogen

bonding, resulting in films with superior mechanical properties

compared with pure carrageenan film (57).

Fabrication techniques of
carrageenan-based films

Direct coating

Direct coating is commonly used for fabricating edible

packaging, including spray coating and dipping (58–60). Spray

coating is a technology in which high pressure is usually used

to atomize the film-forming solution and spray it onto the food

surface (59, 60). Although the efficiency of spray coating is

high, the operation is complicated and requires the professional

equipment. Compared with the spray coating method, the dip

coating method has been used for a more extensive range of

applications. It involved preparation of the coating solution,

dipping the food in coating solutions, removing excess coating

solutions, and air-drying of the coating (61, 62). As it is known,

the coating thickness closely affects films properties, and the

coating thickness by dippingmethod is generally larger than that

prepared by spray method (63). The dipping method is relatively

simple to operate, but it requires a large amount of film-forming

solutions. In summary, since the coating is directly contacted

with the food, films prepared by the direct coating method can

interfere with the sensory aspects of consumers, which requires

the films with acceptable sensory properties.

Solvent casting

Solvent casting is the most common method for

manufacturing films, which involves preparation of film-

forming solutions, spreading film-forming solutions on

a suitable mold and drying. Carrageenan/alginate (64),

carrageenan/gelatin (65), and carrageenan/starch (66),

composite films are usually formed by this method. Numerous

factors can affect the film formation process. For instance, the

film-forming mold can have a great impact on the peeling of a

film, and molds that are easy to peel off films are teflon, glass

plates and so on (67). In addition, the drying temperature and

the environment humidity affect the film thickness. Specifically,

the thickness and elongation at break of the film decreased with

an increase in drying temperature (68). It has also been proven

that the tensile strength and water vapor permeability of the film

increased with increasing ambient humidity (69). Furthermore,

the film prepared with high concentration of carrageenan

film-forming solutions has been found to possess a poorly

sponge structure and large pores, which will be detrimental

to the subsequent utilization of the film (70). It may be due

to the delayed delamination during film casting. In summary,

this method possesses super characteristic of low cost, simple

equipment and easy operation, but it require a long drying

time, which is not conducive to its application in large-scale

commercial production.

Electrospinning

Electrospinning is a non-mechanical technology that makes

polymer materials into nanoscale fibers. It can generate a high-

voltage electrostatic field that is used to change the surface of

a polymer solution droplet and apply an electrical potential

between the polymer solution droplet and the collector at the

end of the capillary (71, 72). When the applied electric field force
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FIGURE 3

Conversion between di�erent types of carrageenans.

is sufficient to overcome the surface tension of the droplet, the

spinneret will eject a jet of charged polymer solution. During the

spraying process, the solution jet is stretched by force, the solvent

gradually evaporates, and then a partially or fully solidified

electrospun fiber is obtained (72, 73). The final prepared

electrospun fibers possess ultra-fine structure, high porosity,

high surface-to-volume ratio, and tailored morphology. Also,

they can be used to encapsulate bioactive ingredients to

improve antimicrobial properties, oxidation resistance (74,

75), and thermal stability (76) of films. For instance, zein,

carrageenan, ZnO nanoparticles and rosemary essential oil were

used to form maize protein/κ-carrageenan electrospun fibers

by electrostatic spinning, and the developed fibers exhibited

better surface hydrophobicity, high antibacterial, as well as

antioxidant properties (73). Owing to its simple operation and

low cost, electrospinning is one of the most effective methods

for preparing one-dimensional materials. However, the weak

interaction between electrospun fibers endows the films with

poor mechanical properties.

Extrusion

Owing to fast, high efficiency, high energy utilization rate,

and suitable for large-scale production, the extrusion method

is commonly used for the production of packaging materials.

The material is extruded by a twin-screw, passing through a

desired shaped die to fabricate films under certain parameter

settings (77). Unlike petrochemical materials, biopolymers are

more sensitive to processing parameters such as screw speed,

temperature, feed rate and screw configuration (78). It has been
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FIGURE 4

Schematic diagram of the carrageenan film forming process.

demonstrated that high extrusion temperature and unsuitable

pH will break the polypeptide chain of the protein and affect

the protein charge distribution (79). Also, small changes in

extrusion processing parameters will have a considerable impact

on film properties. In summary, complex parameter settings

have been a challenge for the production of biopolymers-based

films by extrusion. At present, the extrusion method has been

used to prepare some biopolymers-based films, such as pectin-

based and gelatin-based films (78, 80). Studies have shown

that uniform biopolymers-based films can be produced by

precisely controlling extrusion speed, barrel temperature and

pH (81). However, the preparation of the carrageenan films by

the extrusion method have rarely been investigated, and only

related reports on the preparation of carrageenan hydrogels and

particles by the extrusion method (82, 83). Therefore, further

attempts requires to be made to fabricate the carrageenan film

using the extrusion method to increase commercial viability of

the production of carrageenan-based packaging films.

Physical and chemical properties of
carrageenan-based film

Carrageenan is regarded as a promising biomaterial for

fabricating food packaging films, due to its unique mechanical

behavior, water vapor barrier, surface hydrophobicity, light

protection and thermal properties. In this section, it focused on

the outstanding properties of carrageenan.

Mechanical behavior

The mechanical behavior of the film is usually characterized

by tensile strength and elongation at break (84). The

measurement process is as follows: the film sample is cut into

small pieces and then subjected to a tensile test to obtain

a stress-strain curve (85). After analyzing the trend of the

curve, the average value of each measured characteristic can be

obtained (86).

As shown in Table 1, the tensile strength (TS) and elongation

at break (EAB) of the pure ι-carrageenan film were 2.5 MPa

and 1.04%, respectively (85). In comparison with the pure ι-

carrageenan film, due to a low content of sulfate and negative

charge, the pure κ-carrageenan film exhibited better mechanical

properties, with a TS of 42.5 MPa and an EAB of 3.9%,

respectively. However, the neat structure of κ-carrageenan made

the pure κ-carrageenan film brittle (99). To overcome the limit

of κ-carrageenan, ι-carrageenan was mixed with κ-carrageenan

to fabricate the mixed carrageenan film and the TS of the

mixed film reached 55.2 MPa (87). It could be explained that

anhydro-bridges were formed during the mixing process, which

reduced the hydrophilicity of the sugar residues, leading to a

conformational shift in carrageenan and enhancing its gelation

properties (64).

The incorporation of other components into the

carrageenan matrix resulted in changes in crosslinking

properties of carrageenan, thus affecting the mechanical

properties of the carrageenan-based film (84). For example,

it has been demonstrated that with the addition of TiO2
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TABLE 1 The physical and chemical properties of carrageenan-based films.

Film The physical and chemical properties of carrageenan film References

Mechanical properties Water vapor permeability

(WVP)/10−11

g·m·Pa−1
·m−2

·s−1

Thermal

stability/%
TS/MPa EAB/%

Pure κ-carrageenan 42.5 3.9 7.5 - (87)

Pure ι-carrageenan 18.36 9.86 36 40.58 (88)

κ/ι-hybrid carrageenan 55.2 3.4 6.7 - (87)

κ-carrageenan-cellulose nanocrystals 85.29 27.7 - 41.54 (89)

κ-carrageenan/konjac

glucomannan/TiO2 nanoparticles

63.7 28.8 9.02 18.5 (90)

κ-carrageenan/lignin 27 28 - 47.3 (91)

unidirectionally permeable film (κ-

carrageenan/gelatin/curcumin/zein/glycerol)

12.15 12.97 1.69 - (65)

κ-carrageenan/palm oil/emulsifier 13.83 43.61 15.4 - (92)

κ-carrageenan/starch 13.6 16.7 9.6 - (66)

ι-carrageenan/starch-fatty/ stearic

acid/palmitic acid/lauric acid/butyric

acid/oleic acid

218 (N/m) - 1.18 - (93)

Double-layer indicator film (κ-

carrageenan/curcumin/anthocyanin/konjac

glucomannan/camellia oil)

22.64 52.3 1.85 12.56 (94)

κ-carrageenan/whey protein

isolate/pomegranate seed oil

6.18 23.43 3.14 - (95)

κ-carrageenan/mulberry polyphenolic

extract

26.3 8.59 3.86 - (96)

κ-carrageenan/hydroxypropyl

methylcellulose/Prunus maackii pomace

10.78 43.2 2.07 - (97)

κ-carrageenan/curcumin 18.12 16.99 9.8 - (98)

κ-carrageenan/xanthan gum/gellan gum

hydrogel

20.87 13.7 21.5 43.6 (84)

nanoparticles increasing from 0 wt to 5 wt%, the tensile strength

and modulus of the composite films significantly increased

from 39 to 122% (100). It may be explained by that the addition

of TiO2 nanoparticles can strengthen the physical interaction

between the filler and the carrageenan matrix. Better still,

sodium benzoate solution was coated onto the film surface as

a photosensitizer and then the film was exposed to the UV

light for a photo-crosslinking. The reactive benzoate radicals

generated by UV radiation reacted with the tertiary hydrogen

atoms of the semi-refined carrageenan polymer, forming

polymeric radicals, which promoted the crosslinking of the

carrageenan polymer chains. The TS of the resulting film

was increased by 36–55%, and the density and water barrier

properties of the resulting film were also enhanced (101).

However, when the addition of nanomaterials is excessively

large or the UV exposure time is excessively long, the resulting

film will not exhibit excellent mechanical properties, due to the

crystallization of nanoparticles into clusters and the pores and

microcracks caused by high level photodegradation (100, 102).

In recent years, due to the increasing environmental issues

in the world, natural biodegradable ingredients have also been

incorporated into the carrageenanmatrix. For instance, the pearl

millet starch was mixed with carrageenan to form the composite

film with excellent mechanical properties (TS of 28 MPa) (103).

It may be ascribed to the formation of hydrogen bonding

between the starch and carrageenan molecules, resulting in

increasing intermolecular interactions (103). Furthermore, the

addition of edible maize protein increased the elongation at

break of the film from 10.85 to 12.97% (65). In summary,

most additives are mixed with carrageenan through physical

interactions, and the mechanical properties of carrageenan films

are affected by additives (types and amounts). Therefore, natural

additives, such as starch, animal and vegetable proteins, are

suitable choices due to the widespread presence of hydroxyl

Frontiers inNutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2022.1004588
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Cheng et al. 10.3389/fnut.2022.1004588

FIGURE 5

Preparation of the unidirectionally permeable film.

groups in their molecular chains and excellent compatibility

with carrageenan matrix.

It is noteworthy that plasticizers also affect the mechanical

properties of composite films. The addition of plasticizers

increases the fluidity of the film-forming matrix by distorting

the hydrogen bonds between adjacent polymer chains. However,

the addition of plasticizers at high concentration could increase

the intermolecular spacing and reduce the tensile strength of the

film (103).

Water vapor barrier

Thewater vapor barrier of a film is affected by several factors,

such as the integrity of the film, the hydrophilic-hydrophobic

ratio of the film components, the molecular density of the

film and the fluidity of the polymer chains (84). Carrageenan

exhibits poor water resistance, which limits its application (104).

Therefore, the addition of other ingredients is needed to improve

the water vapor permeability of composite films. For example,

the cross-linked network formed by zein and carrageenan allows

water molecules to pass through a twisted path, thus stopping

water vapor outside the food. It has been demonstrated that the

addition of zein/carrageenan complex can improve the water

vapor permeability of the gelatin film, decreasing from 5.2 ±

0.2 × 10−10 g mm/h mm2 Pa (the pure gelatin film) to 1.2

± 0.1 × 10−10 g mm/h mm2 Pa (the zein/carrageenan/gelatin

film) (105). In addition, the hydrogen bonding interaction

between the hydroxyl groups on the benzene ring of curcumin

and carrageenan made the curcumin evenly distributed in the

carrageenan matrix, thus prolonging the permeation path of

water vapor, and reducing the water vapor permeability of the

film from 2.08× 10−10 g mm −2 s−1 atm −1 to 0.98× 10−10 g

mm −2 s−1 atm −1 (98).

Surface hydrophobicity

The hydrophobic surface protects the film from moisture

and facilitates the removal of impurities by water. However,

due to its hydrophilicity, carrageenan film exhibits poor

moisture-proof effect, which limits its application in food

preservation (92). Therefore, the interest in the incorporation

of other components into the carrageenan matrix for enhancing

hydrophobicity of the films has been growing. For example,

the high pressure treatment broke the intermolecular bonds

in the starch molecules, allowing hydrogen bonds to form

between the starch and carrageenan. Therefore, the pressure-

treated starch was dispersed into the carrageenan matrix,

forming a compatible system of carrageenan andmodified starch

with enhanced surface hydrophobicity and tensile strength

(66). The addition of fatty acids also had a positive effect

on surface hydrophobicity. Compared to the control films

without fatty acids, polymer-lipid-carrageenan composite films

showed better surface hydrophobicity, due to the generation of

strong stabilizing network linked by covalent and non-covalent

bonds (93). Proteins were used to mix with κ-carrageenan,

and exposed its internal hydrophobic groups, thus improving

the hydrophobic properties of the composite films (99). In

addition, some small molecules, such as arginine laurate, salt

ions can improve the hydrophobicity of carrageenan films (106).

The surface activity of the hydrophilic chain of carrageenan

was successfully enhanced by the in situ interaction of the

polymer with the surfactant arginine laurate. Furthermore,

a unidirectionally permeable film was prepared, including

an inner layer (a carrageenan film) and an outer layer (a

hydrophobic film) (Figure 5), which is beneficial to improve the

hydrophobicity of the composite film (65).

Light protection

The light barrier properties of carrageenan films are vital for

food packaging applications. There are two properties of the film

to achieve light protection for food, including color and opacity.

The color of the carrageenan composite films is measured using

a colorimeter and evaluated by the L, a and b values (112). L is

for lightness and darkness, ranging from 0 to 100. As for a and b
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values, they range between−128 and + 127. Specifically, a value

represents red (+127)/green (-128), and b value is yellow (+127)

/blue (-128). The pure carrageenan film is nearly colorless and

transparent, and researchers often enhance the reflection of light

by increasing the whiteness of the film to protect food. For

example, due to the aggregation and mutual cross-linking of

white fibers, the addition of soybean dietary fibers improved the

whiteness of the carrageenan film, thus protecting food (107).

The addition of colored substances endows the film with color,

thus protecting food. For instance, the addition of phenolic

extracts (from germinating fenugreek seeds) changed the color

of the carrageenan composite films. Specifically, the L value of

the film decreased from 91.51 to 66.87, and the color became

significantly darker, which can enhance the UV-resistance of the

films (108, 109). Curcumin and anthocyanin are often added

into carrageenan composite films, which can improve the light

barrier properties of the composite films. For example, with the

curcumin content of the carrageenan film increasing from 0 to

7%, a value of the film showed an increase from−1.08 to +

21.88, b value of the film increasing from +4.82 to +65.29, L

value of the film decreasing from 96.16 to 61.88. The color of the

film darkened and deepened in yellow (98). Furthermore, since

the color of curcumin and anthocyanin changes with pH, the

pigment-loaded carrageenan composite film can be used as an

intelligent colorimetric indicator film (110, 111) (Figure 6).

The opacity of the film can affect food protection of the film.

The addition of nanoparticles made the film cloudy, increased

the opacity of the film, and prevent light from passing through

(112). Similarly, the incorporation of oil droplets into the film

can cause light scattering, and the opacity of the filmwas affected

by many factors, such as the content of the oil droplet, the

size of the oil droplet, and the light scattering intensity (113).

For instance, the light transmittance of the carrageenan film

(containing camellia oil) at 350 nm was lower than 20%, while

that of the pure carrageenan film was about 60%. It indicated

that the addition of camellia oil can enhance UV-resistance and

light-resistance of the films (94).

Thermal properties

The thermal properties of carrageenan films determine

the ability of the film to adapt to the environment

temperature. Thermal properties are usually determined

using thermogravimetric analysis and differential scanning

calorimetry (90, 114). Thermogravimetric analysis involves

weighing the film into a crucible, scanning it at an appropriate

rate over a range of temperatures, and plotting the mass loss

of the sample as a function of temperature (90). Differential

scanning calorimetry is plotted as a function of heat flow rate

and temperature (115).

In the film-forming process, the addition of the plasticizer

causes the carrageenan chains to be separated and the

intermolecular interaction forces to be reduced, thus

affecting the thermal property of the film. For example,

the glass transition temperature of the carrageenan films

(with plasticizers) dropped below 30 ◦C, while the glass

transition temperature of pure κ-carrageenan was 84.72 ◦C

(35). Therefore, the selection of the plasticizer is critical

for thermal properties of the film. Glycerol and sorbitol are

commonly used as plasticizers in the film-forming process

and have different effect on the thermal performance of the

film. It was found that the melting temperature of the film

decreased sharply with increasing glycerin concentration, while

the melting temperature of the film did not decrease as sharply

with increasing sorbitol concentration (35). Moreover, the film

(with glycerin) still exhibited good stability at around 200 ◦C,

which can meet the needs of most food packaging (35, 116).

In order to endow carrageenan films with a wide range of

applications, the incorporation of substances that enhance the

internal structural stability of the carrageenan, can improve

thermal properties of the composite film. Transglutaminase, an

enzyme that occurring almost all organisms, can significantly

enhance the double helix structure of carrageenan through

crosslinking. As the concentration of transglutaminase

increased, the melting temperature of the film increased from

49.7 ◦C to above 80 ◦C (117). In addition, the incorporation

of the natural peptide ε-polylysine can exhibit excellent

compatibility with carrageenan and promote the formation

of the ordered and tightly arranged network structure in

the carrageenan gel, thus improving the thermal stability of

the carrageenan film. It was proven that the decomposition

temperature of the film (with ε-polylysine) was much higher

than that of the pure carrageenan film (118).

Application of carrageen-based films
on food preservation

Applications in fruits and vegetables

Fruits and vegetables are rich in vitamins and minerals,

which play an important role in human health. However, they

are susceptible to spoilage. Approximately 20% of fruits and

vegetables are discarded each year in developed countries, thus

leading to huge economic losses (119). Generally, main factors

affecting the spoilage of fruits and vegetables are water content

and respiration rate. It has been proven that an extremely

high water content (about 75–95%) and high respiration rate

endowed fruits and vegetables susceptible to bacteria and fungi,

therefore resulting in spoilage (120). So, it is necessary to

develop preservation methods for extending the shelf life of

fruits and vegetables.

The carrageenan film has excellent mechanical and

protective properties, therefore it is favored in the preservation

packaging of fresh fruits and vegetables (Table 2). The
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FIGURE 6

Schematic diagram of the application of the anthocyanin-carrageenan film for monitoring fish freshness.

TABLE 2 Application of carrageenan-based packaging.

Fruits or

vegetables

Carrageenan Additives Preservation behaviors of carrageenan-based films References

Strawberry carrageenan Lemon grass essential oil Shelf-life was extended up to 12 days (62)

Strawberry κ-carrageenan Sodium carboxymethyl

starch,carboxylated

cellulose nanocrystals

The film keeps the inside of the strawberry fruit moist after a week of

storage

(121)

Mongo κ-carrageenan ZnO nanoparticles The coating can reduce the amount of O2 and limit the diffusion of

CO2 out of the tissue. On the 33rd day of storage, the degree of

deterioration of mangoes was still very low

(122)

Plum ι-carrageenan Rice starch,sucrose fatty

acid esters

The respiration rate of the experimental group was lower than that of

the control fruit, and the coated plums stored at room temperature for

three weeks remained firm and had good color

(123)

Tomato ι-carrageenan Arrowroot starch The coating reduced the weight loss of tomatoes at room temperature

and extended their shelf life up to 10 days

(57)

Mushroom carrageenan Nano-SiO2 , konjac

glucomannan

The addition of Nano-SiO2 reduced the gas permeability of the coating

and delayed the effect of UV light on food quality

(124)
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FIGURE 7

Schematic diagram of the application of the carrageenan-ZnO nanocomposite coating for mango preservation.

mechanical properties of the carrageenan film allow the film

to maintain intact during the transport and distribution of

fruits and vegetables, thus avoiding mechanical damage to

the products (123). Furthermore, the addition of oxygen and

ethylene scavengers into the carrageenan film can slow down the

respiration rate of fruits and vegetables and inhibit the growth

of aerobic bacteria (125). Although carrageenan exhibits a weak

water vapor barrier (104), the addition of other components

could effectively reduce the water vapor permeability of the

film, thus preventing the loss of internal moisture in fruits and

vegetables through pores and cracks on the surface (123).

It has demonstrated that carrageenan-zinc oxide

nanocomposite coatings (Figure 7) can reduce physical and

biological damage to mangoes (122). On the 19th day, coated

mangoes still retained initial firmness, a slight discoloration

and decay occurred in the coated mangoes on the 33rd day.

The shelf life of coated mangoes was extended to 14 days,

compared with uncoated mangoes (122). Because the addition

of zinc oxide nanoparticles allowed the composite coating

to significantly increase the tensile strength by 43%, reduce

the water vapor transmission by 9%, and inhibit the growth

of E. coli, compared with that of pure carrageenan coatings

(122). Compared with the mango, strawberry is more prone to

spoilage. Therefore, it is imperative to develop a method for

strawberry preservation. The carrageenan coating has been used

for strawberry packaging, and exhibited the lowest total soluble

solids (9.50%) on the 12th day of storage, much lower than the

control group (12.20%) (62). The rot rate of strawberries was

reduced by 14.29% since the carrageenan film inhibited the

metabolic activity and reduced water loss (62).

Carrageenan film can play a similar role during vegetable

storage. Tomatoes coated with a naturally biodegradable

edible film (arrowroot starch and ι-carrageenan) have been

demonstrated to be more firm than unwrapped tomatoes (57).

Konjac glucomannan-SiO2-carrageenan composite nano films

can also reduce the weight loss and oxygen permeability of

white mushrooms, thereby slowing down the respiration of

mushrooms and reducing their browning index, extending the

shelf life of mushrooms stored at 4 ◦C by 5-12 days (124).

Applications in fish and meat products

Fish and meat products are favored for their high protein

and unsaturated fatty acid content (65). However, fish and

meat products are prone to spoilage. The spoilage of fish

and meat products is affected by microbial contamination, fat

oxidation, protein degradation and endogenous enzymes (126).

In addition, environmental factors such as temperature, oxygen,

moisture and light, can easily cause changes in the color, smell,

texture and flavor of fish and meat products, which are difficult

to detect with the naked eyes (127, 128). Low temperature

preservation is commonly used for preservation of fish and

meat products, including refrigeration and freezing. However,

frozen fish and meat products do not taste good, and cold

fish and meat products are more popular. Therefore, in order

to extend the shelf life of the cold fish and meat products,

the development of carrageenan-based composite films has

received tremendous attention. For example, compared with

unpackaged beef, the application of copper sulfide nanoparticle-

carrageenan films to beef can reduce effectively the amounts

of Escherichia coli and Staphylococcus aureus by 52.6% and

69.8%, respectively (129). Similarly, it was found that the use of

carrageenan/camellia oil films for chicken preservation reduced
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the amounts of cryophilic bacteria (3.86 Log CFU/g) sharply,

compared with that of the control group (5.35 Log CFU/g) (130).

In addition, due to the antioxidant and antibacterial activities

of curcumin, the carrageenan/curcumin films can inhibit the

growth of Staphylococcus aureus and Serratia marcescens, thus

being applied for shrimp packaging (98).

Spoilage of fish and meat products is often accompanied

by the production of nitrogenous substances such as ammonia,

dimethylammonium and trimethylamine, which may alter pH

(98). Therefore, the incorporation of pH-sensitive substances

into carrageenan matrix allows the composite films to monitor

the freshness of fish and meat products. For example, the

curcumin-loaded carrageenan film has been developed for

monitoring pork freshness, since the phenolic hydroxyl groups

of curcumin readily reacted with OH- to form phenolate anions

(98). It was found that the color of the film changed from

yellow to red, as the TVBN value of the pork increased from

4.91 to 31.11 mg/100 g (108). The κ-carrageenan/anthocyanins

films can also be used as an indicator film for monitoring

pork freshness. Studies have demonstrated that the color of the

indicator film turned from purple to green, with the TVBN value

increasing from 8.23 to 14.63 mg/100 g (131). In lard packaging,

the color of the carrageenan/carboxymethylcellulose/plum sap

composite film changed from deep red to blue-gray, with the

pH increasing from 3 to 13 (132). The natural dye-loaded

carrageenan composite films are also applied for fish (112) and

shrimp (98) preservation.

Applications in dairy products

Oxidation and microorganisms are important factors

affecting the spoilage of dairy products (121). Currently,

carrageenan-based composite films have been gradually

popularized in the application of dairy product preservation.

Studies have shown that the addition of mulberry polyphenolic

extract into carrageenan matrix can be applied for monitoring

milk freshness (96, 133). It was found that the color of the

carrageenan composite film changed from gray, purple to dark

pink, when the film was covered on milk stored at 40 ◦C for

0–6 h (96, 133). Because the lactic acid produced by microbial

metabolism increased, the acidity increased, the pH decreased,

and thus leading to the color change of the composite film (96).

Furthermore, due to whipping, the oxidation of lipids and

the reproduction of microorganisms are accelerated during

the production of ice cream, it is imperative to fabricate

carrageenan-based composite films for ice cream preservation

(134). The aloe vera gel/carrageenan composite film was found

to inhibit the reproduction of various microbial pathogens

such as Staphylococcus aureus, Escherichia coli, Streptococcus

agalactiae, and Klebsiella pneumoniae in ice cream (135). The

carrageenan-based composite film has also been used in cheese

preservation. It was proven that the carrageenan-black bean

extract film exhibited excellent antioxidant, mechanical and

water barrier properties and was coated on the cheese. Results

showed that the peroxide value of the coated sample after 20 days

storage was 1.25 mEq O2 /Kg, while that of the uncoated cheese

sample was 4.2 mEq O2 /Kg (136, 137).

Conclusion and future trends

An increasing attention in carrageenan-based films for

food packaging has been drawn, due to abundant resource,

biodegradability and excellent compatibility of carrageenan.

This review provided an overview of the carrageenan (source,

extraction method, and property), film-forming methods (direct

coating, solvent casting and electrospinning), the property

of the carrageenan-based composite film and applications.

We focused on the driving forces for the formation of

carrageenan-based films and how to enhance the properties

of carrageenan-based films. In summary, most of researches

focused on the applications of carrageenan-based films in the

laboratory, further studies concentrating on industrial scale

productions requires to be done. Moreover, the future trend

of carrageenan-based films for food packaging applications

is to fabricate excellent multifunctional films, the interaction

mechanism of carrageenan with other components therefore

requires further discussed.
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