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Dietary compounds significantly a�ected starch enzymatic digestion.

However, e�ects of dietary compounds on starch digestion and their

underlying mechanisms have been not systematically discussed yet. This

review summarized the e�ects of dietary compounds including cell walls,

proteins, lipids, non-starchy polysaccharides, and polyphenols on starch

enzymatic digestion. Cell walls, proteins, and non-starchy polysaccharides

restricted starch disruption during hydrothermal treatment and the retained

ordered structures limited enzymatic binding. Moreover, they encapsulated

starch granules and formed physical barriers for enzyme accessibility. Proteins,

non-starchy polysaccharides along with lipids and polyphenols interacted

with starch and formed ordered assemblies. Furthermore, non-starchy

polysaccharides and polyphenols showed robust abilities to reduce activities

of α-amylase and α-glucosidase. Accordingly, it can be concluded that

dietary compounds lowered starch digestion mainly by three modes: (i)

prevented ordered structures from disruption and formed ordered assemblies

chaperoned with these dietary compounds; (ii) formed physical barriers and

prevented enzymes from accessing/binding to starch; (iii) reduced enzymes

activities. Dietary compounds showed great potentials in lowering starch

enzymatic digestion, thereby modulating postprandial glucose response to

food and preventing or treating type II diabetes disease.
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Introduction

Starch which is a polysaccharide composed of linear chains (amylose) or branched

chains (amylopectin) is a major source of energy in the human diet. Starch digestion is

accomplished by two type of enzymes in human gastrointestinal tract (GIT): (i) salivary

and pancreatic α-amylases and (ii) intestinal brush border glucoamylases, maltase-

glucoamylase, and sucrase-isomaltase (1). Amylase digests amylose intomaltose subunits

(disaccharide) and amylopectin into branched chains (i.e., dextrins). Both maltose and

dextrins are digested by enzymes located in intestinal brush border, which in turn
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produced glucose. The glucose released from starch is

subsequently absorbed in the intestine and hydrolyzed to

produce adenosine triphosphate or stored in animals as the

polysaccharide glycogen. Accordingly, starch-based diets are

commonly the main foods that provide the necessary energy.

However, rapid digestion of starch contributes to postprandial

hyperglycaemia, which in turn possibly results in an impaired

insulin secretion and the incidence of chronic diseases such as

obesity and type II diabetes (2, 3). Slowing starch enzymatic

digestion in the GIT is of great interest in preventing the

incidence of chronic diseases.

Enzymatic reactions consist of three steps: diffusion of

enzymes to the solid surfaces, absorption/binding, and catalysis

(1). Regarding to starch enzymatic digestion, there are two

factors influencing the extent and rate of starch digestion:

(i) barriers that slow down or prevent digestive enzymes

from accessing/binding to starch and (ii) starch structural

features that limit enzyme action after initial binding (4). Starch

structuration on fine structure, helical structure, crystalline

structure, lamellar structure, short-range ordered structure,

and nanoscale aggregate structure significantly slowed enzymes

binding with starch and reduced enzymes catalyzation toward

starch (5–13). It has been summarized that slowly digestible

starch (SDS) was the fraction with high α-1,6 linkages, short

branch chains [degree of polymerization (DP)< 13], long chains

with DP 25–36, or imperfect helical and crystalline structures,

while the resistant starch (RS) was the fraction rich in high

amylose content, double helix-promoting chains with DP ca.

12–24 and DP ≥ 37, along with some chains with DP 25–36,

perfectly-packed double helices and crystalline structures, V-

type crystals, or densely-packed crystalline lamellae and more

ordered reassembled aggregate structures (8). According to

previous studies (14–19), starch digestion was affected not only

by its intrinsic structures but also by the interactions between

starch and dietary non-starchy compounds and between

digestive enzymes and non-starchy foods. At present, many

reviews have indicated dietary compounds such as polyphenols,

lipids, and non-starchy polysaccharides significantly affected

starch digestion (15–20). However, the effects of dietary

compounds such as cell walls, protein, lipids, non-starchy

polysaccharides, and polyphenols on starch digestion and

their underlying mechanisms have been not systematically

summarized yet.

Therefore, this review provided a survey of the latest

developments on dietary strategies for slowing starch enzymatic

digestion, with a particular focus on the mechanisms underlying

the modulation of starch digestion. Future perspectives

regarding the dietary strategies for the control of starch digestion

will be proposed. This review can provide better insights into the

modulation of starch enzymatic digestion through complexation

with dietary compounds.

Cell walls slow starch digestion

The basic architecture of plant cell wall is shown in

Figure 1. Plant cell walls are cellulose-based assemblies

containing cellulose and non-cellulosic polysaccharides (e.g.,

pectin, xyloglucans, heteroxylans, and β-glucans), lignin

and some proteins (20, 21). Cellulose fibrils assembled

and served as scaffold filling with amorphous non-

starchy polysaccharides (20). While the filling non-starchy

polysaccharides prevented aggregation and collapse of

the cellulose/hemicellulose network, the interactions of

the non-starchy polysaccharides significantly contributed

to the density and porosity of cell walls and in turn

determined the permeability of hydrolases through the

cell walls (22, 23).

Effects of cell walls on starch gelatinization and enzyme-

starch interaction are shown in Figure 1 (21). Cell walls

entrapped starch granules, thereby limiting the enzymatic

digestion through the physical barriers (24). In addition,

non-starchy polysaccharides-rich cell walls of starchy foods

retained their intact structures during food processing, and

in turn significantly slowed starch enzymatic digestion (25,

26). Non-starchy polysaccharides were not digested in the

GIT due to the lack of corresponding enzymes. Therefore,

the cell walls of processed foods provided physical barriers

for enzymes diffusion to starch and hydrolyzation of starch

molecules. Li et al. suggested that the integrity of cell walls

of pulse significantly affected starch digestion (27). Food

processing yielded disorganization of cell walls, which in turn

increased cell wall permeability and facilitated enzyme diffusion

through the cell walls along with increased starch enzymatic

digestion (27–31). Treatments with a higher temperature

or a longer time promoted starch swelling, weakening the

physical barriers, and increasing the degree of process-

induced cell wall permeability, which in turn increased

starch enzymatic digestion (29, 31). Although decreasing

cell intactness has been shown to increase the rate but

not the extent of starch digestion (26), most of studies

indicated that the increase in cell permeability slowed the

rate and reduced the extent of starch digestion in vitro

(24, 25, 28–30, 32–34).

Li et al. indicated that enzymatic digestion of starch

granules entrapped within cell walls in pulses depended

on both the intactness of cell walls as well as the

ordered structures of pulses after food processing (27).

Cell walls not only limited enzymes diffusion onto

starch molecules, but also delayed starch gelatinization,

retarded starch granules swelling and leaching of starch

molecules. Accordingly, ordered structures (e.g., helical

structures, crystalline structures, granular form) of starch

granules within cell walls retained as shown in Figure 1
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FIGURE 1

Schematic showing the structures of starch-containing intact and broken cells during gelatinization and in vitro digestion. The intact cell walls

limited enzymes and water di�usion onto starch, while the intact cell walls yielded starch complete gelatinization and enzymes di�usion onto

starch surface. The graph is collected from Li et al. (21).

(21, 27–29, 32, 34, 35). The retained starch ordered structures

significantly slowed starch enzymatic digestion (7, 8). Thus,

the cell walls slowed starch digestion through retarding

the disruption of starch ordered structures during food

hydrothermal processing.

In addition to the roles of cell walls on starch ordered

structures, cell walls also bound with enzymes and affected

hydrolyzation activities of the enzymes (25, 34). The non-

catalytic binding of amylase on cell walls limited enzymes

diffusion onto starch molecules, which reduced the amylolysis

of starch within intact cells (25, 34). Starchy foods like pulses

contained α-amylase inhibitors such as tannins, lectins and

other proteinaceous inhibitors (36). Li et al. reported that both

soluble and insoluble components from pulse cells showed

a significant inhibition (ca. 3–15%) on enzymes activities,

thereby slowing the enzymatic digestion of starch within pulse

cells (34).

Proteins slow starch digestion

Protein is one of the most important compounds in foods

systems. It has been summarized that proteins could non-

covalently interact with starch through hydrogen bonding,

hydrophobic interactions, electrostatic forces, ionic interactions,

and van der Waals force (17). Endogenous rice protein

interacted with rice starch significantly lowered starch digestion

extent through reducing swelling of starch granules and

suppressing the accessibility of enzymes to starch granules

(37). Potato protein isolate interacted with starch and in

turn restricted starch disorganization and reduced starch

digestion extent (38). Denatured plant proteins interacted with

starch through hydrogen bonds and electrostatic interactions

and restricted starch hydration and enzymatic cleavage (39).

Whey protein interacted with starch to form starch-protein

assemblies, which significantly increased starch short-range
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ordered structure while lowering starch digestion extent (40).

Enzymatically hydrolyzed (the combination of pepsin and

pancreatin) rice protein interacted with rice starch to promote

the formation of V-type crystals and lowered starch digestion

extent (41). In addition to the role of proteins on structures of

pure starch and starch-protein assemblies, some proteins bound

with enzymes and lowered enzymes activities and finally reduced

the digestion rate and extent of starch (41–43). Water soluble

barley proteins bound with α-amylase, which reduced α-amylase

activity and slowed starch digestion rate and lowered starch

digestion extent (42). Rice proteins hydrolyzed by pepsin and

pancreatin bound with α-amylase, and in turn, inhibited α-

amylase activity [the IC50 value (the half maximal inhibitory

concentration) was in the range of 1.75–2.15 mg/mL] and

lowered starch digestion extent (41). The activity of α-amylase

was decreased greatly from 0.42 to 0.07 units by native gluten

pepsin-hydrolyzed gluten (43).

Although the effects of protein structures on starch

digestion in foods systems has not been resolved yet, it

can be preliminarily concluded that dietary protein has a

strong ability to mitigate starch enzymatic digestion. Dietary

proteins affected starch enzymatic digestion via different

pathways: (i) proteins acted as physical barriers and restricted

the interaction of enzymes with starch molecules (37);

(ii) proteins interacted with starch and restricted starch

swelling and disorganization during hydrothermal treatment,

which increased ordered structures and blocked the binding

sites of starch molecules for digestive enzymes (39, 41);

(iii) proteins or their hydrolysates interacted with starch

to form ordered structures which were slowly digestible

or not digestible (40, 41); (iv) proteins bound with α-

amylase and lowered α-amylase activities and starch digestion

extent (41, 42).

Lipids slow starch digestion

Lipids are the important hydrophobic dietary compounds

in foods. In starch-containing foods systems, lipids tended

to interact with starch through hydrophobic interaction and

formed starch-lipid inclusion complexes or starch-lipid-protein

complexes (18). According to Dhital et al. (4), the access of

enzymes to the glucosidic bonds in the substrate is a key factor

affecting starch enzymatic digestion. The interaction between

lipids and starch significantly changed the torsion angles of

the glucosidic bonds, forming the starch helical structure

and in turn affecting the binding activity of the amylolytic

enzymes (18). The intact structures of starch-lipids inclusion

complexes did not favor the formation of enzyme-substrate

complexes (44). Accordingly, starch-lipids inclusion complex

was classified into type-5 RS (45). Promoting the formation of

starch-lipids inclusion complexes significantly lowered starch

digestion extent.

Starch structures, lipid type and structures, and the

preparation conditions significantly affected the formation of

starch-lipid inclusion complexes. Amylose is much easier to

interact with lipids compared with amylopectin. Starches with

higher amylose content formed more starch-lipids complexes

compared with less amylose-containing starches (46, 47).

Debranching using pullulanase or isoamylase increased amylose

content, which favored the formation of starch-lipid complexes

and reduced starch digestion extent in a higher magnitude

(48). A suitable polymerization of amylose is required for the

formation of starch-lipid complexes (44, 49, 50). Increasing the

chain length of amylose favored the formation of starch-lipid

inclusion complexes (49), while a very long amylose hampered

the formation of starch-lipid inclusion complexes (50).

Increasing lipids concentration favored the interaction of

lipids with starch, thereby lowering starch digestion in a

higher magnitude (51). However, lipids might self-assemble

at a high concentration and reduce the content of starch-

lipid inclusion complexes formed during the reaction (52).

Free fatty acids formed starch-lipid inclusion complexes as

a function of concentration (51, 53). Monoglycerides and

phosphatidylcholine could also interact with starch and formed

starch-lipids inclusion complexes (54, 55). Sincemonoglycerides

had higher solubility in water compared with fatty acids, they

were more likely to interact with starch and formed more

starch-lipid inclusion complexes (56). However, diglycerides

(e.g., dipalmitate glycerol) and triglycerides (e.g., tripalmitate

glycerol) could not form inclusion complexes with starch

because of their steric hindrance and low solubility in water

(56). By reducing the carbon chain length of free fatty acids,

the complexation index of fatty acids increased and the content

of starch-lipid inclusion complexes significantly increased

(57). The degree of unsaturation also affected the formation

of starch-lipid inclusion complexes and starch digestibility.

Fatty acids with a lower unsaturation could formed more

inclusion complexes with starch, thereby greatly decreasing

starch digestion extent (58, 59).

Proteins in food systems affected the formation of starch-

lipid inclusion complexes. β-lactoglobulin favored lipids (e.g.,

fatty acids and monoglyceride) dissolution in water and

promoted lipid-starch entanglement (58, 60–62). Notably,

β-lactoglobulin promoted fatty acids which had a shorter

length and lower unsaturation interaction with starch and

formed starch-fatty acids-β-lactoglobulin complexes, while β-

lactoglobulin in the binary system of starch, β-lactoglobulin,

and monoglyceride rather promoted the formation of starch-

monoglyceride complexes (61). Fatty acids contained carboxyl

groups and might behave negatively in food systems, allowing

fatty acids to interact with starch through hydrophobic

interactions and with proteins through electrostatic interactions

(63–65). However, monoglyceride is neutrally charged and

cannot electrostatically bridge the formation of the starch-

monoglyceride-β-lactoglobulin (61). In addition to the lipid
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types, protein types also affected the formation of starch-lipids

inclusion complexes (66). Whey protein isolate and A-type

gelatin promoted linoleic acid interaction with starch because

of their emulsifiability. A-type gelatin showed a weaker ability

to promote the formation of starch-linoleic acid inclusion

complexes, which was attributed to the fact that A-type gelatin

which had an isoelectric point higher than 7.0 might compete

with starch for linoleic acid and reduce the accessibility of

linoleic acid to starch hydrophobic cavity (66).

During the preparation of starch-lipid inclusion complexes,

the temperature, complexation time and modes, pH, NaCl,

and cooling rate significantly affected the formation of the

complexes (67–71). A higher temperature and a longer time

of the complexation, better-defined structures of the inclusion

complexes had (67, 68, 71, 72). Regarding the complexation

of swelled normal corn starch granules with lauric acid, the

modes of adding lauric acid to the starch slurry [adding the

lauric acid to the heated starch suspension (method I) or

adding the lauric acid to the starch suspension and then heating

(method II)] affected the content of starch-lauric acid inclusion

complexes formed during the reaction (73). The method I was

more beneficial to the formation of starch-lauric acid inclusion

complexes than that of method II, because the lauric acid

interacted with starch granules on surface, thereby inhibiting the

migration of lauric acid into interior starch granules to form

the complexes (73). A system with a higher pH promoted the

formation of starch-lauric acid inclusion complexes and starch-

lauric acid-β-lactoglobulin complexes, which was attributed to

the greater solubility of lauric acid and higher leaching of

amylose in the system (69). The presence of NaCl promoted

the formation of starch-fatty acid inclusion complexes due

to the improved solubility of fatty acids in NaCl-containing

aqueous medium (70). The cooling rate of starch paste affected

starch mobility during the cooling, which significantly affected

structures of starch-lipid inclusion complexes (74, 75). At a

higher cooling rate, amylose reorganized faster and more lipids

could be entrapped into amylose hydrophobic cavity to form

starch-lipid inclusion complexes (71).

Non-starchy polysaccharides slow
starch digestion

Non-starchy polysaccharides affected starch gelatinization,

the viscosity of starch paste, starch reorganization, and enzymes

activities, which affected starch digestion by different modes.

Polysaccharides such as chitosan, guar gum, and xanthan

interacted with starch granules and lowered starch swelling

and amylose leaching during hydrothermal treatment (76–

80). Pectin, κ-carrageenan, guar gum, arabic gum, pullulan,

Cordyceps polysaccharides, Mesona chinensis polysaccharides,

agar, xanthan gum and konjac glucomannan restricted starch

disruption during the hydrothermal treatment and interacted

with starch to form ordered structures, and in turn, lowered

starch digestion extent (77, 78, 81, 82). Xanthan gum, guar gum,

pectin, and konjac-glucomannan might interact starch and form

physical barriers around starch molecules, reducing enzymes

accessibility to starch molecules and lowering starch digestion

extent (83, 84).

Due to the interaction between starch and non-starchy

polysaccharides, the viscosity of starch suspension which

complexed with xanthan gum, guar gum, konjac glucomannan,

pectin, and chitosan significantly increased (85, 86). The

increased viscosity of starch suspension in turn retarded

enzymes diffusion onto starch surface, leading to a significant

reduction in starch digestion extent (85, 86). Other soluble

fibers including locust bean gum, fenugreek gum, fenugreek

gum, and soy soluble polysaccharide also limited enzymes

diffusion toward starchmolecules and retarded glucose liberated

from the starch-polysaccharide systems (86). It seems that

starch digestion rate and extent could be controlled through

modulating the viscosity of the starchy food systems.

The interaction between starch and non-starchy

polysaccharides also significantly affected properties of matrix

structures formed by starch and non-starchy polysaccharides

(82, 87–89). Agar, xanthan gum and konjac glucomannan in

starch pastes significantly promoted the formation of gel-like

matrix structures, and in turn, lowered starch digestion rate

and extent (87). The interaction between starch and non-starch

polysaccharides and the increased gel rigidity of the matrix

were the key factors affecting starch enzymatic digestion

(87). Mesona chinensis polysaccharides also interacted with

starch and significantly promoted the formation of a more

ordered structure of blended systems of starch and Mesona

chinensis polysaccharides, which remarkably lowered starch

digestion rate and extent (82, 88, 89). Comparing with xanthan,

guar, locust bean gum, and agar, starch-Mesona chinensis

polysaccharides complexes had better-defined gel structures

and the Mesona chinensis polysaccharides were found to be

the most effective polysaccharides in reducing wheat starch

digestion (88).

Starch digestion was controlled not only by starch ordered

structures and food viscosity, but also by the activities of

enzymes. Pectin bound with pancreatic amylase to reduce

amylase activity, resulting in slower starch enzymatic digestion

(90). Polysaccharides from oat (Avena sativa L.), Camellia

oleifera Abel. fruit hull, oolong tea, shaddock (Citrus aradise),

Coriolus versicolor LH1, mulberry fruit, pumpkin (Cucurbita

moschata) fruit, fermented puerh tea, green tea flower, corn

silk, Acacia tortilis gum exudate, Chinese traditional medicine

Huidouba, Mallotus furetianus, hemp (Cannabis sativa L.),

Fagopyrum tartaricum, blackberry fruit, Rosa roxburghii Tratt

fruit, Annona squamosa, wax apple, Chaenomeles speciosa

seeds, and Momordica charantia, significantly reduced the

activities of α-glucosidase or α-amylase, which showed great

potentials in slowing starch enzymatic digestion (19, 91–99). The
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FIGURE 2

Mechanism scheme for e�ects of polyphenols on starch digestion. Figure was adapted from Sun and Miao (16).

structure-function of polysaccharides toward enzymes activity

has been not revealed yet.

Accordingly, non-starchy polysaccharides lowered starch

digestion rate and extent by four different ways: (i) interacted

with starch granules and restricted starch disruption during

food processing (77–80); (ii) increased systems viscosity and

in turned restricted enzymes diffusion onto starch molecules

(85, 86); (iii) formed matrix structure with starch and

increased rigidity and ordered structures of starch-non-starchy

polysaccharide complexes (82, 88, 89); (iv) interacted with α-

glucosidase or α-amylase and reduced enzymes activities (91).

Polyphenols slow starch digestion

Effects of polyphenols on starch digestion are schematically

shown in Figure 2. α-amylase and α-glucosidase are two key

enzymes for starch digestion. Accordingly, starch digestion

could be significantly lowered through reducing activities of

α-amylase and α-glucosidase. Tea polyphenols, flavonoids,

phenolic acids, and tannins significantly reduced activities of

α-amylase and α-glucosidase, which showed great potentials in

mitigating starch digestion as summarized in previous reviews

(16, 100–102). Polyphenols with different structures showed

great differences in inhibition of activities of α-amylase and α-

glucosidase. Effects of flavonoids structures on the inhibitory

activity of α-glucosidase is schematically shown in Figure 3.

The hydroxylation and galloylation of flavonoids improved the

inhibitory activity, while the glycosylation of hyroxyl group

and hydrogenation of the C2=C3 double bond on flavonoids,

and the mono-glycosylation of chalcones reduced the inhibition

(102). Cooperating polyphenols into starchy foods systems can

remarkably slowed starch enzymatic digestion.

Polyphenols could interact with starch and form ordered

starch structures, and in turn, lowering starch digestion as

shown in Figure 2. It has been reported that polyphenols could

interact with starch and promote the formation of starch ordered

structures (103–110). Tea polyphenols, sorghum phenolic

FIGURE 3

Flavonoids key sites that a�ecting activities of α-glucosidase.

The up arrows and down arrows represent increasing and

reducing the inhibition activity, respectively. Figure was

collected from Xiao et al. (102).

compounds, gallic acid could non-covalently interact with starch

to form ordered structures for lowering starch digestion extent

(103, 105, 106, 111–114). V-type crystals are the structures

that are highly resistant to enzymatic digestion (8). Tannins,

proanthocyanidins, and longan seed polyphenols interacted

with starch and formed V-type crystals, which significantly

lowered starch digestion rate and extent (105, 107–109, 111).

Proanthocyanidins with a higher degree of polymerization had

stronger abilities to interact with starch and form more V-

type crystals (107, 114). Controlling the molecular weight of

proanthocyanidins would be a promising pathway to control the

formation of V-type crystals and thus starch enzymatic digestion

(114). Hydrophilic polyphenols were hardly to form V-type

with starch using conventional complexation method (e.g., high

speed shearing) (115). However, high pressure homogenization

could promote starch interaction with gallic acid and green

tea polyphenols, thereby forming V-type crystals and short-

range ordered structures for lowering starch enzymatic digestion

(105, 112). In addition to V-type crystals, gallic acid might

form “hamburger-like” structure of starch-polyphenol-starch
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complexes, which increased ordered structure of starch gel and

lowered starch digestion extent (103).

Other dietary compounds

In addition to the compounds discussed above, other dietary

compounds such as NaCl and phytosterols also affected starch

digestibility (70, 116, 117). NaCl would promote the formation

of starch-lipid inclusion complexes, which would slow starch

enzymatic digestion in a higher magnitude (70). Generally,

retrograded starch showed a low digestibility due to its ordered

structures (118). Co-crystallization with NaCl to produce single-

helix amylopectin was regarded as a promising strategy to

retard starch retrogradation (116), suggesting NaCl potentially

increased digestibility of retrograded starch. Phytosterols, which

showed robust abilities in lowering enzymes activities (117),

indicating phytosterols could slow starch digestion significantly

via inhibiting enzymes activities.

Concluding remarks and future
directions

This review summarized effects of dietary compounds

including cell walls, proteins, lipids, non-starchy

polysaccharides, and polyphenols on starch enzymatic

digestion and their underlying mechanisms were discussed.

Dietary compounds lowered starch digestion through three

pathways: (i) retained starch ordered structures or formed

ordered assemblies chaperoned with these dietary compounds;

(ii) formed physical barriers and prevented enzymes from

accessing/binding to starch; (iii) reduced enzymes activities.

Cell walls, proteins, and non-starchy polysaccharides restricted

starch disruption during hydrothermal treatment and the

retained ordered structures limited enzymatic binding. In

addition, they encapsulated starch granules and formed

physical barriers for enzymes accessing. Proteins, non-starchy

polysaccharides along with lipids and polyphenols interacted

with starch and formed ordered assemblies. Non-starchy

polysaccharides and polyphenols showed robust ability to

reduce activities of α-amylase and α-glucosidase. Comparing

with cell walls, protein, and non-starchy polysaccharides, lipids

and polyphenols had stronger ability to slow starch digestion.

Food systems are relative complex with cell walls, proteins,

lipids, non-starchy polysaccharides, polyphenols, vitamin,

minerals, sugar, salts, etc. Dietary compounds might interact

with each other and affect starch digestion in complicated

pathways. How the complex dietary compounds affected starch

digestion in real foods systems must be further investigated.

Currently, effects of dietary compounds on starch digestion were

interrogated in vitro. Dietary compounds would be digested and

absorbed in the gastrointestinal tract and in turn affected starch

digestibility. Starch in vitro digestibility may quite different to

in vivo digestibility. Accordingly, in vivo glycemic response is

the most important property of starchy foods. Further studies

are needed to investigate the roles of dietary compounds on

starch in vivo glycemic response. In addition, different groups

of people such as children, athletes, middle- and old-aged

human have different requirements for starch digestion rate and

extent. Targeted structuring food structures and starch digestion

behaviors via complexation with dietary compounds remains

of interest.
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