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Sibiraea laexigata (L.) Maxim (SLM) has been used as an herbal tea for treating

stomach discomfort and indigestion for a long time in china. Polysaccharides

have been identified as one of the major bioactive compounds in the

SLM. In the present paper, ultrasonic-assisted enzymatic extraction (UAEE)

method was employed in polysaccharides extraction derived from SLM using

polyethylene glycol (PEG) as extraction solvent, two SLM polysaccharides

(SLMPs) fractions (SLMPs-1-1 and SLMPs-2-1) were purified by DEAE

Cellulose-52 and Sephadex G-100 chromatography in sequence. Then, the

preliminarily structure of the two factions were characterized by chemical

composition analysis, molecular weight measurement, UVS, HPLC-PMP, FT-

IR, nuclear magnetic resonance (NMR) spectra analysis and SEM. The results

showed that SLMPs-1-1 and SLMPs-2-1 with different molecular weights

of 1.03 and 1.02 kDa, mainly composed of glucose (46.76 and 46.79%),

respectively. The results of structural characterization from FT-IR, 1H NMR,

and SEM revealed that SLMPs-1-1 and SLMPs-2-1 contained the typical

pyranoid polysaccharide with α-glycosidic bond and β-glycosidic bond.

Furthermore, it was found that SLMPs-1-1 could increase the levels of

tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2), and alleviated the

immune organs tissue damage of cyclophosphamide (Cy)-treated mice. RT-

qPCR and Western-Blot analysis showed that SLMPs-1-1 could significantly

up-regulated the levels of NF-κB, TLR4, which revealed that SLMPs-1-

1 could participate in immunosuppressive protection of Cy-treated mice.

These findings suggested that the potential of SLMPs-1-1 as an alternative

immunostimulator could be used in food and pharmaceutical industries.
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Introduction

Polysaccharides, a kind of natural macromolecular
polymers, have been reported to have various biological
activities, including antioxidant (1), anti-tumor (2) and
enhancing immune activity (3), etc. In recent years, many
natural plant polysaccharides have emerged as one of the
hot topics and are widely perceived as ideal candidates
for immunomodulatory agents in functional food (4)
and practical medical fields due to their relatively low
side effects and toxicity (5). For example, a polysaccharide
derived from Astragalus has been developed as an immune
enhancer using for adjuvant treatment of cancer in
China (6).

Sibiraea laexigata (L.) Maxim (SLM), which belongs to the
Rosaceae family (Genus Xianbei), mainly distributed in the
shrub of 3,000–4,000 m in the western part of China. The
aerial part of SLM is called “Liucha,” which has been used
as a herbal tea and is typically utilized for the treatment of
stomach discomfort and indigestion by Tibetans in Tibetan
folk medicine of China for a long time (7). It has been
found that the significant effective ingredients of SLM include
polysaccharides (8), triterpenoids (9), flavonoids (10), and
monoterpenes (11). However, previous studies about SLM
mainly focused on extensive phytochemical investigations and
the extraction of crude SLMPs, lacking a detailed study of the
structures characterization and their immunomodulatory effects
in vivo (12).

In present work, SLMPs was extracted by PEG-
UAEE method and purified by DEAE Cellulose-52
and Sephadex G-100 chromatography in sequence.
Then, the preliminary structure characterization of
SLMPs-1-1 and SLMPs-2-1 were measured by chemical
composition analysis, molecular weight measurement,
UVS, PMP-HPLC, FT-IR, nuclear magnetic resonance
(NMR) spectra analysis, and SEM. Furthermore, the
immunoregulatory of SLMPs-1-1 and underlying mechanisms
were thoroughly investigated by modulating CTX-induced
immunocompromised mice via TLR4 and NF-kB receptor
signaling pathways.

Materials and methods

Materials and reagents

SLM leaves were obtained from Hezuo City (102◦54′E,
34◦58′N, Gansu Province, China), dried and ground in
a BJ-400 high disintegrator (Yongkang Boou Instrument
Co., Ltd., Shanghai, China), sieved (80 mesh), and
stored at 4◦C until use. 1-phenyl-3-methyl-5-pyrazolone
(PMP), monosaccharide standard products and TFA were

purchased from Sigma-Aldrich Chemical Co., Ltd. (Louis,
United States). DEAE Cellulose-52, Sephadex G-100, Cytokine
(IL-2 and TNF-α) ELISA kits and Total ribonucleic acid
(RNA) Purification Kits were purchased from Solarbio
Biological Reagent Co., Ltd. (Beijing, China). Injectable
cyclophosphamide (Cy) and Injectable levamisole (LH) were
purchased from Shanghai Sangon Biotech Co., Ltd. (Shanghai,
China). All other reagents used in experiments were all
analytically pure.

Extraction and purification of Sibiraea
laexigata (L.) Maxim polysaccharides

The PEG-UAEE method was employed in crude
polysaccharides extraction from SLM leaves (13). Briefly,
3.0 g pretreated SLM sample powder was immersed in a 45
mL aqueous PEG complex enzyme solution (E/S ratio of 21
U/g), the mixture was treated by a SB-500DTYultrasonic
extraction equipment (Ningbo Xinzhi Biotechnology Co.,
Ltd., China) under an ultrasonic power of 400 W, ultrasonic
times of 2.0 h, and ultrasonic temperature at 80◦C. Then,
the resultant extracts were centrifuged (Heraeus Multifuge
X1R, Thermo Co., United States) at 5,000 r/min for 15 min,
the supernatants were collected and concentrated to one-
third of the initial volume using a RE52CS-1 vacuum
distillation (Shanghai Yarong Biochemical Instrument Co.,
Ltd., China). The concentrated solution was sufficiently
mixed with 3 times volumes of anhydrous ethanol and
stored at 4◦C for 24 h. The precipitate was dried by a LGJ-
100F vacuum freezing dryer (Thermo Co., United States)
at –80◦C for 36 h to obtain the crude SLMPs (14). Sevage
reagent was used to eliminate the proteins, and activated
carbon was used to remove the pigment from the crude
SLMPs (15). The yield of polysaccharides was calculated as:

Y(%) =
W1

W0
× 100% (1)

Y is the yield of SLMPs (%, w/w), W1 is the weight of the
crude SLMPs (g), and W0 is the weight of SLM leaves (g).

The crude SLMPs was re-dissolved in distilled water
(20 mg/mL), then loaded onto a column of DEAE Cellulose-52
(50 cm× 2.6 cm) and successively eluted by the deionized water
and NaCl solutions of different concentrations (0, 0.3, 0.6, 0.9,
and 1.0 mol/L) at a flow rate of 1.0 mL/min (16). The absorbance
of each tube was measured at 490 nm to analyze polysaccharide
content of SLMPs according to the phenol–sulphuric acid
method, then the eluents were dialyzed overnight at 4◦C to
remove salt, lyophilized, yielding two polysaccharide fractions
(SLMPs-1 and SLMPs-2). These two purification fractions were
further loaded on a Sephadex G-100 column (50 × 2.6 cm)
eluting with deionized water (3 mL/min, 10 mL/tube) to afford
SLMPs-1-1 and SLMPs-2-1, respectively.
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Structural characterization of Sibiraea
laexigata (L.) Maxim
polysaccharides-1-1 and Sibiraea
laexigata (L.) Maxim
polysaccharides-2-1

Chemical composition analysis
Phenol-sulfuric acid method was used to determine the

total sugar content of SLMPs-1-1 and SLMPs-2-1 and glucose
was used as a standard (17). The protein content of SLMPs-1-
1 and SLMPs-2-1 were quantified by Bradford methods using
bovine serum albumin (BSA) as a standard (18). The uronic acid
content of SLMPs-1-1 and SLMPs-2-1 were estimated according
to vitriol-carbazole method using D-glucuronic acid as the
standard (19).

Molecular weight distribution
The molecular weights (Mw) of SLMPs-1-1 and SLMPs-2-

1 were determined using a Waters 1260 Infinity HPLC system
(Waters Co., United States) with 2410 differential refractive
index detector and Ultrahydroge1TM-inear (300 × 7.8 mm,
8 µm, Agilent Co., United States) column. Dextrans (MWs:
1, 5, 10, 21, 40, and 84 kDa) were used as standards for
calibration. The column temperature was maintained at 40◦C,
with 0.1 mol/L NaNO2 solution as the mobile phase and a flow
rate of 1.0 mL/min (20). The regression equation of the standard
curve was logMw = –0.6493x + 6.1564 (R2 = 0.9987); where Mw
is the molecular weight; x is the retention time (min).

Monosaccharide composition analysis
The monosaccharide compositions of the purified SLMPs-

1-1 and SLMPs-2-1 were determined according to Chen et al.
with slight modification (21). 10.00 mg of freeze-dried SLMPs-
1-1 and SLMPs-2-1 were treated with TFA (2 mol/L, 5 mL)
at 110◦C for 5 h. After cooling, the pH of the mixture was
adjusted to 7.0 with NaOH (3 mol/L) and centrifuged to obtain
supernatant. Then, 0.2 mL supernatant, 0.2 mL PMP methanol
solution (0.5 mol/L), and 0.2 mL NaOH solution (0.3 mol/L) and
were mixed and reacted at 70◦C for 1 h. Finally, the reaction
solution was neutralized by adding 1 mL trichloromethane and
0.1 mL HCl solution (0.5 mol/L), extracted with chloroform,
repeated 3 times, centrifuged and collected the supernatant,
which was filtered through 0.22 µm membrane and used for
monosaccharide composition analysis by HPLC.

The determination process of monosaccharide composition
was carried out with an Agilent 1260 HPLC system (ARC,
Agilent Co., United States) equipped with a C18 column
(4.6 × 250 mm, 5 µm, Agilent Co., United States) and a DAD
detector. The mobile phase was a mixture of phosphate buffer
(0.02 mol/L, pH 6.8) and acetonitrile in a ratio of 81: 19 (v/v)
at flow rate 1.0 mL/min with column temperature of 28◦C, and
monitored at 250 nm. The monosaccharide standards, including

Rha, Glu, Gal, Fru, and Ara were analyzed by HPLC in the
same way as above.

FT-IR spectrometric analysis
The purified SLMPs-1-1 or SLMPs-2-1 were mixed

with spectroscopic-grade KBr powder (Sigma Aldrich Co.,
United States), ground, and then pressed into 1 mm pellets
for spectral measurement in the frequency range of 4000–
400 cm−1 using a Nicolet 6700 FT-IR spectrometer (Thermo
Co., United States) (22).

Nuclear magnetic resonance analysis
The NMR sample was prepared by mixing the 20 mg freeze-

dried SLMPs-1-1 or SLMPs-2-1 with 0.5 mL of deuterated water
(D2O), and NMR spectra of different fractions were obtained
using a Bruker AVANCE III HD 400 spectrometer (Bruker Co.,
Germany) equipped with 5 mm double-tuned BBO probe and
operating at 300 MHz for 1H. Each experiment was carried out
at 80◦C using a single-pulse experiment, an acquisition time of
1.66 s, a recycle delay of 5 s, and a spectral width of 10 kHz. The
spectra were referenced at 0.0 ppm (23).

Scanning electron micrograph analysis
The morphological features of purified SLMPs-1-1 and

SLMPs-2-1 were analyzed by a Zesis EVO18 field emission
scanning electron microscope under 20.00 kV (Bruker Co.,
Germany). To render the power conductive, SLMPs-1-1 or
SLMPs-2-1 was fixed on the sample stage with conductive
adhesive for gold spraying and the appearance morphology was
observed under different multiples (24).

Congo red staining assay
The Congo red staining assay was carried out to analyze

the triple-helix arrangements of SLMPs-1-1 and SLMPs-2-
1 according to the method reported by Huang et al. (25).
Briefly, 1.5 mL Congo red solution (0.2 mmol/L), 1.0 mL
sample solution of polysaccharides (2 mg/mL), and 3 mL NaOH
solution with different concentrations (0, 0.2, 0.4, 0.6, 0.8, and
1.0 mol/L) were mixed thoroughly and reacted at 28◦C for 1 h.
Furthermore, the full-wavelength scan of the reaction solution
in different concentrations of NaOH solution was performed by
a UV-visible spectrophotometer (UV-1800, Shimadzu, Japan) at
a wavelength of 200–800 nm, respectively, and the maximum
absorption wavelength of the sample reaction was recorded.

Immune activity analysis

Animals treatment and experimental design
A total of 60 Female Balb/c mice (specific-pathogen free

grade,18–24 g, 5 weeks) were purchased from the Laboratory
Animal Center of Lanzhou University and kept in room
temperature at 24± 2◦C and relative humidity of 60± 5% under
an automatic 12 h light/12 h dark cycle. Six groups (10 mice in
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each group) were used in experiments: group 1 (normal saline
control, PS): animals were treated with saline (1–30 d); group
2 (cyclophosphamide, CTX): animals were administrated with
cyclophosphamide (1–10 d) (80 mg kg−1

·bw) and saline (11–
30 d); group 3 (levamisole hydrochloride, LH): animals were
administrated with cyclophosphamide (1–10 d) and levamisole
hydrochloride (11–30 d); group 4 (High-SLMPs-1-1 doses,
SLMPs-H): animals were administrated with cyclophosphamide
(1–10 d) and SLMPs (11–30 d, 800 mg kg−1

·bw); group 5
(Mid-SLMPs-1-1 doses, SLMPs-M): animals were administrated
with cyclophosphamide (1–10 d) and SLMPs (11–30 d, 400 mg
kg−1
·bw); group 6 (Low-SLMPs-1-1 doses, SLMPs-L): animals

were administrated with cyclophosphamide (1–10 d) and
SLMPs (11–30 d, 400 mg kg−1

·bw); At the end of the treatment,
mice were sacrificed within 24 h, and their spleen and thymus
were dissected under sterile conditions (26).

Determination the cytokine content in serum
The whole blood samples of mice in each group was

obtained by taking eyeball under sterile conditions and the
serum was separated by centrifugation (8,000 rpm, 5 min)
at 4◦C for 10 min. The levels of IgG, IFN-γ, IL-4, and
TNF-α in mice serum were determined using a ELISA kits
(Solarbio Biological Reagent Co., Ltd., Beijing, China) by the
manufacturer’s instructions. The color intensity was read using
absorbance (A450) by a tunable microplate reader (Fisher FC,
Thermo Co., United States), and the concentration of different
cytokine were calculated according to a standard curve (27).

Histological observations of spleen and thymus
The spleen and thymus tissues were fixed in 10% PFA

for at 37◦C for 24 h, washed by flowing water for 24 h,
dehydrated in a graded series of ethanol, soaked in xylene for
5 min, embedded in paraffin, and sectioned at 5 µm using a
Leica RM2255 a microtome (Leica Biosystems Inc., Germany).
Then the paraffin sections were stained with hematoxylin and
eosin (HE) method, and observed under an Olympus Simon-01
microscope (Olympus Optical Co., Japan) (28).

Ribonucleic acid isolation, cDNA synthesis and
RT-qPCR

RT-qPCR analysis was employed in detection of the mRNA
expression of TLR4 and NF-κB in mice spleens extracted from
each group (29). The total RNA of mice spleens in each
group was extracted using a Trizol reagent Kit (TransGen
Biotech Co., China). The concentration and purity of RNA
were determined by ultraviolet spectrophotometry at 260 and
280 nm, aliquoted and stored at –80◦C for future use. RNA was
reverse-transcribed to cDNA using a PrimeScriptTM RT reagent
kit with cDNA Eraser (Takara Biotechnology Co., Ltd., Dalian,
China) according to the manufacturer’s introduction. RT-qPCR
was performed to quantify mRNA expression by a CFX96
Real-time PCR System (Bio-Rad, Hercules, United States) with

SYBR Green Real-time Master Mix (Toyobo, Japan). The PCR
program was: 95◦C, 10 min; 95◦C, 15 s; 60◦C, 30 s, 40 cycles;
melting curve analysis 65→95◦C to detect the fluorescence
signal every 0.5◦C –cycle, and the reaction system was 2.0 µL
cDNA, 1.5 µL 2.5 µM primers, 7.5 µL 2 × RT-qPCR Mix, 4
µL ddH2O, a total of 15 µL. The used primers are presented in
Table 1.

Protein sample preparation and western blot
A protein extraction Kit (Solarbio, China) was used to

isolated the total protein of the spleen tissue in each group mice,
and a BCA protein quantitative Kit (Solarbio, China) was used
to measure protein concentration. Then the protein (20 µg) was
separated by 10% SDS-PAGE gel, transferred onto a 0.2 µm
polyvinylidene difluoride (PVDF) membrane through a trans-
blot Turbo transfer system (Bio-Rad, Hercules, United States)
for 10 min at 25 V. The membrane was blocked in 0.02 mol/L
PBS buffer (containing 5% skim milk powder (w/v) and 0.05%
Tween-20, pH 7.5) at room temperature for 1 h, then incubated
in a primary antibody solution at 4◦C for 24 h. Thereafter, the
membrane washed by TBST, incubated with secondary antibody
at room temperature for 1 h. The protein bands were observed
by using the ECL Western Blotting Analysis System (Bio-Rad,
Hercules, United States) on an Image Quant LAS 4000 mini
imager (GE, Life Science, United States) (30).

Statistical analysis

All the experimental data were analyzed by SPSS statistical
software version 19.0 (SPSS, Chicago, United States). The
significant differences of each groups were determined by
using a one-way analysis of variance (ANOVA) and Duncan’s
test, taking P < 0.01 as extremely significant difference,
and P < 0.05 as significant difference. Each experiment was
performed in triplicate, and the data are demonstrated as
mean± standard deviation (SD).

Results and discussion

Extraction, isolation and purification of
crude Sibiraea laexigata (L.) Maxim
polysaccharides

The crude SLMPs were extracted by PEG-UAEE method,
alcohol precipitation, deproteinization, and freeze-drying with a
yield of 10.95± 0.13%, which was calculated using the weight of
the dried SLM leaves. Since PEG can provide more -OH groups,
it can enhance the solubility of polysaccharides in water and thus
increase the yield of polysaccharides (1).

As shown in Figure 1, the crude SLMPs was firstly separated
into two fractions (SLMPs-1 and SLMPs-2) purified by a DEAE
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TABLE 1 The primer sequence for RT-qPCR.

Gene Product
(bp)

Primer pair Primer sequence (5′–3′)

GAPDH 133 Forward CCTCGTCCCGTAGACAAAATG

Reverse TGAGGTCAATGAAGGGGTCGT

NF-κB 212 Forward CGAGTCTCCATGCAGCTACG

Reverse TTTCGGGTAGGCACAGCAATA

TLR4 151 Forward GGAACAAACAGCCTGAGACACTT

Reverse CAAGGGATAAGAACGCTGAGAA

FIGURE 1

Elution profile of SLMPs by anion exchange chromatography on
a DEAE-52 cellulose column.

cellulose-52 anion exchange chromatographic column on with
gradient elution of 0–1.0 mol/L NaCl; These two fractions
were collected, dialyzed, concentrated, freeze-dried, and loaded
onto Sephadex G-100 gel filtration chromatographic column for
further purification, respectively. As shown in Figure 2, each
fraction generated only one single elution peak, representing
SLMPs-1-1 and SLMPs-2-1, with yields of 61.4 and 54.9%,
respectively. There is also a difference in the order of the
collection tubes of SLMPs-1-1 and SLMPs-2-1, indicating that
these two fractions are not only relatively pure single polymers,
but also have different molecular weights.

Characterization of the Sibiraea
laexigata (L.) Maxim polysaccharides

Physicochemical property
As shown in Table 2, the total sugar contents of SLMPs-

1-1 and SLMPs-2-1 were 82.08 and 81.64%, respectively, the
two purified components had no significant difference. Table 2
also showed that the two fractions still contain a small amount
of glycosyl-bound protein (0.18–0.21%), indicating that the
protein was primarily removed by the Sevage method many
times. However, after being separated and purified by DEAE
cellulose-52 anion exchange chromatographic column and

Sephadex G-100 gel filtration chromatographic column, the
protein content of SLMPs-1-1 and SLMPs-2-1 were significantly
reduced by 0.30 ± 0.94% and 0.33 ± 0.93% compared
with SLMPs, indicating that the purified polysaccharide was
relatively pure, and the process of purification were effective in
removing the protein. Besides, the sulfate content in SLMPs-
1-1 was significantly higher than that in SLMPs-2-1, and
the two fractions were both acidic polysaccharides because
they contained higher uronic acid content (22.4 and 20.3%,
respectively). Many studies have shown that the polysaccharide
can show good bioactive functions when sulfate content is
higher, so SLMPs-1-1 will be preferred for further animal
experiments (31).

Ultraviolet spectral analysis
As shown in Figure 3, at a concentration of 1 mg/mL,

SLMPs-1-1 and SLMPs-2-1 had no prominent absorption peaks
appeared at the wavelengths of 260 and 280 nm in the UV
spectral and negative responses to the Bradford test, which
indicates absence of nucleic acid and protein in SLMPs-1-1 and
SLMPs-2-1.

Molecular weight determination
HPGPC has been widely used in determination of

polysaccharide molecular weight from different plants due to
its advantage of rapid, great accuracy, good reproducibility,
and high resolution (32). As shown in Table 2, both SLMPs-
1-1 and SLMPs-2-1 are homogeneous polysaccharide, because
they were gave a single symmetrical peak in Sephadex G-100
gel filtration chromatographic profile (Figure 2). The molecular
weight of SLMPs-1-1 and SLMPs-2-1 were determined to be
1.29 × 103 Da and 1.27 × 103 Da on HPGPC in reference
to standard glucans, respectively. Compared with the similar
studies, the molecular weight of SLMPs was lower than other
published polysaccharides (33). In addition, polydispersity
values (Mw/Mn) could reflect the width of molecular mass
distribution, thus the higher the polydispersity value represents
the wider the distribution of polysaccharides. The value of
Mw/Mn was close to 1, indicating that the two fractions had a
relatively low polydispersity index and a homogeneity molecular
weight distribution.

Monosaccharide composition analysis
The monosaccharide composition of SLMPs-1-1 and

SLMPs-2-1 were determined by HPLC-PMP (Figure 4). The
results suggested that SLMPs-1-1 and SLMPs-2-1 had different
monosaccharide compositions and content, although they were
separated from the same native fraction SLMPs. SLMPs-1-1
and SLMPs-2-1 contained the same types of monosaccharides
components (Ara, Glu, Gal, and Rha) and peak times. It
may be since, during purification, the higher concentration
of NaCl solution preferentially acts on the hydrogen bonds
on the glycosidic bonds near fructose and arabinose, which
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FIGURE 2

Elution curve of SLMPs-1-1 (A) and SLMPs-2-1 (B) on Sephadex G-100 column to obtain SLMPs-1 and SLMPs-2.

TABLE 2 Chemical composition and relative molecular weight analysis of SLMPs-1-1 and SLMPs-2-1 (x ± s, n = 3).

Sample Yield (%) Total sugar content (%) Protein content (%) Sulfate content (%) Uronic acid content (%) Mw/Mn

SLMPs 10.95± 0.13 87.82± 0.17 0.52± 0.05 8.62± 0.12 21.8± 0.24 /

SLMPs-1-1 6.37± 0.15 82.08± 0.21 0.21± 0.11 6.51± 0.08 22.4± 0.17 1.03

SLMPs-2-1 4.58± 0.21 81.64± 0.18 0.18± 0.12 5.73± 0.09 20.3± 0.14 1.02

reduces the degree of polysaccharide polymerization. SLMPs-
1-1 was composed of Glu, Ara, Fru, Rha and Gal in the
ratio (molar) of 46.79%: 13.96%: 13.04%: 8.69%:3.07%, and
the monosaccharide composition of SLMPs-2-1 was Ara, Gal,
Glu, and Rha, in molar ratio of 31.98%: 34.14%: 21.06%:
12.68%, indicating that the purification method might affect
the structure and physicochemical properties of polysaccharides
(34). Several studies have revealed that the biological activities of
polysaccharides derived from different herbs primarily depend
on these structural features, including inmonosaccharide
composition and molecular weight (33).

FT-IR spectrum
FT-IR spectra of SLMPs-1-1 and SLMPs-2-1 are compared

in Figure 5. The robust ant broad absorption band at
3366.11 cm−1, which was attributed to the stretching vibration
of O-H in the constituent sugar residues, and the strong

absorbance band at around 2879.75 cm−1 was represented
the stretching vibration of C-H in the sugar ring. These two
absorbance peaks are characteristic of sugars, which proves
that SLMPs-1-1 and SLMPs-2-1 were polysaccharide (35). The
absorbance band at 1732.76 cm−1 was related to the bending
vibration of bond water. Moreover, the absorption peak at
1436.25 and 1611.16 cm−1 were attributed to the carboxylic
groups (COO-) and stretching vibrations of ester carbonyl
groups (C = O), respectively, which indicated that purified
SLMPs-1-1 and SLMPs-2-1 were acidic polysaccharides with
uronic acid units, the locations of these peaks were similar to
the investigations of Atratylodes macrocephala polysaccharides
by FT-IR (36). This is consistent with the analytical results
of monosaccharide compositions of SLMPs-1-1 and SLMPs-
2-1. In addition, the absorbance band at 1,060 cm−1 was
caused by C-O-C stretching and angular vibration in the sugar
ring, the results suggested that the monosaccharide of purified
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FIGURE 3

UV spectra of SLMPs-1-1 and SLMPs-2-1.

SLMPs-1-1 and SLMPs-2-1 had pyranose rings. Moreover,
the characteristic absorbance at 840.82 cm−1 suggested the
presence of α-pyranose in SLMPs-1-1 and SLMPs-2-1, while the
characteristic absorbance at 947.92 cm−1 related to the presence
of a β-anomeric configuration in SLMPs-1-1 and SLMPs-2-1. It
can be inferred that SLMPs-1-1 and SLMPs-2-1 were α- and β-
type polysaccharides according to the more critical peak value of
FT-IR spectra (37).

FIGURE 5

Infrared spectra of SLMPs-1-1 and SLMPs-2-1.

Nuclear magnetic resonance spectroscopic
analysis

The structure identification and analysis of polysaccharides
mostly use 1H NMR as the primary method to study the
types of glycosidic bonds. The range of δ4.5–5.5 in the
1H NMR spectrum is the region where the proton signal
mainly exists in the glycosidic bond of the polysaccharide,
so there are several proton signals in this region in the
1H NMR spectrum, indicating that the sugar has several

FIGURE 4

The HPLC chromatogram of monosaccharides of reference substances solution (A), SLMPs-1-1 (B), and SLMPs-2-1 (C).
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monosaccharide species. While other hydrogen signals are
mainly concentrated in the narrow region of δ3.3–4.3, and
the signal peaks overlap seriously. Among them, δ5.0 is
the critical value of the proton signal to distinguish the
configuration of pyranose. When the proton shift of the first
carbon is more significant than 5.0, it is an α-glycoside,
and when it is less than 5.0, it is a β-glycoside. The one-
dimensional 1H NMR spectra of SLMPs-1-1 and SLMPs-
2-1 can be seen in Figure 6. It can be seen from the
figure that SLMPs-1-1 have 4 proton signal peaks, and in
SLMPs-2-1, only two signal peaks were detected in the
range of δ4.5∼5.5, this may be due to the overlap and
interference between proton signals, leading to the lack
of monosaccharide composition analysis (38), Furthermore,
anomeric hydrogen appears in the range of δ4.2–4.4 and
δ5.0–5.8 signal, indicating that there are both α-glycosidic
bonds and β-glycosidic bonds in SLMPs-1-1 and SLMPs-
2-1, which was consistent with the result from FT-IR
analysis.

Microstructure analysis
The microscopic scanning electron micrographs (SEM)

structure of purified SLMPs-1-1 and SLMPs-2-1 (Figure 7)
revealed that the single particle had irregular shapes,
rough surface with different dimensions, which are typical
characteristics of amorphous powders. The irregular-shaped
particle also accompanied by fold structure with holes which is
similar to the Macroalgae polysaccharides prepared by hot water
extraction (39). It can be proved that SLMPs-1-1 and SLMPs-2-1
have a prominent amorphous structure and relatively complete
structural morphology.

Conformational analysis
The triple-helix arrangements of SLMPs-1-1 and SLMPs-

2-1 were measured by Congo red test, and the results were
displayed in Figure 8. It was apparently observed that the
maximum absorbance wavelength of each sample in different
concentration of NaOH (0.1–0.8 mol/L) had a certain degree
of redshift compared with Congo red solution. The degree of

FIGURE 6
1H nuclear magnetic resonance (NMR) spectra of SLMPs-1-1 and SLMPs-2-1.
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FIGURE 7

Scanning electron microscopy of SLMPs-1-1 and SLMPs-2-1. [(A) 5.00 KX; (B) 8.00 KX].

FIGURE 8

Conformation transition analysis of SLMPs-1-1 and SLMPs-2-1
at different concentration of NaOH.

redshift of SLMPs-1-1 was more dramatic than SLMPs-2-1,
indicating that SLMPs-1-1 has a tighter triple-helical structure
(40). With an increase in the concentration of NaOH, the
degree of redshift of SLMPs-1-1, SLMPs-2-1 become smaller.
This was because a high concentration of NaOH could destroy

the hydrogen bond of the polysaccharide and induce the
degradation of polysaccharides This indicated that SLMPs-1-
1 and SLMPs-2-1 could form a regular ordered triple-helix
structure in the neutral or weakly alkaline range (41).

Effect of SLMPs-1-1 on serum IgG, IL-4,
TNF-α, and IFN-γ levels

Immune globulin (Ig) and cytokines are mainly present in
plasma, tissues and body fluids, playing an essential roles in
immune response and regulation (42). As shown in Table 3,
the serum levels of IgG, IL-4, TNF-α and IFN-γ in the mice
treated with different SLMPs-1-1 concentrations were evaluated
relative to CTX mice and PS group, respectively. It was found
that IgG, IL-4, TNF-α and IFN-γ level in the CTX group was
significantly lower than these in the PS group (P < 0.01),
indicating that the CTX-treated mouse immunocompromised
model was successfully established. IgG, IL-4, TNF-α, and IFN-γ
level of each SLMPs-1-1 dose groups were significantly increased
compared with the CTX group (P < 0.01), and the levels of
IgG, IL-4, TNF-α, and IFN-γ in the mid-doses of SLMPs-1-1
was the highest in three different dose of SLMPs-1-1 groups
(P < 0.05). Moreover, after 20 days of SLMPs-1-1 feeding,
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compared with the CTX group, the level of IgG, IL-4, TNF-α,
and IFN-γ in the mid-dose of SLMPs-1-1 group was increased
by 4.4, 8.13, 11.2, and 10.95%, respectively. This phenomenon
indicated that SLMPs-1-1 could enhance immune regulatory
through upregulating regulatory cytokines secretions (43).

Histological observations of spleen and
thymus

As shown in Figure 9, the histopathology of the thymus
and spleen were observed with an optical microscope. The

histopathology of the spleen and thymus from PS group mice
had clear medullar structure, visible the medulla inside and
regular shape of the thymus cortex. Compared with that in the
PS group, the boundary between the medulla and cortex was not
clear, and the lymphatic sheath around the arteries was severely
damaged in the CTX group, indicating that the model in this
experiment was successful (44). Compared with the CTX group,
the border between the red pulp and the white pulp were evident
in the mid-dose group of SLMPs-1-1, and the boundary between
the cortex and medulla was not evident in the high- and low-
dose of SLMPs-1-1 groups, but slightly better than that in the
CTX group. Similarly, in the LH group and mid-dose group

TABLE 3 Comparison of plasma levels of IL-4, TNF-α, IFN-γ, and IgG in each group of mice.

Group IL-4 (ng/mL) TNF-α (ng/mL) IFN-γ (pg/mL) IgG (ng/mL) P

IL-4 TNF-α IFN-γ IgG

PS 3.070± 0.09 2.722± 0.04 243.485± 2.22 3.812± 0.04

CTX 2.831± 0.03 1.213± 0.05 165.983± 1.24 2.827± 0.05 0.000À 0.000À 0.000À 0.000À

LH 2.865± 0.03 2.570± 0.04 251.416± 0.84 3.576± 0.02 0.000Á 0.000Á 0.000Á 0.000Á

SLMPs-L 2.487± 0.04 2.115± 0.03 215.640± 0.69 3.267± 0.03 0.000Â 0.000Â 0.000Â 0.000Â

SLMPs-M 2.648± 0.02 2.307± 0.04 237.624± 1.31 3.412± 0.04 0.000Ã

0.004Å

0.000Ã 0.002
Å

0.000Ã 0.000
Å

0.000Ã 0.024
Å

SLMPs-H 2.393± 0.03 1.704± 0.13 214.753± 1.27 3.174± 0.10 0.000Ä

0.007Æ

0.018Ç

0.000Ä

0.003Æ

0.000Ç

0.000Ä

0.008Æ

0.000Ç

0.000Ä

0.004Æ

0.000Ç

À Compare CTX group with PS group; Á Compare LH group with CTX group; Â Compare SLMPs-L group with CTX group; Ã Compare SLMPs-M group with CTX group; SLMPs-L
group comparison; Æ SLMPs-H group compared with SLMPs-L group; Ç SLMPs-H group compared with SLMPs-M group.

FIGURE 9

Effect of SLMPs-1-1 on spleen and thymus histomorphology in mice.→ Represents periarterial lymphatic sheath, W represents white pulp,
? represents red pulp.
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of SLMPs-1-1, the increase in the area of white pulp was more
prominent, and the white pulp and red pulp were close to the
PS group. The results indicated that SLMPs-1-1 could prevent
damage to the spleen and thymus cells in CTX-induced mice
(45).

Effects of SLMPs-1-1 on TLR4 and
NF-κB mRNA expression in spleen

The relative gene expression levels of TLR4 and NF-κB
in the spleen of CTX-induced immune deficiency model mice
were detected by the RT-qPCR, aiming to demonstrate that
SLMPs-1-1 can improve the immune suppression effect of
mice by regulating the expression level of immune regulatory
factors in the spleen.

TLR4 is a membrane protein expressed on immune
cells and epithelial cells (46), and its mainly distributed in
macrophages, renal tubular epithelial cells, and other parts,
which can be activated without the need for foreign pathogens
to invade Innate immune inflammatory response (47). It
mainly uses the MyD88-dependent pathway as a classic signal
transduction pathway, and mediates the production of NF-κB
to stimulate downstream inflammatory effects (48). Changes in
the expression level of TLR4 mRNA detected by RT-qPCR in
the spleen of different groups mice are shown in Figure 10A,
a melting curve analysis has been used to verify the presence
of a single gene-specific peak and the absence of primer dimer
(49). The results showed the ratio of TLR4 mRNA in the
CTX group and LH group was 0.44 and 0.96, and the mRNA
expression level of TLR4 in SLMPs-1-1 first increased and then
decreased with the increase of dose. The LH group and SLMPs-
1-1 dose groups were significantly up-regulated (P < 0.01)
compared with the CTX group, and there were significant
differences between SLMPs-1-1 dose groups (P < 0.05), but the
mid-dose group of SLMPs-1-1 had no significant up-regulation
effect (P > 0.05). In conclusion, the effect of SLMPs-1-1 on
the expression level of TLR4 mRNA in the spleen tissue of
CTX-induced immunocompromised model mice was obvious,
and the dose-response relationship was in the range of 200–
400 mg/kg.

NF-κB is an essential to signal transduction, cell activation,
and transcriptional activator in the TLR4 immune regulatory
network’s downstream signaling pathway, which regulates
cytokines levels, immune receptors, and anti-apoptotic proteins;
therefore, NF-κB induces inflammatory immune responses (50).
In addition, the dissolution curves of each hand have no signs
of non-specific dissolution peaks or miscellaneous peaks, which
confirmed the high specificity of the primers and indicated the
amplified products have sure accuracy and can be used for
experiments analyze (51). The mRNA expression levels of NF-
κB in different dose groups were significantly decreased (P <

0.05, P < 0.01) compared to the PS group (Figure 10B). It was

FIGURE 10

Effect of SLMPs-1-1 on the regulation of TLR4 and NF-κB gene
expression in mouse tissues. (A) TLR4 gene expression in mouse
tissues, (B) NF-κB gene expression in mouse tissues.

apparently observed that the mRNA expression levels of NF-
κB in the LH group and each dose group were significantly
increased (P < 0.01) compared with the CTX group. Among
them, the mRNA expression level of NF-κB in the mid-dose
group of SLMPs-1-1 was the highest (P < 0.01). This indicated
that the dose of SLMPs-1-1 should be fully considered if the
SLMPs-1-1 was used as an alternative immunostimulator in
food and pharmaceutical industries.

Effects of SLMPs-1-1 on related
proteins expression in spleen

The protein expression levels of TLR4, and NF-κB in mice
spleen were determined by western blotting (Figure 11). It
was found that the proteins expression levels of NF-κB and
TLR4 in the CTX group were significantly lower than those
in the other groups (P < 0.05), and the proteins expression
levels in the LH group and the mid-dose group of SLMPs-1-
1 were higher than those in the CTX group (P < 0.05). The
proteins expression levels of TLR4 and NF-κB were higher in
the low- and high-dose group of SLMPs-1-1 group compared
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FIGURE 11

Effects of SLMPs-1-1 on the proteins expression of NF-κB and TLR4 in spleen [compared with PS group (∗P < 0.05; ∗∗P < 0.01); compared with
CTX group (#P < 0.05; ##P < 0.01)].

with the CTX group but were still significantly lower than
those in the mid-dose group of SLMPs-1-1 (P < 0.05), and
the dose of SLMPs-1-1 showed a dose-response relationship
in the range of 200–400 mg/kg. This indicated that SLMPs-
1-1 effectively improved the expression of NF-κB and TLR4
in the spleen tissue of CTX-induced immunocompromised
mice, consequently playing a protective role during immune
regulation.

Conclusion

In this study, two SLMPs fractions (SLMPs-1-1 and SLMPs-
2-1), with average molecular weight of 1.29 × 103 and
1.27 × 103 Da, respectively, were isolated and purified. The
main components of the two polysaccharides were Glu and
Gal (46.79 and 34.14%). The two polysaccharides fractions
exhibited absorption peaks of characteristic α-glycosidic and β-
glycosidic bonds pyranoid polysaccharides. The results showed
that SLMPs-1-1 could accelerated recovery of spleen and

thymus indexes, and up-regulate the levels of IgG, IL-4, TNF-
α, and IFN-γ in the serum of the Cy-treated mice. SLMPs-
1-1 also could improve the adaptive immune function by
increasing the mRNA and protein expression of TLR4 and NF-
κB. These results suggest that SLMPs-1-1 can be used as an
immunostimulator to stimulate both the innate and adaptive
immune responses for application in immunological diseases
and functional foods.
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