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The purpose of this experiment was to investigate the effects of different

starch and protein levels on lipid metabolism and gut microbes in mice of

different genders. A total of 160 male mice were randomly assigned to sixteen

groups and fed a 4 × 4 Latin square design with dietary protein concentrations

of 16, 18, 20, and 22%, and starch concentrations of 50, 52, 54, and 56%,

respectively. The results of the study showed that different proportions of

starch and protein had obvious effects on the liver index of mice, and

there was a significant interaction between starch and protein on the liver

index (p = 0.005). Compared with other protein ratio diets, 18% protein diet

significantly increased the serum TBA concentration of mice (p < 0.001),

and different starch ratio diets had no effect on serum TBA concentration

(p = 0.442). It was proved from the results of ileal tissue HE staining that the

low protein diet and the low starch diet were more favorable. There was a

significant interaction between diets with different starch and protein levels

on Bacteroidetes, Firmicutes and Proteobacteria abundance in feces of mice

(p < 0.001). Compared with 16 and 18% protein ratio diets, both 20 and

22% protein diets significantly decreased the Parabacteroides and Alistipes

abundance in feces of mice (p < 0.05), and 52% starch ratio diet significantly

decreased the Parabacteroides and Alistipes abundance than 50% starch ratio

diet of mice (p < 0.05). There was a significant interaction between diets with

different starch and protein levels on Parabacteroides (p = 0.014) and Alistipes

(p = 0.001) abundance in feces of mice. Taken together, our results suggest

that a low protein and starch diet can alter lipid metabolism and gut microbes

in mice.
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Introduction

According to the World Health Organization, more than
1 billion people worldwide are obese—650 million adults
in 2022, which represents a health risk (1). Obesity is a
nutritional disorder caused by an imbalance between energy
intake and expenditure (2). Over the last few decades, obesity,
cardiovascular disease, and type 2 diabetes have been on the
rise worldwide, in order to prevent those diseases, numerous
studies have attempted to reduce starch digestion and glycemic
index through human diets (3–5). Recent years have seen a
growing interest in developing healthy food ingredients that
may enhance their protein, fiber, and nutraceutical qualities (6).
Therefore, macro- and micronutrients with high participation
in the diet, such as starch and protein, need to be studied
and in order to develop functional foods, nutritional value and
technological function had to be balanced correctly (7–9).

Historically, starch has been a major source of carbohydrates
in human diets, which was absorbed as monosaccharides in
the digestive tract, different functions were performed by foods
depending on their chemical properties, their susceptibility
to amylase, and their rate of glucose release and absorption
in the gastrointestinal tract (10, 11). In order to maintain
a high level of protein, new raw materials, such as soya,
amaranth grain, or buckwheat, have been used as well as
improved the final product’s nutritional quality and functional
properties (12). Additionally, it may reduce the glycemic index
(GI) of starch-based foods and prevent diabetic complications.
By obstructing enzyme binding sites, protein interferes with
nutritional properties and facilitates starch malabsorption in the
study on starch hydrolysis (13). Animals depended on dietary
protein to function physiologically. The benefits of low-protein
diets in terms of resource conservation and reducing nitrogen
emissions have received considerable attention in recent years.
Researchers have found that reducing dietary protein levels by
3 percentage points can enhance lipid metabolism in skeletal
muscle without affecting growth in pigs, while the performance
of growth would be adversely affected by protein reduction
of exceeding 4 percentage points (14, 15). There was ample
evidence that optimum nitrogen utilization for protein accretion
can be achieved by reducing protein intake in the diet and
simultaneously supplementing crystalline amino acids (16).

To coordinate body health, the host developed a huge
microbiota at birth. The abundance of microbes also changed
and played different roles at different stages (17, 18). A better
understanding of the interactions between host and gut
microbes was crucial to study the complex relationship between
host and microbiota. The molecules involved in this interaction
could be measured, especially the microbiota produced
metabolites that were available to the host. Animal health
depended on gut microbiota, which were involved in digestion,

metabolism, immunity, and defense against pathogens (19–
21). Diet, environment, and age all influenced gut microbiota
composition and activity, but diet played the largest role
among them (22–24). Besides affecting the composition of the
gut microbiota, diet also influenced the state of the immune
system (25).

Starch and protein were thermodynamically incompatible
to form complexes, but the interaction between them can
also affect their respective physicochemical property (26, 27).
Protein can also interact with lipid through hydrophobic or
electrostatic interaction to affect their property (28, 29). These
various binary interactions have been studied extensively, but
to gain a better understanding of factors that can affect the
quality of food product interaction between starch, protein
and lipid need to be examined in detail (27, 30). There was
currently little knowledge of how a low-protein diet affected
the gut micro-environment and how it can solve environmental
problems. The purpose of this study was to investigate the effect
of different dietary protein and starch levels on lipid metabolism
in mice. Moreover, we examined whether improvements in
lipid metabolism also affected intestinal microbiota at different
proteins and starches levels. Using male mice as a model,
it was possible to systematically study the importance of
different protein and starch levels on fat metabolism in mice,
and to evaluate the possible harmful or beneficial effect of
different levels of these two substances on the structure of the
gastrointestinal tract.

Materials and methods

Animals and dietary treatments

This experiment was approved by the Hunan Agricultural
University Institutional Animal Care and Use Committee
(202105). The male C57 mice were 4 weeks old and purchased
from SLAC Laboratory Animal Central (Changsha, China). The
mice were housed in a controlled environment (temperature:
25 ± 2◦C, relative humidity: 45–60%, and a 12-h light–dark
cycle) after one week adaptation period, with free access to food
and water during the experiment. The diet of mice was mainly
composed of corn, soybean meal, beer yeast, casein and lard.
And the diets used in the experiment as described in Table 1.
The experiment lasted for four weeks.

A total of 160 male mice (13. 85 ± 0.27 g) were randomly
divided into 16 groups with 10 repetitions in each group. Mice
were fed a 4 × 4 Latin square design with dietary protein
concentrations of 16, 18, 20, and 22%, and starch concentrations
of 50, 52, 54, and 56%, respectively. Mice were weighed on a
weekly basis. Fecal samples were obtained and kept at –80◦C
for further examination. The 160 mice were sacrificed by
cervical dislocation with 1% pentobarbital sodium (50 mg/kg)
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anesthesia, and every effort was made to minimize suffering.
Finally, blood, abdominal adipose tissue (AAT), liver, ileal tissue,
and feces were collected for further examination.

Analysis of biochemical parameters in
blood samples

Serum extracted form blood samples using 845 rcf (g) for
10 min at 4◦C. The total bile acid (TBA), total cholesterol
(TC), high density lipoprotein (HDL), low density lipoprotein
(LDL), triglycerides (TG), and glucose (GLU) were detected
according to the standard protocol by an automatic biochemical
instrument (KHB 450, Shanghai Kehua bio-engineering co., Ltd,
Shanghai, China) (31).

Histology analysis

The ileal tissues were removed and fixed in 4%
paraformaldehyde solution, then hematoxylin and eosin were
used to stain the paraffin-embedded and cut tissue sections.
Light microscopes with computer-assisted morphometric
systems were used to measure villus height and crypt depth in
each section. The villus height was the distance from the villus
tip to the crypt mouth, and crypt depth was the distance from
the crypt mouth to the base of the crypt (32, 33).

Microbiota analysis

DNA extraction and 16S ribosomal RNA amplification
were conducted as previously reported (34). Briefly, DNA was
extracted from each fecal sample with an E.Z.N.A. R© soil
DNA Kit (Omega Biotek, Norcross, GA, USA) according to
the standard protocol. The thermal cycling programing was
performed as follows: initial denaturation step, 95◦C, 3 min;
denaturation, 27 cycles, 95◦C, 30 s; annealing, 55◦C, 30 s;
elongation, 72◦C, 45 s; and final extension, 72◦C, 10 min.
The bacterial 16S rRNA was amplified using the universal
primers targeting the V3-V4 region 338F/806R and sample
sequenced by an Illumina Miseq PE300 platform (Illumina,
SD, USA) according to the standard scheme (35). Quality
filters were applied to trim raw sequences according to the
following criteria: (i) reads with average quality score <20
over a 10-bp sliding window were removed, and truncated
reads shorter than 150 bp were discarded. (ii) Truncated reads
containing homopolymers longer than 8 nucleotides, more than
0 base in barcode matching, or more than 2 different bases
to the primer were removed from the dataset. The possible
chimeras were checked and removed via USEARCH using the
ChimeraSlayer “gold” database as described by Edgar et al. (36).
Operational taxonomic units (OTUs) with 97% similarity cutoff
were clustered using USEARCH (37).
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Statistical analyses

Two-tailed Student’s t-test was used to compare two groups
and ANOVA (one-way analysis of variance) and Tukey’s post-
hoc analysis was used to compare more than two groups through
SPSS 22.0. The data was expressed as the means ± standard
errors of the means (SEM). Statistical significance was set at
p < 0.05.

Results

Body weight and organ index

In order to study whether dietary starch and protein can
affect the lipid metabolism of the body, we used mice fed diets
with different concentrations of starch and protein as models.
As shown in Figure 1, the four different ratios of starch had
no significant effect on the final body weight of male mice
(p = 0.307), while the 22% protein group significantly decreased
the final body weight of the mice than other protein ratio
groups (p < 0.05). At the same time, starch and protein had
no significant interaction effect on body weight (p = 0.246).
Different proportions of starch and protein had obvious effects
on the liver index of mice, and there was a significant interaction
between starch and protein on the liver index (p = 0.005).
Although different ratios of starch and protein had no significant
effect on abdominal adipose weight in mice separately, there was
a significant interaction between different starch and protein
ratios on abdominal adipose weight (p < 0.001). Different
proportions of starch have significant effect on the weight of
the small intestine of male mice (p = 0.005), and the different
protein level diet fed the male mice has a very significant
difference in the weight of the small intestine (p = 0.001). The
small intestine weight of mice with 18% protein in the diet
was significantly higher than that of other diet groups with 3
protein ratios (p < 0.05). In addition, the small intestine of male
mice fed the 50% starch diet was much heavier than the 52, 54,
and 56% starch diets (p < 0.05). Correspondingly, there was
a significant interaction between different starch and protein
ratios on intestinal weight (p < 0.001). Diets with different
protein levels had no effect on the length of the small intestine of
the mice (p = 0.435), however, the 52% starch diet significantly
reduced the small intestine length of mice compared with other
starch ratio diets (p = 0.018). At the same time, the ratio of
starch and protein had no significant interaction on the length
of the small intestine (p > 0.05). Ultimately, different levels of
protein had a significant effect on the ratio of small intestine
weight to length (p < 0.05), but different levels of starch had no
such effect. There was a significant interaction between starch
and protein on the ratio of small intestine weight to length
(p < 0.05).

Influence of the interaction between
protein and starch on serum
biochemical indexes

Variation of biochemical index in the serum of male mice
was shown in Figure 2. Compared with other protein ratio
diets, 18% protein diet significantly increased the serum TBA
concentration of mice (p < 0.001), and different starch ratio
diets had no effect on serum TBA concentration (p = 0.442).
Compared with the 18 and 20% protein diets, the 16% protein
diet significantly increased the serum TC concentration in mice
(p < 0.05), and the different starch ratio diets had no effect
on the serum TC concentration (p = 0.301). There was a
significant interaction between diets with different starch and
protein levels on serum TC in mice (p = 0.004). Compared
with the 18 and 20% protein diets, the 16 and 22% protein
diets significantly increased the serum HDL concentration in
mice (p < 0.05), and the different starch ratio diets had no
effect on the serum HDL concentration (p > 0.05). There was
a significant interaction between diets with different starch and
protein levels on serum HDL in mice (p = 0.012), and the
combination of 16% protein and 56% starch diets increased
serum HDL concentrations in mice. Compared with the 20 and
22% protein diets, the 16% protein diet significantly increased
the serum GLU concentration of mice (p < 0.05), and the
different starch ratio diets had no effect on the serum GLU
concentration (p > 0.05). There was a significant interaction
between diets with different starch and protein levels on the
serum GLU of mice (p = 0.003), and the GLU concentration in
serum was highest in mice fed a combination of 16% protein
and 56% starch than other protein and starch diets. There was
a significant interaction between diets with different starch and
protein levels on serum TG in mice (p = 0.003), and the TG
concentration in serum of mice fed with 18% protein and 50%
starch diets was significantly higher than that of 22% protein
and 50, 52, 56% starch diet combination (p < 0.05). Different
starch ratio diets had no effect on the serum TG concentration
of mice (p = 0.714). During the experiment, the serum LDL
concentration of mice in each group was also affected by diets
with different protein levels (p = 0.006), but not affected by
different starch ratio diets (p = 0.854). Diets with different starch
and protein levels also had a significant interaction on serum
LDL in mice (p < 0.001). The LDL concentration in the serum
of mice fed the 16% protein and 56% starch diet was significantly
higher than that of the 22% protein and 52, 54, and 56% starch
diets (p < 0.05).

Intestinal histomorphology analysis

The ileal tissue morphology under different starch and
protein treatments was shown in Figure 3. It was proved from
the pictures of ileal tissue HE staining that the low protein diet
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FIGURE 1

Effects of different ratios of starch and protein in diet on final weight and organ index of mice. The value increases with the deepening of red
and decreases with the deepening of blue.

and the low starch diet were more favorable. The measurement
results for ileal tissue were shown in Figure 4, the ileal villus
height in the diet tended to decrease with the increase of protein
concentration (p = 0.059), and different proportions of starch
had no effect on the ileal villus height (p > 0.05). Different levels
of protein and starch also had significant interaction effects on
ileal villus height (p = 0.044). Diets with different protein and

starch ratios had no significant effect on ileal crypt depth in male
mice (p > 0.05), and there was no interaction effect (p > 0.05).
The ileal villus width was not affected by the dietary starch ratio
(p = 0.461); however, the 22% protein diet significantly increased
the ileal villus width compared with the other protein ratio
diets (p < 0.05), and finally different starch and protein ratios
had no interaction effect on ileal villus width (p = 0.114). The
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FIGURE 2

Effects of different ratios of starch and protein in diet on serum lipid levels in mice. The value increases with the deepening of red and decreases
with the deepening of blue.

ratio of ileal villus height to crypt depth in mice was affected
by different dietary protein and starch content, and the ratio of
ileal villus height to crypt depth in mice with 16% protein diet
was significantly higher than that of 18, 20, and 22% protein
diet (p = 0.009). The ratio of villus height to crypt depth was
significantly higher in the 50% starch diet than in male mice
fed the 54% starch diet (p < 0.05). Different dietary protein and
starch contents had significant interaction effects on the ratio
of ileal villus height to crypt depth in mice (p = 0.006). The
effects of different dietary protein and starch contents on mice
ileal villus area were similar to the effects on the ratio of villus
height and crypt depth. And the ratio of ileal villus area in mice
with 16% protein diet was significantly higher than other protein

ratio diets (p = 0.001). The ratio of villus height to crypt depth
was significantly higher in the 50% starch diet than in male mice
fed the 54% starch diet (p < 0.05). The number of goblet cells in
the ileum of mice increased significantly with increasing dietary
protein content (p < 0.05), while the number of ileal goblet cells
was not affected by dietary starch content (p > 0.05). Different
dietary protein and starch levels had significant interaction
effects on the ileal number of goblet cells in mice (p = 0.007).

Fecal bacterial diversity and similarity

The results of different protein and starch diets on the fecal
microbial α-diversity of male mice were shown in Figure 5.
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FIGURE 3

Light microscopy cross-section of ileal tissue by different ratios of starch and protein in diet.

The observed species in feces of mice was affected by different
dietary protein and starch content, the 16% protein diet
significantly increased observed species in the feces compared
to other protein levels (p < 0.05), and the observed species
was significantly higher in mice with 50% starch diet than in
mice with 52% starch diet (p < 0.05). Different dietary protein
and starch contents had significant interaction effects on the
observed species in feces of mice (p < 0.01). Diet with 16%
protein fed to mice significantly increased Shannon index in
feces than other different protein level diet (p < 0.05), and
50% starch diet fed to mice also significantly increased Shannon
index in feces than other starch protein level diet (p < 0.05).
Different dietary protein and starch levels had significant
interaction effects on Shannon index in mice (p < 0.01).
For the Simpson index in fecal microbiota, the 16% protein
diet fed to mice significantly improved the Simpson index in
the feces compared to the other protein concentration diets
(p < 0.05), and the 50% starch diet fed to mice also significantly
improved the Simpson index in the feces compared to the
other starch concentration diets (p < 0.05). Dietary protein and
starch concentrations had a significant interaction effect on the
Simpson index in mouse feces (p < 0.05). The effects of diets
with different protein and different starch concentrations on
the chao1 index of mouse feces were similar to the Simpson
index, both the 16% protein diet and 50% starch diet fed to
mice significantly increased the chao1 index than other groups
in mouse feces (p < 0.05), and dietary protein and starch

concentrations had a very significant interaction effect on the
chao1 index in mouse feces (p < 0.05). The ACE index in feces
of mice was affected by different dietary protein and starch
content, and the ACE index in feces with 16% protein diet was
significantly higher than that of 18, 20, and 22% protein diet
(p < 0.01). The ACE index was significantly lower in the 52%
starch diet than in male mice fed the 50, 54, and 56% starch diet
(p < 0.05). Different dietary protein and starch contents had a
very significant interaction effect on the ACE index in feces of
mice (p < 0.001). The 16% protein diet significantly increased
PD_whole_tree in the feces compared to 18% protein levels
(p < 0.05), and the PD_whole_tree was significantly higher in
mice with 50% starch diet than in mice with 52% starch diet
(p < 0.05). Different dietary protein and starch contents had a
significant interaction effect on the PD_whole_tree in feces of
mice (p < 0.01).

Intestinal bacterial community
structure

Variation of phylum-level composition (>1%) on the fecal
bacterial community of mice fed different starch and protein
ratio diets was shown in Table 2, Bacteroidetes, Firmicutes,
Verrucomicrobia and Proteobacteria were dominant phyla in
the feces of mice, accounting for more than 95% of the fecal
total bacterial community. Compared with 16 and 22% protein
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FIGURE 4

Effects of different ratios of starch and protein in diet on the structure of ileal epithelium in mice. The value increases with the deepening of red
and decreases with the deepening of blue.

ratio diets, both 18 and 20% protein diets significantly increased
the Bacteroidetes abundance in feces of mice (p < 0.05), and
52% starch ratio diet significantly increased the Bacteroidetes
abundance than other starch ratio diets of mice (p < 0.05).
There was a significant interaction between diets with different
starch and protein levels on Bacteroidetes abundance in feces
of mice (p < 0.001). Compared with the 18, 20, and 22%
protein diets, the 16% protein diet significantly increased the
Firmicutes abundance in mice (p < 0.05), and the 50% starch

ratio diet significantly increased the Firmicutes abundance than
52 and 56% starch diet in feces of mice (p < 0.05). There was
a significant interaction between diets with different starch and
protein levels on Firmicutes abundance in mice (p < 0.001).
Although Verrucomicrobia of phyla proportion varied with the
different starch level added to the diet, there was no significant
difference on Verrucomicrobia abundance in the feces of
different starch level (p = 0.045). Both of the 16 and 18% protein
diets fed to mice decreased Verrucomicrobia abundance in feces
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FIGURE 5

Effects of different ratios of starch and protein in diet on α diversity in the fecal microbiota of mice. The value increases with the deepening of
red and decreases with the deepening of blue.

than 20 and 22% protein diets (p < 0.05). Different dietary
protein and starch contents had a significant interaction effect
on the Verrucomicrobia abundance in feces of mice (p < 0.001).
Compared with the 18 and 22% protein diets, the 16% protein
diet significantly decreased the Proteobacteria abundance in
feces of mice (p < 0.05), and the 52% starch ratio diet fed to

mice increased Proteobacteria abundance significantly in feces
than other starch ratio diets (p < 0.05). There was a significant
interaction between diets with different starch and protein levels
on Proteobacteria abundance in mice (p < 0.001).

Downward to genus levels, Helicobacter, Alloprevotella,
Akkermansia, Parasutterella, and Bacteroides were the
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TABLE 2 Phylum-level composition (>1%) on the fecal bacterial community of mice fed different starch and protein ratio diets.

Diets Bacteroidetes Firmicutes unidentified_Bacteria Verrucomicrobia Proteobacteria

CP TS

16 50 50.9 37.5 5.90 3.30 2.12

16 52 58.0 23.5 1.10 14.5 2.69

16 54 58.8 30.5 6.05 1.68 2.74

16 56 75.3 13.9 5.37 1.14 3.88

18 50 70.6 14.1 3.66 4.79 3.98

18 52 77.5 10.2 3.92 1.64 6.28

18 54 81.2 11.3 1.76 1.14 3.76

18 56 70.5 17.8 3.33 1.82 3.71

20 50 68.2 22.9 2.44 2.40 3.24

20 52 80.4 7.60 1.11 5.29 5.41

20 54 68.2 13.9 0.81 13.5 2.05

20 56 69.4 14.5 2.60 11.0 1.80

22 50 72.0 14.5 6.41 3.86 2.19

22 52 69.9 14.2 4.29 5.64 5.49

22 54 61.5 17.4 7.14 8.41 4.95

22 56 55.0 22.1 11.4 8.83 2.20

Univariate analysis

16 – 61.1b 27.6a 5.63a 2.49b 2.87c

18 – 74.3a 14.0b 3.00b 2.65b 4.00a

20 – 71.3a 15.2b 1.89b 7.73a 3.16bc

22 – 64.7b 17.0b 7.27a 6.65a 3.74ab

– 50 65.4b 22.5a 4.60ab 3.59 2.90b

– 52 74.3a 11.6c 2.82b 5.54 5.40a

– 54 66.9b 18.8ab 4.36ab 5.72 3.52b

– 56 67.5b 17.0b 5.64a 6.06 2.88b

SEM 0.010 0.009 0.005 0.005 0.002

CP P-value <0.001 <0.001 <0.001 <0.001 0.007

TS P-value 0.360 0.006 0.200 0.045 0.001

CP × TS P-value <0.001 <0.001 0.457 <0.001 <0.001

CP, crude protein; TS, starch; Each group contains 10 samples; SEM, standard error of the mean. In the same column, values with no letter or the same letter superscripts mean no
significant difference (p > 0.05), while with different small letter superscripts mean significant difference (p < 0.05).

predominant genera in feces of sixteen groups. As shown
in Table 3, the different starch ratio diets had no effect on the
relative abundance of Akkermansia and Bacteroides in feces
of mice (p > 0.05). But 20 and 22% protein diets significantly
increased the Akkermansia abundance than 16 and 18% protein
diets fed to mice (p < 0.05), and 18% protein diet significantly
increased the Bacteroides abundance than other three protein
diets fed to mice (p < 0.05). Diets with different starch and
protein levels had a very significant interaction on the relative
abundance of Akkermansia (p < 0.001) and Bacteroides in
feces of mice (p = 0.001). The different starch diets did not
change significantly the Helicobacter abundance in mice
(p = 0.360), but 22% protein diet significantly increased the
Helicobacter abundance than 18 and 20% protein diets fed to
mice (p < 0.05). There was no significant interaction between
diets with different starch and protein levels on Helicobacter
abundance in mice (p = 0.483). Compared with the 18 and
20% protein diets, the 16% protein diet significantly increased
the relative abundance of unidentified_Lachnospiraceae

and unidentified_Ruminococcaceae in feces of mice
(p < 0.05), and the 50% starch ratio diet significantly
increased the unidentified_Lachnospiraceae and
unidentified_Ruminococcaceae abundance than 52% starch
fed to mice in feces (p < 0.05). There was a very significant
interaction between diets with different starch and protein levels
on the unidentified_Lachnospiraceae abundance (p = 0.012) and
unidentified_Ruminococcaceae abundance of mice (p = 0.001).
Compared with 16 and 18% protein ratio diets, both 20 and
22% protein diets significantly decreased the Parabacteroides
and Alistipes abundance in feces of mice (p < 0.05), and 52%
starch ratio diet significantly decreased the Parabacteroides
and Alistipes abundance than 50% starch ratio diet of mice
(p < 0.05). There was a very significant interaction between
diets with different starch and protein levels on Parabacteroides
(p = 0.014) and Alistipes (p = 0.001) abundance in feces of
mice. The Alloprevotella abundance in feces was highest to mice
fed a combination of 16% protein and 56% starch than other
protein and starch diets fed to mice. There was a significant
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TABLE 3 Genus-level composition (>1%) on the fecal bacterial community of mice fed different starch and protein ratio diets.

Diets Helicobacter Alloprevotella Akkermansia unidentified_
Lachnospiraceae

Parasutterella Parabacteroides Bacteroides unidentified_
Ruminococcaceae

Alistipes

CP TS

16 50 5.85 2.33 3.30 4.33 0.69 0.71 0.94 3.00 1.05

16 52 1.09 4.47 14.50 2.92 2.04 0.50 0.47 1.20 1.63

16 54 6.02 6.07 1.68 3.36 1.28 1.53 1.83 2.01 1.13

16 56 5.28 14.37 1.14 0.95 2.85 1.42 1.32 2.13 1.11

18 50 3.60 3.41 4.79 1.34 3.46 1.88 0.95 2.20 1.28

18 52 3.86 4.99 1.64 1.33 5.47 0.62 1.25 1.48 0.70

18 54 1.71 11.61 1.14 1.03 2.64 1.23 2.13 1.30 0.47

18 56 3.23 2.90 1.82 2.39 2.89 0.68 2.62 1.86 1.12

20 50 2.39 4.74 2.40 2.74 2.19 0.73 1.84 2.33 1.08

20 52 1.01 8.33 5.29 0.89 5.01 0.26 1.29 0.92 0.31

20 54 0.77 3.38 13.53 3.04 2.20 0.44 0.82 1.02 0.42

20 56 2.58 5.52 10.96 2.03 1.56 0.36 0.89 0.99 0.74

22 50 6.37 4.91 3.86 2.94 1.62 0.36 1.00 1.04 0.24

22 52 4.26 3.84 5.64 2.27 3.56 0.45 1.17 1.11 0.40

22 54 7.11 6.21 8.41 2.72 2.28 0.91 1.34 1.11 0.58

22 56 11.22 2.56 8.83 3.13 0.31 0.46 0.45 1.10 0.81

Univariate analysis

16 – 5.58a 7.26a 2.49b 2.97a 1.62c 1.19a 1.34b 1.76b 1.12a

18 – 2.93b 5.93ab 2.65b 1.54b 3.21a 1.27a 1.83a 1.39c 0.96a

20 – 1.83b 5.57ab 7.73a 2.16b 2.66ab 0.46b 1.22b 1.09d 0.68b

22 – 7.21a 4.44b 6.65a 2.77a 1.95bc 0.55b 1.01b 2.37a 0.50b

– 50 4.55ab 3.85b 3.59 2.84a 2.04b 0.92a 1.17 1.48b 0.92a

– 52 2.76b 5.78ab 5.54 1.66b 4.25a 0.39b 1.19 1.09c 0.46b

– 54 4.32ab 7.07a 5.72 2.54ab 2.08b 1.06a 1.57 1.38b 0.68b

– 56 5.56a 6.41a 6.06 2.15ab 1.87b 0.72ab 1.29 2.14a 0.93a

SEM 0.005 0.005 0.005 0.002 0.002 0.001 0.001 0.005 <0.001

CP P-value <0.001 0.302 <0.001 0.038 <0.001 0.004 0.032 <0.001 <0.001

TS P-value 0.360 0.015 0.050 0.211 0.001 0.121 0.284 <0.001 0.024

CP × TS P-value 0.483 <0.001 <0.001 0.012 0.004 0.014 0.001 0.001 0.001

CP, crude protein; TS, starch; Each group contains 10 samples; SEM, standard error of the mean. In the same column, values with no letter or the same letter superscripts mean no significant difference (p > 0.05), while with different small letter superscripts
mean significant difference (p < 0.05).
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interaction between diets with different starch and protein
levels on Alloprevotella abundance in mice (p < 0.001). The
Parasutterella abundance in feces of mice fed with 22% protein
and 56% starch diets was lowest than other protein and starch
diets fed to mice. Different starch or protein ratio diets had
effect on the Parasutterella abundance of mice and a very
significant interaction between diets with different starch and
protein levels on Parasutterella abundance in feces of mice
(p = 0.004).

Discussion

Interactions between starch and protein have been
increasingly appreciated during the last few years, for example in
combined system of protein and starch for formulation of novel
functional foods such as bakery products, infant foods, dessert
and snack foods (4, 38–40), owing to their rich functionality,
superior nutritional value and significant bioactivity. In this
study, male mice were used as an experimental model to
investigate the effects of different levels of protein and starch
diets on fat deposition, fecal microbiota, and small intestinal
tissue structure in mice. Studies have shown that dietary protein
and starch played a role in regulating lipid biological synthesis.

The high protein diet reduced liver fat more effectively
than the low protein diet (41). For example, in mice and
human research, the high protein diet has proven to increase
energy consumption, reduce blood glucose levels, promote fat
oxidation, thereby supporting weight loss, and reducing liver fat
(42–45). The relatively lower carbohydrate content in the high
protein diet may also be part of the cause of new fat production
and reduced intrahepatic fat. In addition, compared with fat-
generating genes, in several rats’ research, protein intake in
diet has not changed the expression of genes related to lipid
oxidation or substrate oxidation (46, 47). Our results showed
that the 22% protein group significantly decreased the final body
weight of the mice than other protein ratio groups, and 20%
protein with 56% starch fed to mice got the lowest abdominal
adipose weight than others group. The reason may be that the
fat intake and lipid biological synthesis may be inhibited. The
liver is one of the important organs for host lipid metabolism,
including lipid assembly and transportation (48). Meanwhile,
the absorption and transport of lipids in the small intestine also
determines the fate of lipid metabolism (49), and a two-way
effect occurs with intestinal microbes and metabolites (50, 51).
In this study, different starch and protein diets had less effect on
the final liver and abdominal adipose weight in male mice, which
may also be due to the shorter experimental period.

The biochemical indicators of the blood could not only
feedback the health of the host and the strength of immune
function, but also revealed the biological characteristics of
different hosts (52). Jenkins et al. (53) studied the effect of
the starch–protein complex interaction in wheat-based food,

founding that the presence of protein in white flour produced
a reduction in the digestibility rate of starch in vitro and had a
direct relationship with the decrease of the glycemic response
in vivo, which may be relevant in the effect of food on the
gastrointestinal tract. In the present study, feeding male mice
with a 22% high-protein diet reduced blood Glu level, while
starch ratio had no significant effect on Glu concentrations.
This showed that the Glu level in blood was easily affected
by the protein in the diet, and the Glu concentration in
the blood increased with the lower the protein content. The
study demonstrated that plasma lipoprotein, especially HDL,
can be combined with LPS and preferentially shunt liver cells
away from liver macrophages, thereby increasing LPS excretion
through the bile and preventing immune responses (54). When
the level of TC in the host’s blood rises, hypertrophymia will
occur. Compared with LDL, HDL level may lead to this situation
(55). Some researchers have compared the influence of high and
low diets on obesity and their related diseases. One of the main
discoveries in the system summary was that the HP solution had
a favorable impact on TG and HDL (56). Our study confirmed
that the protein in the dietary formula affected the indicators
of blood lipid metabolism in mice, and these indicators were
hardly affected by the proportion of starch in the diet. These data
were very important for preventing hyperlipidemia and heart
and liver disease (57).

Dietary nutrients can modulate the small intestinal tissue
morphology and digestive function of animals, and the intestinal
barrier function was very important to the host (58–60). Villus
height and crypt depth are important indicators to measure the
digestion and absorption function of the small intestine. The
depth of the crypts reflects the rate of cell formation, while
shallower crypts indicate an increased rate of cell maturation
and enhanced secretory function. The height of villi and the
depth of crypts can comprehensively reflect the functional status
of the small intestine (34, 61). In our study, the ileal crypt depth
was not affected significantly by the ratio of dietary protein
and starch. Since the intestinal surface area represented by the
tight packing and long projections of villi showed the maximal
absorption of nutrients allowed (62), the decreased ratio of villi
height to crypt depth in the ileum of the 22% CP group showed
reduced nutrient absorption. In the present study, although the
increased dietary protein concentration did not significantly
alter the villus height and crypt depth of the small intestine, the
ratio of villus height to crypt depth decreased, and the villus
area was also reduced, so the high concentration of protein in
the diet impaired the mucosal morphology of the small intestine
resulting in underdevelopment of the small intestine, and
dietary starch has a negligible effect on intestinal morphology.

The integrity of the intestinal structure and dynamic balance
of intestinal microbiota guarantee the chemical induction and
digestive functions of the gut, which is the premise for nutrient
absorption, metabolism, and deposition. With the development
of gene sequencing technology, we can explore the impact of
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changes in animal diet on the structure and function of intestinal
microorganisms (63, 64). The Bacteroidetes and Firmicutes were
dominant phyla in the feces of mice in this study. The decline
of Streptococcus and Escherichia-Shigella in the ileum when
dietary protein concentration decreased by 3 percentage points
suggested the positive effect (65). In this study, the abundance
of Streptococcus and Escherichia-Shigella was less than 1%,
both of them responsed to the diet were negligible. Recently,
altered gut microbiome has been shown to be associated
with host lipid metabolism through dietary structure (49,
66, 67). Germ-free mice demonstrated that the changes of
the gut microbiota community including decreased relative
abundance of Lachnospiraceae and an enhanced occurrence
of Desulfovibrionaceae, Clostridium lactatifermentans and
Flintibacter butyricus were associated with impaired glucose
metabolism, lowered counts of enteroendocrine cells, fatty
liver, and elevated amounts of hepatic triglycerides, cholesteryl
esters, and monounsaturated fatty acids by high-fat diet (68). In
the present study, the content of unidentified_Lachnospiraceae
in mouse feces was higher and affected by the interaction
between protein and starch in the diet, and the effect of
protein was greater than that of starch. However, the content
of Desulfovibrionaceae, Clostridium lactatifermentans and
Flintibacter butyricus in mouse feces was very low, so it was not
investigated. Furthermore, gut microbiota-mediated cholesterol
metabolism via a microbial cholesterol dehydrogenase played
an important role in host cholesterol homeostasis (69).
Interestingly, there may be a bridge between gut microbes and
metabolites and lipid levels, and several relevant genes regulated
the concentration of lipids. A study has found that theabrownin
reduced liver cholesterol and decreased lipogenesis by the gut
microbe-bile acid-FXR-FGF15 signaling pathway (50). In our
study, the concentration of TBA in blood was the highest when
the diet contained 18% protein, and the ratio of dietary starch
had no significant effect on TBA. Therefore, dietary protein may
regulate host lipid metabolism through some bacteria, which
required more follow-up research.

Futher, the microbial composition, along with a wide range
of microbial metabolites, played a complex role in various
host processes, such as resistance to autoimmunity (70). For
the ileal microbiota in pigs, when dietary protein dropped by
3 percentage points, the decreased Enterobacteriaceae within
the Proteobacteria phyla has been considered to contain many
pathogenic bacteria (71), indicating the potential for inhibiting
pathogens with moderate dietary protein restriction. In general,
the abundance of Proteobacteria in mouse feces was the highest
when the diet contained 56% starch in this study. Therefore,
the increase of dietary starch content was harmful to the health
of mice from the perspective of microorganisms. In the colon,
when dietary protein concentration declined, the abundance
of Firmicutes increased while Bacteroidetes, Spirochaetae, and
Verrucomicrobia decreased (65). Consistent with previous
research, the abundance of Firmicutes in mouse feces decreased

with the increase of dietary protein, while the abundance of
Bacteroides and Verrucomicrobia decreased conversely in this
study. Since microorganisms were greatly affected by dietary
formulation, starch and protein had obvious interaction effect
on the main dominant bacterial genera, which provided insights
for future exploration of the effects of specific microorganisms
on dietary formulation.

Conclusion

In conclusion, our results showed that the 22% protein
group significantly decreased the final body weight of the
mice than other protein ratio groups, and 20% protein
with 56% starch fed to mice got the lowest abdominal
adipose weight than others group. The gut microbial
abundance was altered by different starch and protein fed
to male mice. Our study provided a more comprehensive
understanding of mouse fecal microbial responses to
different starch and protein diets, including lipid metabolism
and gut barrier.
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