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Volatile thiols give a unique flavor to foods and they have been extensively

studied due to their effects on sensory properties. The analytical assay of

volatile thiols in food is hindered by the complexity of the matrix, and

by both their high reactivity and their typically low concentrations. A new

ultraperformance liquid chromatography (UPLC) strategy has been developed

for the identification and quantification of volatile thiols in Chinese liquor

(Baijiu). 4,4’-Dithiodipyridine reacted rapidly with eight known thiols to form

derivatives, which provided a diagnostic fragment ion (m/z 143.5) for tandem

mass spectrometry (MS/MS). To screen for new thiols, Baijiu samples were

analyzed by means of UPLC–MS/MS screening for compounds exhibiting the

diagnostic fragment ion (m/z X→143.5). New peaks with precursor ions of

m/z 244, 200 and 214 were detected. Using UPLC with quadrupole-time-

of-flight mass spectrometry (UPLC–Q-TOF–MS) and authentic standards,

ethyl 2-mercaptoacetate, 1-butanethiol, and 1-pentanethiol were identified

in Baijiu for the first time. Commercial Baijiu samples were analyzed with

the new method and the distribution of 11 thiols was revealed in different

Baijiu aroma-types. The aroma contribution of these thiols was evaluated

by their odoractivity values (OAVs), with the result that 7 of 11 volatile thiols
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had OAVs > 1. In particular, methanethiol, 2-furfurylthiol, and 2-methyl-3-

furanthiol had relatively high OAVs, indicating that they contribute significantly

to the aroma profile of Baijiu.
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Introduction

Baijiu (Chinese liquor) is a locally-produced, distilled
alcoholic beverage that has been very popular for thousands
of years and is produced using a unique traditional solid-state
fermentation process (1, 2). It is typically made from sorghum
or a mixture of wheat, barley, corn, rice, and sorghum. Baijiu is
produced using traditional spontaneous fermentation processes
with an assortment of microbial communities involved (3). The
characteristic aroma of Baijiu can vary considerably, resulting
from differences in raw materials, production processes, and
flavor components. Baijiu is generally classified into 12 aroma
types (4). At present, soy sauce aroma-type Baijiu (SSAB) (5,
6), strong aroma-type Baijiu (SAB) (7, 8), light aroma-type
Baijiu (LAB) (9, 10), and roasted sesame-like aroma-type Baijiu
(RSAB) (11, 12) are the four common Baijiu aroma-types in
China.

The popularity of Baijiu arises mainly from its pleasant taste
and the odor active compounds in its volatile fraction. More
than 1,870 volatile compounds have been identified in Baijiu,
including esters, alcohols, ketones, acids, aldehydes, nitrogenous
compounds, and sulfur compounds (4). Despite this great
complexity, only a small number of compounds are responsible
for the majority of the olfactory sensation Baijiu provides. Some
sulfur containing compounds are among the most important
for Baijiu flavor (13, 14). In particular, volatile thiols, known
historically as mercaptans, have the general structure, R-SH,
and exhibit important sensory effects to Baijiu, because their
concentrations are much higher than their low odor thresholds
(12, 15, 16). Therefore, their determination and insights into
their concentrations could help to improve the sensory quality
of Baijiu and modulate its sensory attributes.

Several methods for analyzing volatile thiols in Baijiu have
been developed, all using gas chromatography (GC) (12, 17).
However, profiling volatile thiols in Baijiu remains a bottleneck
with GC-based methods. The complexity of the Baijiu sample
matrix, the typically low concentrations of volatile thiols
and their low detection-sensitivity in electron-impact mass
spectrometry (EIMS), means that few of them can be identified
using GC–MS. Only one volatile thiol was detected in Baijiu
by HS-SPME–GC–MS (18). Although pulsed flame photometric
detection (PFPD) and sulfur chemiluminescence detection
(SCD) are highly selective and sensitive for the quantification

of volatile thiols, they provide little identification information,
except for their chromatographic retention time. As a result,
additional and cumbersome identification procedures are
required. Only three volatile thiols were identified by HS-
SPME–GC–PFPD, and four volatile thiols were identified by
GC × GC–SCD in Baijiu (13, 16). In addition, current GC-
based methods for Baijiu volatiles are in general, laborious and
time consuming, and some of them involve multiple sample
manipulation steps, during which volatile thiols can be lost, or
degraded. These limitations have led to the need for a simple,
rapid method that enables the identification and quantification
of Baijiu volatile thiols.

To improve the sensitivity and selectivity of the
measurement method, and stabilize the sulfanyl, thiols
from wine and coffee are usually derivatized prior to separation
and analysis using liquid chromatography-electrospray
ionization mass spectrometry (LC–ESI-MS) (19, 20). 4,4’-
Dithiodipyridine (DTDP) is one of the available derivatization
reagents. Thiols derivatized with DTDP show increased
hydrophobicity, decreased polarity volatility, and stronger
affinity for protonation, resulting in an enhanced LC signal for
separation and positive-mode ESI-MS detection, which enables
the quantification of thiols at ng/L levels in wine (21, 22).

As a result of the low odor thresholds of most volatile
thiols, in combination with their low concentrations, it is likely
that some potent volatile thiols remain to be discovered in
Baijiu. Therefore, we developed a method to identify the volatile
thiols by UPLC–MS/MS and UPLC–Q-TOF–MS, rather than
adopting a conventional GC approach. The UPLC–MS/MS
method was applied to a range of Baijiu samples to investigate
the volatile thiol profile.

Materials and methods

Samples

Four aroma-types Baijiu samples were under investigation:
8 SSAB samples, 6 SAB samples, 6 RSAB samples, and 7 LAB
samples. The detailed information is given in Supplementary
Table 1. The samples were stored at room temperature and
without light before analysis.
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TABLE 1 Optimized multiple-reaction-monitoring (MRM) parameters for the derivatizeds thiol in Baijiu.

No. Compounds Retention time Precursor ion Product ion Cone voltage Collision energy Type

1 Methanethiol 1.45 158.0 110.7 23 19 Quantifier

158.0 143.1 23 20 Qualifier

2 Ethanethiol 2.46 172.0 143.0 23 19 Quantifier

172.0 110.2 24 21 Qualifier

3 Ethyl 2-mercaptoacetate 2.66 230.0 143.4 25 27 Quantifier

230.0 201.1 27 29 Qualifier

4 2-Furfurylthiol 4.06 223.7 143.8 21 19 Quantifier

223.7 81.3 24 21 Qualifier

5 2-Sulfanylethanol 6.95 187.6 173.0 21 15 Quantifier

187.6 143.6 22 17 Qualifier

6 2-Methyl-3-furanthiol 8.94 224.0 110.6 23 25 Quantifier

224.0 143.8 23 23 Qualifier

7 Benzenemethanethiol 9.03 234.0 143.9 23 17 Quantifier

234.0 110.5 25 23 Qualifier

8 3-Mercaptohexyl acetate 15.59 286.2 143.3 23 23 Quantifier

286.2 81.3 24 25 Qualifier

9 Ethyl 2-mercaptopropionate 4.97 244.0 143.2 25 27 Quantifier

244.0 110.2 27 29 Qualifier

10 1-Butanethiol 10.78 199.7 143.4 25 19 Quantifier

199.7 110.7 25 28 Qualifier

11 1-Pentanethiol 16.39 214.0 143.2 27 17 Quantifier

214.0 110.5 27 19 Qualifier

Chemicals and materials

The thiols studied were methanethiol, ethanethiol, ethyl
2-mercaptoacetate, 2-furfurylthiol, 2-sulfanylethanol, 2-methyl-
3-furanthiol, benzenemethanethiol, 3-mercaptohexyl acetate,
ethyl 2-mercaptopropionate, 1-butanethiol, 1-pentanethiol. The
internal standard was 2-phenylethanethiol. All analytes were
provided commercially at high-purity grade (>◦96%) by Sigma-
Aldrich (Shanghai, China). Ethylenediaminetetraacetic acid
disodium salt (EDTA-Na2), 4,4’-Dithiodipyridine (DTDP, 97%),
acetaldehyde (99%), and formic acid (99%) were bought
from J&K Chemical Corp., (Beijing, China). C18 solid-phase
extraction cartridges (6 mL, 500 mg) were purchased from
ANPEL (Shanghai, China). LC–MS grade acetonitrile were
purchased from Merck (Sigma-Aldrich, Shanghai, China).

Sample preparation and derivatization

A modified derivatization method for the analysis of thiols
in Baijiu was used according to a previously described procedure
(21). A solution of the Baijiu sample (20 mL) was spiked
with 10 µL of 2-phenylethanethiol (6 mg/L) and used as an
internal standard solution. The sample was diluted with water
(20 mL, Millipore, USA) to a final concentration of about
25% ethanol by volume. EDTA-Na2 (40 mg), 50% acetaldehyde

(160 µL), and freshly thawed DTDP (10 mM, 400 µL) was
then added to the resulting solution. The mixture was vortex-
assisted stirred for 5 min and rested for 25 min at room
temperature. The sample was loaded onto a SPE cartridge, which
was previously pretreated with 6 mL of methanol, followed by
6 mL of water. The column was washed with 50% methanol
(12 mL). The analytes retained by SPE were eluted with
methanol (3 mL) and concentrated to a final volume of 400
µL under nitrogen. The solution was filtered (0.22 µm) and
stored at 4◦C.

Mass spectrometry method
development

A triple-quadrupole mass spectrometer (Xevo TQ-S,
Waters, Milford, USA) was performed with positive ionization
mode. The multiple-reaction-monitoring (MRM) conditions
were optimized with infusion of derivatized thiols at 10 µL/min.
Based on the mass spectra (Supplementary Figure 1) with
the MassLynx software using the sample tune and develop
method, two ion transitions were chosen for the quantification
(quantifier) and the confirmation (qualifier) (23). Table 1
lists the best MRM parameters for each derived thiol with
the following instrument settings: capillary voltage, 3 kV;
desolvation temperature, 500◦C; gas, 800 L/h.
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Ultraperformance liquid
chromatography–mass spectrometry
instrumentation and conditions

The thiols were separated by using an UPLC system (Waters,
Milford, USA) equipped with a vacuum degasser, a binary
solvent manager, and an autosampler. As stationary phase an
analytical column (waters BEH C18, 100× 2.1 mm, 1.7 µm) was
used. Flow-rate was 0.3 mL/min and the composition of eluents
was: solvent A (0.1% formic acid in water) and solvent B (0.1%
formic acid in acetonitrile). The linear gradient for solvent B was
as follows: 0 min, 15%; 13 min, 22%; 14 min, 30%; 18 min, 35%;
18.5 min, 100%; 21.5 min, 100%; and 22 min, 15%. The injection
volume was set at 10 µ L.

The derivatization Baijiu sample was analyzed by means
of UPLC–MS/MS using precursor ion scan screening for
compounds releasing the diagnostic ion (m/z X→143.5) (24).
In the source, cone voltage of 23 V and collision energy of 20 eV
was applied. The eleven derivatives were quantified in MRM
mode by monitoring their corresponding precursor ion, product
ion, cone voltage, and collision energy, respectively (Table 1).
Each Baijiu sample was tested in three different sessions to
obtain an average value.

Thiols identification by
ultraperformance liquid
chromatography–quadrupole-time-
of-flight mass
spectrometry

The derivatized Baijiu sample was carried out by UPLC
system (Waters, Milford, USA), coupled to a SYNAPT Q–TOF
mass spectrometer (Waters, Milford, USA), using the following
operation parameters: capillary voltage: 3,500 V; cone voltage:
20 V; collision energy: 20 eV; source temperature: 100◦C;
desolvation temperature: 400◦C; desolvation gas flow: 700 L/h;
cone gas flow: 50 L/h. The analytical column, mobile phase, and
linear gradient were the same as those in the UPLC–MS/MS.
The precursor ions were selected from UPLC–MS/MS spectra,
which were produced by precursor ion scan mode. Then, the
target ions were fragmented by collision-induced dissociation.

Method validation

Thiols standard solutions at different concentrations were
obtained by diluting their corresponding stock solutions
using a 50% ethanol-water solution and derivatized via
the workflow developed in this study. The linearity of the
derivatized thiol was evaluated according to the relative
peak area versus the concentration and expressed using the

correlation coefficient (R2). Relative to the calibration curve,
thiol standards were added to the Baijiu samples at low,
medium and high concentration levels. The recovery was
calculated based on the concentrations of thiols measured
in the spiked and non-spiked Baijiu samples. The intra-day
precision was evaluated using the repeated analysis of 11
thiols found in the same Baijiu sample five times on the
same day and the inter-day precision was determined on five
consecutive days. The limits of detection (LOD) and limits
of quantitation (LOQ) of the thiols were determined at their
concentrations when the signal/noise (S/N) ratio was 3 and 10,
respectively (25).

Determination of odor thresholds

Using a previously proposed method (26), the thiol odor
thresholds were detected in a 46% ethanol-water solution using
three-alternative forced choice tests. A sensory panel consisting
of 20 panelists, 10 males, and 10 females, with an average age
of 25 years. The odor activity value (OAV) was defined by
dividing the concentration of the thiol to its odor threshold
(27, 28).

Statistical analyses

The Masslynx software (waters) was used to process
the data of UPLC–MS/MS and UPLC–Q-TOF–MS.
Statistical analyses were carried out by using the Microsoft
Excel 2010. Principal component analysis (PCA) of the
concentrations of thiols in four different aroma-types
Baijiu by XLSTAT 2018 software. Variable importance
for projection (VIP) values were carried out using
the SIMCA software.

Results and discussion

Identification of new thiols in Baijiu by
ultraperformance liquid
chromatography–mass spectrometry
and ultraperformance liquid
chromatography–quadrupole-time-
of-flight mass
spectrometry

Ultraperformance liquid
chromatography–mass spectrometry analysis
of derivatized thiols using
multiple-reaction-monitoring

For the development of the MRM method, each
commercial thiol standard derivative (1–8) was directly
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infused into the MS ion source in positive mode. The
cone voltage (1–50 V) and collision energy (1–35 eV) were
optimized to obtain the precursor ion and product ion
with maximum fragment ion abundance. Table 1 lists the
optimal MRM parameters for each thiol derivative based
on their response and ion fragmentation (Supplementary
Figure 1). All the derivatized thiols have a diagnostic
ion observed between m/z 143 and 144 corresponding to
a disulfanylpyridine group arising from the derivatized
portion of the precursor ion. The fragmentation pathways
and ions were similar to those previously reported (21);
the fragment ion observed at m/z 143.5 in this study
was used as the diagnostic ion for identification of
the derivatized thiols (Figure 1A). To obtain a good
separation of the derivatized thiols, several parameters in
the chromatography method were systematically varied,
allowing the derivatized thiols to be separated within
17 min, using the optimized gradient elution procedure
(Figure 1B).

Precursor ion scan of m/z 143.5 in Baijiu by
ultraperformance liquid
chromatography–mass spectrometry

Based on the fragmentation behavior mentioned above,
the m/z 143.5 peak was chosen as the diagnostic ion for the
derivatized thiols. To improve the detection sensitivity of the
constituent of interest, the volume of the SSAB sample was
increased to 120 mL, to obtained a higher concentration of
derivatized thiols. Based on the cone voltage and collision
energy of the derivatized thiols (1–8), a cone voltage of 23 V
and collision energy of 20 eV, were found to maximize the
fragment ion abundance of the peak between m/z 143 and
144, for most of the derivatized thiols. Under these conditions,
precursor ion scanning of m/z 143.5 was applied, to produce a
single-ion chromatogram (Figure 2A). Following the diagnostic
ion screening (m/z X→143.5), the peaks corresponding to the
derivatized thiol candidates were exposed from the total ion
chromatogram. Eight peaks (1–8) were identified as known
thiols in Baijiu, by comparing the chromatographic retention

FIGURE 1

Mass spectrometry (MS/MS) spectrum of the derivatized thiols (A). Multiple-reaction-monitoring (MRM) analysis of the derivatized thiol
standards (1–8) in positive mode by ultraperformance liquid chromatography (UPLC)–mass spectrometry (MS/MS) (B).
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FIGURE 2

Analysis of the derivatized Baijiu sample using precursor mode and ultraperformance liquid chromatography (UPLC)–mass spectrometry
(MS/MS) screening for compounds releasing a disulfanylpyridin ion (m/z X→143.5) (A). MS spectra of the three unknown peaks by UPLC–MS/MS
(B–D). MS peaks observed at 5.06 (unknown #1), 10.83 (unknown #2), and 16.46 min (unknown #3) using ultraperformance liquid
chromatography quadrupole-time-of-flight mass spectrometry (UPLC–Q-TOF–MS) and their corresponding elemental composition (E–G).

time (Figure 1B) and MS fragmentation, with the authentic
standards. Other than the eight known peaks, Figure 2A also
shows three new peaks, unknown #1 (5.06 min), unknown #2
(10.83 min), and unknown #3 (16.46 min) in the chromatogram;
three precursor ions at m/z 244, 200 and 214 were extracted
from the three peaks, respectively (Figures 2B–D). The three
peaks appeared to be potential new thiols, so their structures
were identified using the following UPLC–Q-TOF–MS method.

New thiols in Baijiu
Quadrupole-time-of-flight mass spectrometry (Q-TOF–

MS) was chosen because it can measure accurate masses with
high resolution and provides the best information on the
molecular composition of the compound of interest, so that
its molecular formula can be confirmed, or a preliminary
determination made (29, 30). UPLC–Q-TOF–MS analysis
revealed the mass of unknown #1 to be m/z 244.0498 [M + H]+,
corresponding to a molecular formula of C10H13NO2S2

(Figure 2E). Its main MS/MS fragments were m/z 142.9849
[M + H]+ (C5H5NS2

+), 111.0135 [M + H]+ (C5H5NS+),
and 79.0436 [M + H]+ (C5H5N+). The corresponding neutral
losses of 101.0649, 31.9714, and 31.9699 appear to be losses of
C5H9O2, S, and S, respectively, which appear to be fragments of
the thiol after derivatization.

The derivatization reagent accounts for C5H5NS, so the
molecular formula of unknown #1 was C5H10O2S. The
candidate thiols were screened and identified using the database
of flavor molecules (1,2accessed in May 2022), then verified
by comparison with authentic standard. Unknown #1 was
identified as ethyl 2-mercaptopropionate. UPLC–Q-TOF–MS
analysis revealed the accurate mass of unknown #2 to be
m/z 200.0579 [M + H]+, corresponding to a molecular
formula of C9H14NS2 (Figure 2F). The retention time of

1 https://cosylab.iiitd.edu.in/flavordb/

2 https://www.vcf-online.nl/VcfHome.cfm
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unknown #3 was 16.46 min and its molecular ion mass
was 214.0736 [M + H]+, corresponding to a molecular
formula of C10H16NS2 (Figure 2G). Subtracting the formula
of the derivatizing reagent gave the molecular formula of
unknown #2 and #3 as C4H10S and C5H12S, respectively. The
database of flavor molecules and comparison with authentic
standards unambiguously identified these compounds as 1-
butanethiol and 1-pentanethiol, respectively. To our knowledge,
this is the first time ethyl 2-mercaptopropionate, 1-butanethiol,
and 1-pentanethiol have been detected in Baijiu. Ethyl 2-
mercaptopropionate has been reported to be an important
odorant, which correlates with age in wine (31). 1-Butanethiol
and 1-pentanethiol have burned and sulfuryl odor qualities,
which are the odorants of fruit brandy and coffee (32, 33).

Analytical characteristics of the
ultraperformance liquid
chromatography–mass spectrometry
method

To check the performance and reliability of the newly
developed method, quality parameters such as linear range, limit
of detection (LOD), limit of quantification (LOQ), precision,
and accuracy were determined.

Linear range, limits of detection, and limits of
quantitation

Linearity was evaluated for each thiol over at least seven
different concentrations. The experimentally-determined linear
ranges covered a wide concentration range (up to 819 µg/L).
The correlation coefficients (R2) for the thiol derivatives were
in the range 0.9911–0.9978. The LOD and LOQ obtained for
the thiol derivatives were in the ranges 0.001–0.012 µg/L and
0.003–0.037 µg/L, respectively (Table 2). All LOQs of the
thiol derivatives were below their respective odor thresholds

(Table 3), making this method suitable for combined chemical
analysis and sensory experiments. The UPLC–MS/MS method
also performed better than GC for quantification of the volatile
thiols (Table 4). For example, the LOQ of 2-furfurylthiol
was 0.003 µg/L by UPLC–MS/MS, 200 times lower than
by HS-SPME–GC–PFPD (0.60 µg/L) (13). In addition, the
UPLC–MS/MS yielded an LOD of 0.001 µg/L for 2-methyl-
3-furanthiol, 170 times lower than the 0.17 µg/L achieved by
HS-SPME–GC–PFPD (34). Many methods have been proposed
for the analysis of thiols in Baijiu, with common techniques
involving GC. Several methods such as HS-SPME, SBSE, HS-
SPME arrow, and direct injection (DI) coupled with GC are
widely used for extraction of thiols in Baijiu. The PFPD,
SCD, and TOFMS are highly selective and sensitive for sulfur
determination. Compared with previous GC analytical methods
for the number of thiols analyzed in Baijiu (Supplementary
Figure 2), 11 thiols were studied in the present study [11 vs. 4
with GC × GC–SCD (16), 3 with GC–PFPD (13), 1 with HS-
SPME Arrow–GC–MS (18), 0 with LLE–GC × GC–TOFMS
(35), 0 with HS-SPME–GC–MS (36), 0 with SBSE–GC–MS (37),
and 0 with DI–GC–MS (38)].

Precision and accuracy
The method for precision measurement was based on

stable instrument status, and the results were recorded as the
intra- and inter-day precision with a number of replicates
(n = 5) (Table 5). The RSDs of the intra-day measurements
varied between 0.31% (1-pentanthiol) and 3.58% (ethyl 2-
mercaptoacetate), and the inter-day RSDs varied between
5.24% (ethyl 2-mercaptoacetate) and 11.79% (methanethiol).
The accuracy of the method was determined based on the
recoveries. The recoveries of the thiol derivatives were all
between 81.2% (methanethiol) and 106.7% (1-pentanthiol) at
the three different concentration levels studied (low, medium,
and high concentrations in the calibration graphs).

TABLE 2 Linear range, correlation coefficient (R2), limits of detection (LOD), and limits of quantitation (LOQ) of the established method for
derivatized thiols.

No. Compounds Linear equation Linear range (µg/L) R2 LOD (µg/L) LOQ (µg/L)

1 Methanethiol y = 0.1028x + 0.0183 0.8–819.2 0.9978 0.012 0.037

2 Ethanethiol y = 0.8996x + 0.4628 0.8–819.2 0.9936 0.008 0.024

3 Ethyl 2-mercaptoacetate y = 4.6146x + 0.1797 0.03–30.72 0.9967 0.002 0.007

4 2-Furfurylthiol y = 0.5528x + 0.1985 0.05–102.4 0.9933 0.001 0.003

5 2-Sulfanylethanol y = 3.5746x + 0.8394 0.01–10.24 0.9950 0.002 0.005

6 2-Methyl-3-furanthiol y = 0.9625x - 0.0310 0.02–10.24 0.9935 0.001 0.003

7 Benzenemethanethiol y = 4.1164x - 0.0676 0.01–10.24 0.9959 0.002 0.007

8 3-Mercaptohexyl acetate y = 4.9971x - 0.0122 0.01–10.24 0.9926 0.002 0.007

9 Ethyl 2-mercaptopropionate y = 9.7719x + 0.2881 0.01–10.24 0.9911 0.002 0.005

10 1-Butanethiol y = 1.3153x - 0.0227 0.01–20.48 0.9929 0.004 0.012

11 1-Pentanthiol y = 1.4120x - 0.6857 0.05–51.2 0.9962 0.007 0.023
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TABLE 3 The thiol concentrations in different aroma types Baijiu and their corresponding odor activity values (OAVs) range.

No. Compound Odor
descriptiona

Threshold
(µg/L)

Concentration (µg/L) OAV

SSAB RSAB SAB LAB SSAB RSAB SAB LAB

1 Methanethiol Burnt rubber,
gasoline

2.2 229–513 78–245 33–104 2–10 104–233 35–111 15–47 0.9–4.5

2 Ethanethiol Onion, rubber 0.8 6.7–32.1 5.3–28.4 1.7–7.3 Ndc 8.4–40.1 6.6–35.5 2.1–9.1 -

3 Ethyl
2-mercaptoacetate

Cooked
vegetable

120 1.3–9.3 0.9–3.3 0.1–0.4 Nd <0.1 <0.1 <0.1 -

4 2-Furfurylthiol Coffee, roasted
sesame seeds

0.1 11.2–37.8 6.1–21.3 1.7–6.1 0.5–1.9 112–378 61–213 17–61 5–19

5 2-Sulfanylethanol Garbage, grilled 130 0.03–0.08 0.03–0.07 0.03–0.05 Nd–0.03 <0.1 <0.1 <0.1 <0.1

6 2-Methyl-3-
furanthiol

Roasted meat,
fried

0.0048 1.0–2.5 0.9–2.8 0.07–0.13 0.08–0.31 208–521 188–583 14.6–27.1 16.7–64.6

7 Benzenemethanethiol Smoke, roasted 0.01 0.76–3.68 0.09–0.30 0.02–0.05 Nd 76–368 9–30 2–5 -

8 3-Mercaptohexyl
acetate

Grapefruit,
passion fruit

0.09b 0.05–0.13 Nd–0.08 Nd–0.05 Nd <0.1 <0.1 <0.1 -

9 Ethyl 2-
mercaptopropionate

Animal, burnt 13.23b 0.64–1.41 0.11–0.34 0.02–0.08 Nd <0.1 <0.1 <0.1 -

10 1-Butanethiol Burned, roasted 0.5b 1.8–7.6 1.6–8.3 0.07–0.22 Nd 3.6–15.2 3.2–16.6 0.1–0.4 -

11 1-Pentanthiol Burned, roasted 0.3b 1.9–6.2 0.5–3.8 Nd Nd 6.3–20.7 1.7–12.7 - -

aOdor description are taken from online databases (Flavornet: http://www.flavornet.org; The Good Scents Company: http://www.thegoodscentscompany.com; FlavorDB: https://cosylab.
iiitd.edu.in/flavordb/). bOdor threshold detected in this study. cNd, not detected.

TABLE 4 Comparison of analytical methods for thiols in Baijiu.

Compounds HS-SPME–GC–PFPD12 LLE–GC × GC–SCD16 HS-SPME Arrow–GC–MS18 This study

LOD LOQ LOD LOQ LOD LOQ LOD LOQ

Methanethiol 26 86 - - - - 0.012 0.037

Ethanethiol 3.3 11 - - - - 0.008 0.024

2-Furfurylthiol 0.18 0.60 0.12 0.20 0.016 0.053 0.001 0.003

2-Methyl-3-furanthiol 0.17 0.58 0.10 0.21 - - 0.001 0.003

Benzenemethanethiol - - 0.07 0.11 - - 0.002 0.007

Analysis of practical samples

Quantitation of thiols in Baijiu samples and
odor activity value analysis

To determine the practical utility of the new method, it
was applied to a variety of typical aroma-type Baijiu samples
obtained from diverse regions. The determined concentrations
of 11 thiols are shown in Supplementary Table 2. The OAV
can be used to evaluate the sensory contribution of an aroma
compound, because it is obtained by dividing the concentration
of the thiol by its odor threshold. An OAV much greater than
1 means that the compound may contribute to the odor of the
Baijiu (39, 40).

The thiol concentrations in different Baijiu aroma types
and their corresponding OAV ranges were determined
(Table 3). When compared with the other samples, SSAB

was characterized by a higher total thiol concentration. The
concentrations of seven thiols in SSAB were higher than their
corresponding odor thresholds. Methanethiol (229–513 µg/kg,
OAVs 104–233), 2-furfurylthiol (11.2–37.8 µg/kg, OAVs
112–378), and 2-methyl-3-furanthiol (1.0–2.5 µg/kg, OAVs
208–521), which have been identified as important aroma
compounds for SSAB in previous reports, were also confirmed
in this study (34, 41). Two notable thiols, 1-butanethiol (1.8–
7.6 µg/L, OAVs 4–15), and 1-pentanethiol (1.9–6.2 µg/L, OAVs
6–21), were quantified in Baijiu for the first time, in trace
amounts, but their low odor thresholds still result in significant
OAVs.

A total of 7 thiols with OAVs > 1 was found in RSAB.
The highest OAV was found for 2-methyl-3-furanthiol (0.9–
2.8 µg/kg, OAVs 188–583), which has a roasted meat odor
and was identified in RSAB for the first time in this study.
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TABLE 5 Recovery and precision of the established method for
derivatized thiols.

No. Compounds Spiked level
(µg/L)

Recovery
(%)

Precision (RSD,%)

Intra-
day

Inter-
day

1 Methanethiol 1 81.2 1.21 7.09

400 96.8 0.89 8.25

800 92.5 3.55 11.79

2 Ethanethiol 1 82.5 2.41 6.55

400 84.6 1.70 8.54

800 88.5 2.55 11.20

3 Ethyl 2-
mercaptoacetate

0.1 88.6 0.63 7.62

5 92.6 3.21 5.24

50 97.1 3.58 5.67

4 2-Furfurylthiol 0.1 84.7 1.48 7.89

10 96.0 1.39 9.31

100 104.1 1.62 6.79

5 2-
Sulfanylethanol

0.02 83.9 2.30 10.28

0.2 96.5 1.87 6.55

2 98.3 0.43 7.51

6 2-Methyl-3-
furanthiol

0.05 82.5 2.51 9.27

0.5 104.5 0.97 8.41

5 96.3 1.88 6.08

7 Benzenemethanethiol 0.05 83.6 3.27 9.50

0.5 99.4 3.09 7.06

5 86.7 1.07 7.98

8 3-
Mercaptohexyl
acetate

0.05 82.2 3.58 5.29

0.5 83.6 2.96 9.88

5 96.4 3.06 7.65

9 Ethyl 2-
mercaptopropionate

0.02 90.3 0.72 7.35

0.2 105.4 1.20 8.41

2 88.4 1.15 8.93

10 1-Butanethiol 0.05 83.0 2.46 6.57

0.5 81.5 1.86 9.22

5 96.3 3.20 9.08

11 1-Pentanthiol 0.2 83.9 0.31 7.80

2 106.7 2.31 6.91

10 103.6 0.82 9.35

2-Furfurylthiol (6.1–21.3 µg/kg, OAVs 61–213) was found
at a concentration much higher than its odor threshold,
and determined to be a typical potent odorant of RSAB
(12). In the process of RSAB fermentation, Saccharomyces
cerevisiae generates 2-furfurylthiol using furfural and L-cysteine
as precursors (42). The OAVs of ethanethiol (6.6–35.5),
benzenemethanethiol (9–30), 1-butanethiol (3.2–16.6), and

FIGURE 3

Principal component analysis (PCA) of the thiols in four
aroma-types Baijiu samples (A). Heat map of thiols (B). The
histogram shows the value of variable importance for projection
(VIP) (C).

1-pentanethiol (1.7–12.7) exceeded their odor thresholds,
indicating that they may contribute significantly to the
overall aroma profile.

Five thiols were found at concentrations higher than their
odor thresholds in SAB. Of these thiols, methanethiol was
present at the highest concentration (33–104 µg/kg, OAVs
15–47), followed by ethanethiol (1.7–7.3 µg/kg, OAVs 2–9)
and 2-furfurylthiol (1.7–6.1 µg/kg, OAVs 17–61). Lower
concentrations were observed for 2-methyl-3-furanthiol
(0.07–0.13 µg/kg, OAVs 15–27) and benzenemethanethiol
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(0.02–0.05 µg/kg, OAVs 2–5), which was present at
concentrations below 1 µg/L in all samples. Only four thiols
were found in LAB. Among them, methanethiol (2–10 µg/L,
OAVs 1–5), 2-furfurylthiol (0.5–1.9 µg/L, OAVs 5–19) and
2-methyl-3-furanthiol (0.08–0.31 µg/L, OAVs 17–65) had
OAVs > 1. These findings will facilitate further study of the
contribution of thiols to the aroma of Baijiu.

Statistical analysis of thiols

Principal components analysis (PCA) is an unsupervised
method for expressing the similarities and differences of groups
of samples (43, 44). PCA analysis was performed on the thiol
concentrations (detailed data in Supplementary Table 2) to
visualize graphically, the thiol concentrations found in the
different Baijiu aroma-types. The PCA scores plot (Figure 3A)
clearly distinguished the four different Baijiu aroma-types.
The first two principal components PCA (PC1 and PC2)
accounted for 74.47% of the variation, indicating that the
thiols significantly affect the flavor characteristics of Baijiu (45).
Moreover, heat map and hierarchical cluster analysis were also
visualized differences within the different Baijiu aroma-types
(Figure 3B). The SSAB samples were characterized by the
highest thiol concentrations and were all grouped on the far
right of the PCA bi-plot. In contrast, the LAB samples with
lowest thiol concentrations were on the far left.

To identify the most discriminative thiols contributing
to different Baijiu aroma-types, important compounds were
calculated (46). Generally, variable importance for projection
(VIP) values are considered a significant contributor to different
samples. Thiols with VIP > 1.0 are the most relevant for
explaining the different Baijiu aroma-types (47). Five thiols
(methanethiol, 2-methyl-3-furanthiol, benzenemethanethiol,
ethyl 2-mercaptopropionate, and 1-butanethiol) could be
considered as being responsible for the differences in the aroma
characteristics between Baijiu aroma-types (Figure 3C).

Conclusion

In this study, a novel strategy using UPLC–MS/MS and
UPLC–Q-TOF–MS, was developed to identify thiols in Baijiu.
The unique and consistent MS/MS fragmentation pathway of
the DTDP-thiol derivatives provides a powerful way to expand
the number of quantifiable thiols, and identify unknown thiols
by targeting a diagnostic ion (m/z 143.5). In addition to the eight
known thiols detected in the Baijiu samples, three new thiols
were detected and identified (ethyl 2-mercaptopropionate, 1-
butanethiol, and 1-pentanethiol) using the strategy developed
in this study. In addition, a method using UPLC–MS/MS has
been developed and validated to quantify thiols in Baijiu. Seven
thiols were suggested as important aroma contributors for Baijiu

based on OAVs. Five thiols could be used as markers for different
Baijiu aroma-types.
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