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Early life nutrition is associated with the development and metabolism in later

life, which is known as the Developmental Origin of Health and Diseases

(DOHaD). Epigenetics have been proposed as an important explanation

for this link between early life malnutrition and long-term diseases. Non-

coding RNAs (ncRNAs) may play a role in this epigenetic programming. The

expression of ncRNAs (such as long non-coding RNA H19, microRNA-122, and

circular RNA-SETD2) was significantly altered in specific tissues of offspring

exposed to maternal malnutrition. Changes in these downstream targets of

ncRNAs lead to abnormal development and metabolism. This review aims to

summarize the existing knowledge on ncRNAs linking the maternal nutrition

condition and offspring metabolic diseases, such as obesity, type 2 diabetes

(T2D) and non-alcoholic fatty liver disease (NAFLD).
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Introduction

Metabolic syndrome (MetS) is defined as the clustering of obesity/overweight,
glucose intolerance/insulin resistance (IR), dyslipidemia, and hypertension. Because
MetS is a clinical manifestation, there is no common consensus on its criteria. It is
highly associated with an increased risk of obesity, diabetes mellitus (DM), non-alcoholic
fatty liver disease (NAFLD) and cardiovascular disease (1). The prevalence of MetS is
high worldwide, with 34.7% in the United States (2) and 41% in Mexico (3). These
numbers are expected to increase with the aging population and developing society.
Obesity increases the incidence of cardiovascular disease (CVD) events (4), and CVD
events are the leading cause of death and disability in patients with DM (5) and NAFLD
(6). These complications have brought huge disease burden and economic burden to
society (7). Obesity (8), type 2 diabetes (T2D) (9), and NAFLD (10, 11) interact with
each other and are closely related to diet (12), inflammatory signals, intestinal bacteria,
etc. Genetics together with environmental and lifestyle risk factors [such as sedentary
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lifestyle (13, 14), diet (15), and the intrauterine environment (16,
17)] are thought to be the main drivers in the pathogenesis of
these metabolic diseases.

The association between malnutrition and increased risk
of chronic diseases later in life is broadly known as the
“Developmental Origins of Health and Diseases” (DOHaD). It
can be dated back to 1986, when Prof. David Barker and his
colleagues compared the differences in infant mortality rates
(reflecting on nutrition early in life) and death in adults from
ischemic heart disease and other leading causes in England and
Wales, exploring the association between poor living standards
and high mortality rates (18). Then, the famous Dutch Hunger
Winter study found a higher risk of glucose intolerance (19)
and obesity (20) among adults whose mothers were exposed
to famine (1944–1945) during gestation compared to those
never exposed to famine. Likewise, the Chinese famine study
of 1959–1961 suggested that the famine experience in early life
could substantially determine the risk of chronic diseases in
later life (21), such as T2D (22). For example, adults around
the age of 56 who had been exposed to the Chinese famine
in utero were 1.5 times more likely to develop T2D than
those who had not been exposed (23). Early life malnutrition
can manifest as dietary restriction/overnutrition or obesity in
mother, intrauterine growth retardation (IUGR) or low/high
birth weight in fetus. Both undernutrition and overnutrition
in mothers during pregnancy could exert profound and long-
term effects [such as obesity (24), T2D (25), or NAFLD (26)]
on the adult health of their offspring (27). For instance, IUGR
animals (caused by uterine artery ligation) had changes in organ
growth and development of islet β cells and insulin-sensitive
tissues, and increased susceptibility to metabolic diseases such
as DM later in life (28), which can be triggered by epigenetic
mechanisms. Moreover, it has been shown that maternal
malnutrition modulates miRNAs expression in offspring.

Epigenetics refers to a stable and heritable change in
gene expression without any changes in DNA sequence.
Therefore, epigenetic modifications such as DNA methylation,
histone modifications or non-coding RNA have the potential
to transmit environmental information from ancestors to the
next generation and even across generations (29, 30). In this
review, we mainly focus on the more discussed microRNAs
(miRNAs) in non-coding RNA (ncRNAs). ncRNAs such as
miRNAs, long non-coding RNAs (lncRNAs), and circular RNAs
(circRNAs), have been previously considered evolutionary junk
with no coding potential (31), but now it is identified as
critical regulatory molecules that mediate cellular processes
and functions (32, 33) and have coding potential (34).
Moreover, ncRNAs regulate a series of biological processes
(35), such as cell proliferation, differentiation, development
and apoptosis; thus, their abnormal expression is associated
with many human diseases, such as DM (36) and CVD (33).
miRNAs (approximately 22 nucleotides) (37), lncRNAs (>200
nucleotides) (35) and circRNAs (single-stranded continuous

loop structures) (38) have different lengths and modes of
action. miRNAs negatively regulate target mRNAs by specifically
binding to the 3’-untranslated region of target mRNAs (37).
lncRNAs regulate gene expression mainly by cis or trans
regulation [reviewed in Kopp et al. (39)]. However, circRNAs act
as sponges, decoys, scaffolds mechanisms to regulate its target
genes [reviewed in (40)].

miRNAs play a crucial role in growth (41) and metabolism
during prenatal and postnatal period (42). miRNAs may
serve to communicate between the fetuses and mothers (43).
miRNAs in maternal plasma during pregnancy could predict
fetal diseases, such as a small-for-gestational-age (SGA) infant
(44, 45). At birth, measuring miRNA expression in placental
or umbilical cord blood also predicts some risks of offspring
metabolic disorders. Alterations of placental miRNA expression
(epigenetic alterations) may serve as a record of in utero
exposures (46), and certain miRNA species are largely unique
to the placenta (47, 48). Therefore, miRNA expression profiles
associated with SGA or macrosomia may be powerful predictors
of metabolic disease risk later in life (49). In addition, the
interaction of offspring diet after birth and maternal nutrition
during pregnancy can lead to metabolic disorders in offspring
later life, accompanied by changes in the expression of some
miRNAs. This suggests that the programmed planning in
fetuses exposed to adverse intrauterine environments is closely
linked to ncRNA.

Therefore, the specific purpose of this review is to review
the expression and function of known ncRNAs that may
play a role in maternal malnutrition and offspring metabolic
diseases (Tables 1–3) and thus to investigate the utility of these
changes as biomarkers in aiding diagnosis and prognosis and in
predicting treatment response.

Role of miRNAs in lipid
metabolism in offspring

miR-122

As a mammalian liver-specific microRNA, microRNA-122
(miR-122) is expressed abundantly in the liver, accounting
for approximately 70% of all cloned miRNAs in mouse (50)
and human adult (51) livers. It is highly involved in liver
physiology and diseases such as metabolic disorders (52,
53) by regulating genes such as Klf6 (krüppel-like factor 6)
[reviewed in (54)]. After the production in the liver, miR-122
can be transported into the blood, thus influencing distant
organs. Generally, reduction or loss function of liver miR-122
can result in deleterious consequences such as NAFLD and
the onset and progression of tumors, while circulating miR-
122 levels were often increased as a sensitive biomarker for
liver injury [reviewed in (55)]. Artificial expression of miR-
122 protects mice and humans from liver disease induced
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TABLE 1 The role and changes of ncRNA in animal adverse intrauterine environment and late metabolic disorders.

Animal
model

Maternal
treatment

Sex and time State of offspring Source
(offspring)

ncRNA Putative
target

Swiss mice (26) HFD (4 weeks before
mating∼ birth)

Male and female;
At birth

AMPKα2↓; Impaired hepatic
lipid metabolism with aging

Liver let-7↑ Prkaa2
(encoding
AMPK α2)↓

Swiss mice (66) HFD (pregnancy and
lactation)

Male and female;
4 weeks old

Body weight and adipose tissue
mass↑; Plasma cholesterol↑; Liver
TG deposition↑; Lipogenesis↑;
Glucose intolerant and insulin
resistance↑

Liver miR-370↑
controls
miR-122↓

SCD1↑;
AGPAT1↑;
HMGCR↓; JNK
↑; CPT1a↓;
ACADVL ↓

C57BL/6J mice
(113)

LP diet during
pregnancy and
lactation

Male and female;
8 weeks old

Body weight and length at birth↓;
β-cell mass↓; Impaired glucose
tolerance and insulin secretion

Pancreas miR-15b↑ Cyclin D1 and
cyclin D2↓

C57BL/6J mice
(108)

LP diet throughout
pregnancy

Male and female;
3 months old

Normal newborn body weight,
body length; blood glucose;
Abnormal neonatal β cell
fraction; Insulin levels at birth↓;
Glucose intolerance and insulin
sensitivity↑ at 6 weeks old

Pancreas miR-199a-3p
and miR-342↑

mTOR protein
levels↓

Albino Wistar
rats (78)

Streptozotocin
administration at
2 days of age (F0)

Male;
At birth

Hepatic steatosis Liver and
plasma

miR-122↓ PPARγ↑

Female;
At birth

Glycemia and insulinemia;
Normal blood glucose at
3 months old

NA NA NA

Albino Wistar
rats (78)

GDM(F1) Male;
At birth

Insulinemia; MMP-2 and CTGF
levels↑; NO and LPS
production↑; Glycemia and body
weight at birth and also 5 months
old↑

Plasma miR-122↓ NA

Female;
At birth

Glycemia and insulinemia; birth
weight↑; MMP-2 and CTGF
levels↑

NA NA NA

Albino Wistar
rats (79)

GDM(F1) Male;
At birth

TG↑; Cholesterol↑ Liver miR-130↓ PPARγ↑

Female;
At birth

TG↓; Cholesterol↓; Free fatty
acids↓; Phospholipids↓

Liver miR-9↓ PPARγ↑

C57BL/6J mice
(103)

Obesogenic diet
(6 weeks before
mating∼ lactation)

Male;
8 weeks old

Serum insulin↑; Fasting insulin
levels↑; Insulin resistance

eWAT miR-126↑ IRS-1 protein↓;
IRβ protein↓

C57BL/6J mice
(104)

Obesogenic diet
(6 weeks before
mating∼ lactation)

Male;
6 months old

eWAT amount↑; Altered
adipocyte morphology; Risk of
type 2 diabetes↑

eWAT miR-126-3p↑ Lunapark↓;
IRS-1 protein↓

SD rats (86) 50% global caloric
restriction during
the later half of
pregnancy

Male and female;
3 weeks old

Weights↓; cell proliferation↑;
adipogenesis↑; PPARγ, ADRP,
and C/EBPα↑

BMSCs miR-30d and
miR-103↑

Wnt signaling↓

C57BL/6 mice
(109)

LP12.5 diet Male and female;
6–8 weeks old

Normal β-cell fraction and
glucose tolerance; birth weight↓

NA NA NA

Male;
12 weeks old

Insufficient pancreatic β-cell
fraction; Glucose intolerance;
Insulin sensitivity↓

Pancreas miR-342↑;
miR-143↑;
miR-219↑

Genes involvd in
insulin
resistance and
adipogenesis

C57BL/6 mice
(109)

LP12.5 diet Male;
12 weeks old

Weight gain↑; Glucose
intolerance and insulin resistance

eWAT miR 342↑; miR
143 NC

NA

(Continued)
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TABLE 1 (Continued)

Animal
model

Maternal
treatment

Sex and time State of offspring Source
(offspring)

ncRNA Putative target

C57BL/6 (109) LP12.5 diet Male and female;
48–51 weeks old

Mild hyperglycemia and
glucose intolerance; Insulin
resistance (female only);
β-cell mass↑ and impaired
insulin secretion (male only)

NA NA NA

SD rats (122) LP diet
throughout
pregnancy

Male and female;
18 months old

Skeletal muscle insulin
resistance

Skeletal muscle miR-29a↑ PPARδ↓ and then
PGC1α↓; GLUT4↓

SD rats (73) Caloric restriction
prenatally

Female;
3 weeks old

Birth weight↓; Plasma insulin
and leptin levels↑;
Dyslipidemic

Plasma miR-122↑ Genes mediating
lipid metabolism

SD rats (73) Caloric restriction
prenatally and
postnatally

Female;
3 weeks old

Fatty acid oxidation↑; Fatty
acid synthesis↓; Body, liver,
skeletal muscle, pancreas and
brown adipose tissue
weights↓; Plasma IGF1,
insulin, leptin, glucose, TG
and HDL-C concentrations↓

Liver miR-122↓ DGAT1↑;
ALDO-A↑;
BCKDK↑;
FASN and
HMGCR↓; CPT1α

and PGC1α↑

SD rats (125) Fructose water
(gestation and
lactation)

Male and female;
160 days old

Serum HDL-C levels↓;
Insulin resistance

Liver miR-29a↑
miR-130a↑

Igf1↓

SD rats (90) 20% fructose water
(gestation and
lactation)

Male;
160 days old

Serum HDL-C level↓ Liver miR-206↑ Lxra↓

SD rats (87) A 50%
food-restricted diet
(pregnancy)

Male;
At birth and
10 weeks old

Body and liver weight↓ (at
birth only); Body weight↓;
FOXO1 and PPARγ↑; TG
content↑ (at 10 weeks old
only)

Liver miR-370-3p↓
(at birth only)
miR-181a-5p↓

Targets for
miR-181a-5p:
SIRT1↑; KLF6 ↑

ACADVL, acyl-CoA dehydrogenase very long chain; ADRP, adipocyte differentiation-related protein; AGPAT1, 1-acylglycerol-3-phosphate O-acyltransferase 1; ALDO-A, aldolase A;
AMPK, AMP-activated protein kinase; BCKDK, branched chain ketoacid dehydrogenase kinase; BMSCs, bone marrow-derived mesenchymal stem cells; C/EBPα, CCAAT/enhancer-
binding protein α; CPT1a, carnitine palmitoyltransferase 1a; CTGF, connective tissue growth factor; DGAT1, diacylglycerol O-acyltransferase 1; eWAT, epididymal white adipose tissue;
FASN, fatty acid synthase; FOXO1, forkhead box protein O1; GLUT4, glucose transporter 4; HDL-C, high-density lipoprotein-cholesterol; HMGCR, 3-hydroxy-3-methylglutaryl-CoA
reductase; IGF1, insulin-like growth factor-1; IRS-1, insulin receptor substrate 1; IRβ, insulin receptor-beta; JNK, c-Jun N-terminal kinase; KLF6, krüppel-like factor 6; LP 12.5, the low
protein exposure model during the last 7 days of pregnancy; LP diet, low-protein diet; LP0.5, a low protein diet throughout pregnancy; LP12.5, a low protein diet during the last week of
pregnancy; LPS, lipopolysaccharide; Lxra, liver X receptor alpha; MMP-2, matrix metalloproteinase-2; mTOR, mechanistic target of rapamycin; NO, nitric oxide; SD rats, Sprague-Dawley
rats; SIRT1, Sirtuin-1; SREBP-1c, sterol regulatory element-binding protein 1C; TG, triglyceride. ↑, increase; ↓, decrease; NC, no change; NA, not available.

by ethanol (56). However, there is some controversy. Some
studies found that the inhibition of miR-122 in a high-
fat diet (HFD) animal model protected the liver from
NAFLD and suppressed lipogenesis (57), which is related
to a complex regulatory network (58). High expression
levels of circulating miR-122 increased the risk of obesity
and might be a potential biomarker (59, 60), whereas low
circulating miR-122 levels reflected diet-induced weight loss
(61). Additionally, serum miR-122 showed the great diagnostic
accuracy for NAFLD in Filipinos (62) and in the female West
Virginia population (63), with an approximate area under
the receiver operating characteristic (AUROC) of ≥0.85 and
a significant P-value, which are comparable to serum ALT
(AUROC = 0.832, P = 0.001) (62). Zhang et al. systematically
reviewed the overall trend of decreased hepatic miR-122
expression and increased serum miR-122 expression in NAFLD
patients (64).

Maternal nutrition regulates miRNA expression in offspring
and then affect their metabolism (65). Benatti et al. (66)
measured microRNA expression at 4 weeks old in the liver of
the offspring of mothers on a HFD or a standard diet during
pregnancy and lactation. They found decreased expression of
hepatic miR-122 at 4 weeks in pup mice exposed to maternal
HFD, and some metabolic changes such as glucose intolerance
and insulin resistance, increased plasma cholesterol, triglyceride
(TG) and non-esterified fatty acid (NEFA). At the time of sample
collection (4 weeks old), pro-inflammatory pathways activated,
TG content deposited and vacuoles containing lipids existed in
liver. In addition, 1-acylglycerol-3-phosphate O-acyltransferase
1 (AGPAT1) mRNA and stearoyl-CoA desaturase 1 (SCD1)
mRNA involved in TG synthesis were increased through the
regulation of miR-122 (Figure 1) (66). Indeed, AGPAT1 (67, 68)
and SCD1 (69) were shown to be targets of miR-122, and their
abnormal expression caused lipid metabolism disorders (70, 71).
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TABLE 2 ncRNA involved in influencing the birth weight of human offspring.

Region Pregnancy status Source
(newborns)

ncRNA name Putative target Potential role

México (102) Macrosomia vs. adequate
birth weight

Dried blood spots miR-29a-5p,
miR-126-3p,
miR-221-3p, and
miR-486-5p↑

Participated in FOXO and
PI3K/AKT signaling
pathways; Involved in
carbohydrate metabolism

Involved in cell cycle,
proliferation, apoptosis
and metabolism;
Associated with obesity,
diabetes, and
cardiovascular diseases

Shenyang,
Liaoning, China
(163)

Macrosomia (n = 25) Placenta
(n = 50)

circRNA-SETD2↑ miR-519a/PTEN axis Regulated HTR8/SVneo
cell proliferation and
invasion

Nanjing,
Jiangsu, China
(141)

GDM-induced
macrosomia (n = 32)

Umbilical cord blood
(n = 79)

lncRNA RP11-290L1.3↑ PPARγ, SREBP-1c, and
FASN↑; Involved metabolic
pathways, such as insulin
signaling pathway and
MAPK signaling pathway

Involved in fat
accumulation induced by
GDM

Shenyang,
China (148)

IUGR (n = 30) and
LGA (n = 30)

Placenta
(n = 90)

miR-518b↓
miR-519a↑

Target for miR-519a:
Gab1; PTEN; HIF-1α

Regulated placental
development and
trophoblast proliferation
and invasion; Associated
with birth weight

Rhode Island,
US (49)

SGA Placenta
(n = 107)

miR-16↓; miR-21↓ Target for miR-16: BCL-2;
Target for miR-21: PTEN

Associated with poor
fetal growth

Jiangsu, China
(151)

Macrosomia (n = 35) Placenta
(n = 70)

miR-21↑; miR-16 NC Eight possible pathways by
bioinformatics analysis, such
as PI3K/AKT, P53, MAPK,
HIF-1, TGF-β, Wnt,
Jak-STAT, and mTOR
signaling pathway

Increased the risk of
macrosomia

Wenzhou,
China (115)

Macrosomia (n = 67) Placenta
(n = 131)

miR-21↑;
miR-143↓;
miR-16 NC

MAPK signaling pathway Influenced the risk of
macrosomia

FASN, fatty acid synthase; FOXO, forkhead box protein O; Gab1, Grb2 –associated binder 1; GDM, gestational diabetes mellitus; HIF-1α, hypoxia-inducible transcription factors 1α;
IUGR, intrauterine growth retardation; LGA, large for gestational age; MAPK, mitogen-activated protein kinase; mTOR, mechanistic target of rapamycin; PI3K/AKT, phosphatidylinositol
3-kinase/protein kinase B; PPARγ, peroxisome proliferator-activated receptor γ; PTEN, phosphatase and tensin homolog deleted on chromosome 10; SREBP-1c, sterol regulatory element-
binding protein 1C. ↑, increase; ↓, decrease; NC, no change.

And one of the possible mechanisms of maternal HFD feeding
leading to NAFLD in offspring is up-regulated SCD1 (72).
Interestingly, while plasma cholesterol increased, 3-hydroxy-
3-methylglutaryl-CoA reductase (Hmgcr) mRNA content was
reduced in HFD offspring (HFD-O) (66). HMGCR is a rate-
limiting enzyme that catalyzes de novo cholesterol synthesis
in vivo, so the activity of HMGCR affects the level of cholesterol.
Benatti and his colleagues suggested that increased plasma
cholesterol was caused by breast milk being affected by HFD
during lactation (66). However, in the offspring of other diet-
induced rat models (such as caloric restriction), HMGCR
also decreased with the reduction of miR-122 (73). A study
investigating the mechanism that miR-122 modulates hepatitis
C virus RNA expression in humans found that inhibition of
miR-122 reduced HCV and HMGCR RNA independently with
the effect on HMGCR transcription rates (74). These results
indirectly indicate that the decrease in miR-122 expression
caused by maternal HFD might regulate the increase in AGPAT1

and SCD1 mRNA and the decrease in HMGCR mRNA in HFD-
O mice, leading to lipid metabolism disorders. This finding
sheds a light on therapeutic targets, such as reducing SCD1
expression to prevent diet-induced obesity in animals (75).

The concept that maternal body composition and diet
affect the health of future generations is gaining ground (76,
77). In a 2020 study (78), neonatal rats that developed mild
diabetes after streptozotocin administration were considered as
F0, and then these adult females were mated with control males
to produce F1, who developed gestational diabetes mellitus
(GDM), and then F2 (F1 females mated with control males).
Fornes et al. found that the levels of miR-122 in the liver and
plasma were reduced in parallel to an increase of peroxisome
proliferator-activated receptor γ (PPARγ) in the livers from
male fetuses of F0 and F1 at birth (Figure 1) (78, 79). At the
same time, the liver is in a prooxidant/proinflammatory and
lipid accumulating state. The increased PPARγ levels linking
to the lipid accumulation was sex-dependent (79), because a
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TABLE 3 Changes in ncRNA and its potential role in human IUGR pregnancy.

Region Pregnancy status ncRNA Source Putative target Result/Potential roles

Chongqing,
China (169)

IUGR pregnancy
(n = 20)

lncRNA H19↓ Placenta
(n = 40)

Regulate the
PI3K/AKT-mTOR and
MAPK/ERK-mTOR
pathways; Bind to miR-18a
–5p, which targets interferon
regulatory factor-2

Promoted autophagy;
Suppressed cell proliferation
and invasion

Guangdong,
China (174)

IUGR pregnancy
(n = 37)

Circular RNA
hsa_circ_0081343↓

Placenta
(n = 64)

The miR-210-5p/DLX3 axis Regulated the migration,
invasion, and apoptosis of
HTR-8 cells

Nagasaki, Japan
(146)

IUGR pregnancy
(n = 45)

miR-518b, miR-1323,
miR-516b, miR-515-5p,
miR-520h, miR-519d and
miR-526b↓

Placenta
(n = 95)

NA Identified as IUGR
placenta-specific microRNAs

Tianjin, China
(175)

IUGR pregnancy miR-212-3p↑ Placenta Placental growth factor↓ Promoted cell proliferation
and invasion

California, US
(143)

IUGR pregnancy
(n = 5)

miR-10b↑; miR-363↑;
miR-149↑

Placenta
(n = 37)

Target for miR-10b:
E-cadherin↑; Krüppel-like
factor 4↓
Target for miR-363:
SNAT1 and SNAT2↓
Target for miR-149:
L-type amino acid
transporter 2↓

Related to the development
of IUGR

SGA pregnancy
(n = 11)

Nanjing, China
(153)

IUGR pregnancies
(n = 21)

miR-141↑ Placenta
(n = 55)

Pleomorphic adenoma gene
1↓-IGF↓;
E2F transcription factor 3
protein↓;
MAPK signaling pathway;
Wnt signaling pathway

Related to the development
of IUGR

Guangzhou,
China (144)

IUGR pregnancy
(n = 19)

miR-424↑ Placenta
(n = 39)

ERRγ and HSD17B1 (an
human enzyme that catalyzes
the formation of highly active
estradiol)↓

Related to the development
of IUGR

ERRγ, estrogen-related receptor γ; HSD17B1, 17 beta-hydroxysteroid dehydrogenase type 1; mTOR, mechanistic target of rapamycin; DLX3, Distal-less 3; IUGR, intrauterine growth
retardation; MAPK, mitogen-activated protein kinase; PI3K/AKT, phosphatidylinositol 3-kinase/protein kinase B; SNAT1 and SNAT2, sodium-coupled amino acid transporter 1 and 2;
SGA, small-for-gestational-age. ↑, increase; ↓, decrease.

reduction in miR-122 was not found in female fetuses (78,
79). Thus, miR-122 and the PPARγ pathway are important in
metabolic diseases in offspring. A maternal diet enriched in
olive oil (rich in PPAR ligands) is beneficial for preventing
the rise of the proinflammatory (such as tumor necrosis
factor-α) and profibrotic markers (matrix metalloproteinases)
in placentas of GDM rats and also for the fetuses (80). The
same study team offered maternal olive oil supplementation
during the gestation of F1 (81) under the same experimental
model described above. They found that the maternal diet
enriched in PPAR ligands throughout gestation prevented the
reduced expression of miR-122 (78) and the increased levels
of triglycerides, cholesterol and PPARγ in the livers from male
fetuses of GDM rats (81). In conclusion, miR-122 might regulate
PPARγ participating in the metabolic process of male offspring
of GDM mice.

Maternal nutrition did affect the expression of liver miRNAs
(82). Dai et al. (73) designed three experimental models, i.e.,
prenatal exposure (IUGR), postnatal exposure (PNGR), or both
(IPGR) exposed to caloric restriction in female rats, to explore
the role of liver miR-122. They found decreased miR-122
expression and a significant loss of liver, pancreas and skeletal
muscle weight in PNGR and IPGR at 3 weeks old. At the
same time, increased PPARγ coactivator 1α (PGC1α)/carnitine
palmitoyltransferase 1a (CPT1a, mediating fatty acid oxidation)
expression and reduced fatty acid synthase (FASN)/HMGCR
(mediating fatty acid synthesis) expression were found in
the liver in PNGR and IPGR (Figure 1) (73). In addition,
the reduction in miR-122 also influenced other fatty acid-
metabolizing genes such as diacylglycerol O-acyltransferase 1
(DGAT1), aldolase A (ALDO-A) and branched chain ketoacid
dehydrogenase kinase (BCKDK) (73). The normal hepatic
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FIGURE 1

Changes and putative targets of microRNAs (miRNAs) on metabolism-related tissues of metabolic syndrome of offspring exposed to maternal
malnutrition. Metabolic disturbances in offspring exposed to maternal malnutrition were regulated by miRNAs. Disorders of glucose metabolism
mainly involved four tissues: liver, pancreas, adipose tissue, and skeletal muscle. In the liver of offspring exposed to maternal fructose intake, the
increase of miR-29a and miR-130 resulted in the decrease of hepatic insulin-like growth factor-1 (Igf1) mRNA and protein expression. In
pancreas of offspring exposed to maternal low protein diet, the decline of cyclin D1 (Ccnd1)/cyclin D2 (Ccnd2) and mTOR protein levels were
due to the rise of miR-15b and miR-342 respectively. In white adipose tissue of mice offspring exposed to maternal HFD-induced obesity, the
insulin receptor substrate 1 (IRS-1) was decreased by miR-126. In the skeletal muscle of IUGR rat, the increase of miR-29a resulted in the
decrease of glucose transporter 4 (GLUT4). As for lipid metabolism, it mainly involved liver tissue. Free fatty acids (FFAs) produced from white
adipose tissue and dietary sources can enter hepatocyte. And FFAs are usually esterified to triacylglycerol (TG) and then packaged as VLDL (very
low-density lipoprotein) for export or stored as intracellular lipid droplets. MicroRNAs regulate the hydrolysis of TG back to FFAs and then into
the process of mitochondrial β-oxidation (by regulating various coactivators or nuclear receptors such as sirtuin-1 (SIRT1), PPARγ co-activator
1α (PGC1α), and genes such as CPT1a (carnitine palmitoyltransferase 1a). In addition, miRNAs promoted de novo lipogenesis by regulating genes
(such as Fasn) and transcription factors [such as liver X receptors (LXRs) and peroxisome proliferator-activated receptor γ (PPARγ)]. The overall
metabolic trend is TG accumulation and hyperglycemia. G3P, glycerol-3-phosphate; AGPAT, acyl-CoA acylglycerol-3-phosphate
acyltransferase; AcCoA, acetyl-CoA; DGAT, diacylglycerol acyltransferase. ↑/↓ showed the expression changes of miRNAs, genes and proteins.
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miR-122 but high circulating miR-122 accompanied by high
circulating TG, fatty acid and insulin concentrations in IUGR
reflected the catch-up growth, so the organ weights of IUGR
groups exposed to adequate postnatal nutrition were not
different from the control at 3 weeks old (73).

miR-30d

Runt related transcription factor 2 (RUNX2), a transcription
factor strongly repressing adipogenesis, is one of the targets
of miR-30d. Overexpression of miR-30d affected mesenchymal
transition and osteogenic ability of human umbilical vein
endothelial cells by reducing RUNX2 (83). Thus, in humans,
miR-30d can stimulate adipogenesis via the reduction of RUNX2
(84). Additionally, miR-30d is elevated in abdominal adipose
tissue from subjects with obesity and diabetes, which suggests its
possible role in adiposity and IR (85). Gong et al. (86) found that
key adipogenic miRNAs, such as miR-30d and miR-103, were
significantly increased in bone marrow-derived mesenchymal
stem cells (BMSCs) of the IUGR rats (caused by maternal
food restriction) at 3 weeks of age, while pups had low body
weight at that time. Notably, an overall upregulated PPARγ

but downregulated Wnt (such as RUNX2) signaling profile
was detected (86), which suggests strong adipogenesis. The
conclusion that miR-30d may be involved in catch-up growth of
offspring exposed to maternal nutrient restriction (MNR, 50%
global caloric restriction) should be considered with caution, as
only one literature has described this result.

miR-181a-5p

Zhu et al. compared the differentially expressed miRNAs
between the liver of MNR offspring and of the control group
and then verified the miRNAs using RT-qPCR. Finally, they
chose miR-181a-5p (which is the most markedly downregulated
miRNAs and also related to metabolism) to testify that maternal
nutrition regulate miRNAs in early life of offspring (87). They
found that miR-181a-5p was downregulated in the liver of MNR
offspring at the age of 1 day and persisted until 10 weeks, as was
body weight. At 10 weeks of age, hepatic TG content increased
while body weight remained low. And miR-181a-5p upregulated
sirtuin-1 (SIRT1, an NAD-dependent deacetylase) and Klf6 (a
transcription factor of the zinc finger family) (Figure 1) (87).
Consistent with a previous study, increased SIRT1 expression
was also found in the liver of MNR offspring, which may lead
to an increase in total cholesterol (88). However, in offspring
exposed to maternal HFD, SIRT1 was downregulated in the liver
(89). Importantly, SIRT1 overexpression in HFD offspring could
improve lipid metabolism and even glucose metabolism (89).
This may be a potential therapeutic target.

miR-206

Yamazaki et al. (90) found that exposure to maternal fructose
in early life caused a reduction in liver X receptor alpha (Lxrα)
with a connection to the increase in miR-206 in the liver of
offspring (Figure 1). Previously, Lxrα was also identified as the
target of miR-206 (91), and the delivery of miR-206 into the
livers could also reduce the expression of Lxrα (92). Therefore,
the interaction between miR-206 and Lxrα might contribute
to the decreased serum HDL-C in offspring. Similarly, due to
altered expression of Lxrα, IUGR fetuses (F1, caused by in utero
under nutrition) that developed obesity and glucose intolerance
with aging influenced the expression of lipogenic genes in the
livers of F2 mice (93). However, miR-206 was decreased in
the livers of mice fed an HFD, and increasing miR-206 in the
liver played a protective role in inhibiting lipid production
(92). In addition, the increase in Lxrα could protect against
hepatic steatosis (94). This is contradictory, but it also shows the
multidirectional regulation of miR-206.

miR-370

miR-370 was upregulated in the liver of offspring exposed to
maternal HFD (66) but downregulated in the liver of offspring
exposed to MNR (87) (Table 1). miR-370 indirectly activates
adipogenic genes through miR-122 (as we discussed before) and
directly downregulates CPT1a (carnitine palmitoyltransferase
1a), which controls rate-limiting steps in fatty acid β oxidation
(95). Recently, it has been reported that miR-370 is also
increased in the livers of mice fed an HFD and promotes
NAFLD development by regulating miR-122 and let-7 and
their targets such as CPT1a and Prkaa2 (protein kinase AMP-
activated catalytic subunit alpha 2) (96). These findings suggest
the importance of miR-370 changes in offspring exposed to
nutrition stress.

Role of miRNAs in glucose
metabolism in offspring

miR-126

miR-126 is abundantly expressed in endothelial cells and has
been identified to regulate angiogenesis and vascular integrity.
Links between endothelial miR-126 and T2D have been widely
discussed. miR-126 appears to fulfill a critical role in the
prediction and diagnosis of T2D, as several clinical studies have
found that its expression in plasma is reduced significantly in
patients with T2D (97, 98), and lower miR-126 levels correlated
with diabetic complications such as thromboembolic events (99)
and cardiac microangiopathy (100). Moreover, miR-126 plays a
protective role in vascular injury and hypoxia through the target
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FOXO (forkhead box protein O) and the phosphatidylinositol
3-kinase/protein kinase B (PI3K/AKT) pathway [reviewed in
Pishavar et al. (101)]. In addition, reporting the upregulated
expression of miR-126 in dried blood spots of macrosomia,
the researchers further demonstrated with biological analysis
that high levels of miR-126 were associated with a higher risk
of obesity and diabetes associated with macrosomia, with a
putative target of FOXO and the PI3K/AKT pathway (102).

Furthermore, the targets of miR-126 in adipose tissue
are insulin receptor substrate 1 (IRS-1) (103) and Lunapark
(104). The former is the main substrate of insulin receptor
tyrosine kinase and insulin-like growth factor 1 (IGF1), and
the latter is a conserved membrane protein that stabilizes
new three-way connections in the endoplasmic reticulum
(105), so their reduction may impair glucose tolerance. The
expression of miR-126 was upregulated in the epididymal
white adipose tissue (eWAT) of male rat offspring exposed to
maternal obesity induced by diet at 8 weeks old (103) and
even at 6 months old (104), and its augmented expression
targeted the decreasing levels of IRS-1 protein. Fernandez-
Twinn et al. (103) hypothesized that male offspring exposed
to maternal diet-induced obesity may drive IR (eventually
T2D) in later life, which was associated with the reduction
in IRS-1 targeted by miR-126, because at 8 weeks old, male
offspring did not exhibit an obese phenotype but exhibited
decreased levels of IRS-1 protein. In 2021, the same research
group, de Almeida-Faria et al. (104), found that in male
offspring exposed to maternal obesity during pregnancy,
miR-126-3p could directly decrease the expression of IRS-1
and Lunapark. Therefore, these results have suggested that
maternal diet-induced obesity leads to IR in offspring by the
upregulation of miR-126. de Almeida-Faria et al. (106) also
found that feeding an obesogenic diet after weaning resulted
in increased IRS-1 degradation, which suggests that exposure
to obese individuals in utero combined with a postweaning
obesogenic diet could significantly increase the risk of T2D.
Moreover, the expression of miR-126 also changed in brown
fat deposition and lipid metabolism of adult male offspring
exposed to maternal high-sucrose diet (107). The reasons for
this was unclear, but probably due to variation in the Zbtb16
gene (107).

miR-342

Alejandro et al. found that in the pancreas of offspring
of mothers fed a low protein (LP) diet throughout pregnancy
(LP0.5) (108) or during the last 7 days of pregnancy
(LP12.5) (109), miR-342 were upregulated. The offspring had
glycometabolic disorders, such as glucose intolerance and IR, at
12 weeks of age and reduced insulin levels at birth (108, 109).
The decreased mechanistic target of rapamycin (mTOR) protein
levels regulated by miR-342 can explain the abnormal pancreas
β cell mass and function in offspring (108), causing permanent

changes that may contribute to the MetS later in life. Consistent
with a previous study, miR-342 may be involved in pancreatic
β-cell differentiation and maturation [reviewed in Kaviani et al.
(110)]. Notably, miR-342 (–/–) mice fed with HFHS chow had
lower blood glucose levels and fat weight and higher insulin and
leptin sensitivity, which suggested that the loss of miR-342 can
protect against obesity and diabetes (111). This suggested the
therapeutic role of miR-342.

miR-15b

miR-15b is known to induce the apoptosis of rat activated
pancreatic stellate cells in vitro. Recently, there was a report
that miR-15b-5p can target cyclin D1 and cyclin D2 to
attenuate pancreatic β-cell proliferation and insulin secretion
(112). Su et al. (113) found that miR-15b was increased
in the islets of LP offspring at 8 weeks of age, impairing
glucose metabolism by targeting cyclin D1 and cyclin D2
(Table 1). LP mouse offspring presented an inhibited pancreatic
β-cell mass/proliferation and insulin secretion accompanied
by low body weight. Additionally, the use of miR-15b
inhibitors could rescue impaired glucose metabolism. This
finding indicates the importance of miR-15b in glucose
metabolism and even T2D development. A clinical study
found a significant increase in circulating miR-15b in obese
children and adults with T2D (114). Additionally, miR-15b
levels could differentiate between T2D patients and healthy
controls (AUROC = 0.969) (114). Again, this gives us a further
understanding of the role of miR-15b in predicting future T2D
risk.

miR-143

miR-143 was increased in the pancreas of LP12.5 male
offspring, suggesting a role in insulin secretion and resistance
(109). Conversely, miR-143 was decreased in placenta of
macrosomia, which may target the mitogen-activated
protein kinase (MAPK) signaling pathway to be involved
in subsequent metabolic disorders (115). miR-143 is involved
in the development of human T2DM by inhibiting the insulin-
AKT pathway (116). Therefore, miR-143 may be an underlying
treatment target.

miR-199a-3p

miR-199a-3p resulted in increased pancreas β cell apoptosis
in T2D mice (117). And it was increased in the adult LP0.5
pancreas and could target the mTOR signaling pathway, thus
impairing pancreatic β-cell and causing metabolic disturbance
(108). A meta-analysis confirmed that miR-199a-3p was
abnormally modulated in animal models of diabetes (118).
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Role of miRNAs in both glucose
and lipid metabolism in offspring

miR-29a

Generally, a protective role is played by miR-29a in
glucolipid metabolism. In vitro, miR-29a inhibited MIN6 (the
mouse insulinoma cell line) proliferation and insulin secretion
(119) and mitigated high glucose-induced oxidative injury
(120). Moreover, miR-29a can improve HFD-induced obesity
and liver fibrosis (121). Zhou et al. (122) found that miR-29a
was significantly upregulated in muscle samples from IUGR
rats at 18 months of age. In their previous study, IUGR rats
weighed more than controls and IR was observed in skeletal
muscle at 18 months of age (123). Overexpression of miR-29a in
C2C12 (skeletal muscle cell line) decreased the levels of glucose
transporter 4 (GLUT4) and also downregulated its target gene
peroxisome proliferator-activated receptor δ (PPARδ), thereby
reducing PGC1α expression (Figure 1) (122). In contrast,
overexpression of PGC1α can mediate fatty acid oxidation,
attenuating HFD-induced hepatic steatosis (124). Interestingly,
in clinical studies, Ortiz-Dosal et al. (102) quantified miRNAs
associated with metabolic diseases in dried blood spots of
newborns with adequate birth weight, low birth weight (LBW)
or macrosomia. They determined that miR-29a-5p was also
upregulated in macrosomia, which may explain the increased
risk of obesity and diabetes associated with macrosomia (102).
Consistent with a previous study, Munetsuna et al. found that
maternal fructose intake resulted in an increase in miR-29a in
the livers of the offspring at 160 days of age, which decreased
Igf1 mRNA expression. Moreover, reduced IGF1 expression
may induce IR and impair hepatic function (125). However, no
impaired IR or decreased high-density lipoprotein cholesterol
(HDL-C) levels were observed at 60 days of age, even with the
increase in miR-29a (125). Therefore, it is possible to use the
expression of miRNAs to predict the metabolic state later in
life. These findings suggest that miR-29a is broadly involved in
glucolipid metabolism in offspring.

miR-130a

miR-130a/b can inhibit de novo lipogenesis, but enhance
lipolysis (126) and regulate insulin sensitivity (127), thus being
involved in metabolic diseases such as liver steatosis and T2D.
Munetsuna et al. (125) found that miR-130a was increased in
the liver of offspring exposed to maternal fructose consumption
at 60 days of age and persisted until 160 days of age, resulting
in a decrease in its target Igf1 and thus affecting glucolipid
metabolism. Conversely, Forness et al. (79) found that miR-
130 was decreased at Day 21 of gestation in the liver of male
fetuses of GDM mothers while PPARγ levels were increased
(Figure 1). Additionally, the body weight and TG were increased

in the male fetuses of GDM mothers. It has been reported that
a decrease in miR-130a can target genes such as PPARγ to
promote lipid accumulation and even result in NAFLD (128).
These results suggest that the reduction of miR-130 targeting
PPARγ increases lipid accumulation in male fetal GDM rats
and even causes NAFLD in adulthood. Another role of miR-
130a in NAFLD is perpetuating fibrogenesis (129). Additionally,
in human cirrhosis patients, the expression of miR-130a-3p
was significantly decreased in monocyte-derived macrophages
(130). Therefore, miR-130a might be used as a biomarker for
NAFLD in the clinic.

Let-7

As one of the first known miRNAs, let-7 is often presented
as a tumor suppressor [reviewed in Lee et al. (131)]. We are
more interested in its regulatory role in metabolic processes
such as controlling glucose metabolism and insulin sensitivity
and inducing autophagy under nutrient deficiency conditions
[reviewed in Jiang et al. (132)]. Meanwhile, the knockdown
of let-7 with an anti-miR might provide a therapy to treat
metabolic diseases such as T2D (133). Recently, Simino
et al. proposed that let-7a was upregulated in livers at
the delivery day and decreased the levels of AMP-activated
protein kinase α2 (AMPKα2) protein and Lin28a, causing the
metabolic disturbances of offspring from obesity-prone HFD-
fed dams (OP-O) (26). They previously reported that OP-
O mice presented higher hepatic TG, serum glucose/insulin
and cholesterol levels, diminished Prkaa2 (the gene that
encodes AMPKα2) and upregulated Fasn and Srebf1 (sterol
regulatory element binding transcription factor 1) after weaning
(134). This indicated that OP-O mice were early prone to
developing metabolic disturbances, such as NAFLD. In addition,
they showed that let-7 anti-miR transfection in hepatocytes
can prevent the fat accumulation. The activation of the
AMPK complex inhibits targets such as HMGCR, acetyl-CoA
carboxylase (ACC), and glycogen synthase thus regulating fatty
acid and sterol synthesis and glycogen storage [reviewed in
Herzig et al. (135)]. Thus, the decrease in AMPKα2 targeted
by let-7 might explain the early metabolic disorders in offspring
and even the susceptibility to NAFLD in the future (Figure 1).

Role of ncRNAs in abnormal birth
weight in offspring

The birth weight of offspring and ncRNAs derived
from placenta and umbilical cord blood have a significant
relationship. Back in 2011, a study exploring the relationship
between placental miRNAs expression profile and birth weight
found that miRNAs are a good predictor of birth weight
(49). Recently, cohort studies from Sweden, Belgium and USA
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showed that miRNAs (136–138) and lncRNAs (139) derived
from placentas were associated with abnormal birth weight.
miR-191-3p from umbilical cord blood reliably differentiated
LBW (n = 6) from appropriate for gestational age (AGA)
group (AUROC = 0.76) (140). And the expression of lncRNA
RP11 (lncRNA RP11-290L1.3) from cord blood was positively
correlated with birth weight (r = 0.8003, P < 0.01) (141). In
addition, ncRNAs have multiple roles in the human placenta
which connects mother and fetus, such as regulating trophoblast
proliferation and differentiation, and affecting insulin secretion
and regulation [reviewed in Žarković et al. (142)]. Thus, ncRNA
expression may predict the fetal birth weight and metabolic risks
in later life (Tables 2, 3).

Thamotharan et al. (143) found that inhibition of miR-
10b could regulate the decrease in E-cadherin in vitro, and
assumed that the increase in miR-10b in IUGR placentas could
upregulate E-cadherin, which have a crucial role in development
and tissue morphogenesis. They also found that miR-363 was
increased in IUGR placentas, and miR-363 only responded to
nutrition restriction in vitro, miR-363 downregulates sodium
coupled neutral amino acid transporters (SNAT1 and SNAT2),
thus reducing system amino acid transport activity which
affected the fetal development (143). Zou et al. found that the
expression level of miR-424 was significantly increased in IUGR
placental tissues. They proposed that miR-424 might regulate
estrogen-related receptor γ (ERRγ) and 17 beta-hydroxysteroid
dehydrogenase type 1 (HSD17B1) modulating trophoblast-
derived cell line proliferation and invasion to participate the
pathogenesis of IUGR (144).

Some miRNAs from the chromosome 19 miRNA cluster
(C19MC) are exclusively or abundantly expressed in the
placenta, and these miRNAs in maternal plasma or serum
samples may have diagnostic potential for the later occurrence
of pregnancy-related complications such as IUGR (145).
Higashijima et al. found that seven placenta-specific microRNAs
from C19MC (miR-518b, miR-1323, miR-516b, miR-515-
5p, miR-520h, miR-519d, and miR-526b) were decreased
in placentas of human IUGR pregnancies (146). However,
Jing et al. identified 5 C19MC miRNAs (miR-516a-5p, miR-
516b-5p, miR-520a-3p, miR-1323, and miR-523-5p) that were
upregulated in the fetal cord blood of obese mothers (147).
For unclear reasons, it is possible that placental miRNA traffic
primarily to the maternal circulation so have importantly
different detection times in different nutritional models.
Additionally, Wang et al. (148) found decreased expression
of miR-518b and proposed that it could regulate placental
trophoblast cells, thus contributing to IUGR and low fetal birth
weight. Therefore, it is important to determine the specific
pathways in which miR-518b is involved and how miR-518b
contributes to IUGR in future study.

Maccani et al. found that miR-21 expression was reduced in
placentas of SGA (49), and they validated PTEN (phosphatase
and tensin homolog deleted on chromosome 10) as a target

of miR-21 consistent with previous studies that investigated
cancer. PTEN can regulate glucose metabolism through the
PI3K/AKT pathway [reviewed in Chen et al. (149)] and directly
suppress glycolysis by dephosphorylation and inhibition of
phosphoglycerate kinase 1 (PGK1) (150). Therefore, these
findings suggest that the miR-21-PTEN axis might be involved
in poor fetal growth and future diseases. Interestingly, the
expression of miR-21 was increased in placentas of macrosomia
(115, 151). miR-21 might target the MAPK signaling pathway,
PI3K/AKT signaling pathway, and mTOR signaling pathway
(Table 2) (151) to increase the risk of macrosomia and
metabolic diseases in the future. Therefore, the detection of
miR-21 expression in the placenta may predict the risk of
later metabolic diseases and also be a potential therapeutic and
diagnostic method.

miR-141, belonging to the miR-200 family, can regulate
insulin-like growth factor 2 (IGF2), thus participating in fetal
and placental development in mice (152). Tang et al. (153)
found an increase of miR-141 was associated with a decrease in
pleomorphic adenoma gene 1 (PLAG1) and IGF2 in the placenta
of IUGR patients according to correlation analysis. PLAG1,
a growth regulator (154), is known to target IGF2 in some
tumors (155–157). IGF2 is critical for early human placental
development (153), prenatal growth (158), and metabolism
(159). In addition, the overexpression of IGF2 is involved in
somatic overgrowth. Consistent with these studies, the miR-141-
PLAG1-IGF2 network might exert an action on IUGR and even
metabolic disorders later in life (153).

miR-16 was markedly reduced in infants with LBW
(P < 0.05) and could well predict the risk of SGA status
(P = 0.009) (49). In contrast, miR-16 did not change in placenta
of macrosomia (Table 2) (115, 151). For unclear reasons, this
difference may be linked to the expression of its known target
BCL-2, an inhibitor of apoptosis (160). In addition to miR-
16, the expression of miR-519 was also different in newborns
with different birth weights. miR-519 can modulate its target
to strongly inhibit cell proliferation (161) and growth (162).
In placentas of IUGR, miR-519a was upregulated and might
regulate placental trophoblast function via its putative targets
Grb2-associated binder 1 (Gab1), PTEN, and hypoxia-inducible
transcription factors 1α (HIF-1α), thus participating in the
pathogenesis of LBW (148).

Of note, in 2020, instead of investigating the LBW
groups, Wang et al. (163) studied miRNAs in the placenta of
macrosomia, finding that circRNA-SETD2 (hsa-circRNA-
103345) is upregulated. Compared with miRNAs, the
mechanism of circRNAs is not fully understood and there
are some controversies. However, circRNAs are mainly
considered as miRNA inhibitors (or “sponges”) (164), and
then regulate gene expression at post-transcriptional levels.
So they explored the downstream target of circRNA-SETD2
in cell experiment, verified that the circRNA-SETD2/miR-
519a/PTEN axis (163). And miR-519a has been mentioned

Frontiers in Nutrition 11 frontiersin.org

https://doi.org/10.3389/fnut.2022.1022784
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1022784 November 4, 2022 Time: 16:50 # 12

Zeng et al. 10.3389/fnut.2022.1022784

previously to be involved in regulating birth weight.
So the potential mechanisms of up-regulating circRNA-
SETD2 in macrosomia is to inhibit miR-519a causing the
increased expression of PTEN, then increasing the risks of
metabolic diseases.

Different from miRNA mechanisms, some lncRNAs
competitively target miRNAs, thereby attenuating the
degradation or inhibition of miRNAs, then regulating
downstream protein-coding target genes (165). This is
similar to the mechanism of some circRNAs acting as
competitive endogenous RNA (ceRNA). lncRNA RP11
was found to control adipocyte differentiation in visceral
adipose tissue (166). And it is preferentially expressed in
subcutaneous/visceral adipose tissue according to genome-wide
association studies (GWAS) (167). lncRNA RP11 was increased
significantly in the umbilical cord blood of GDM-induced
macrosomia, then regulating target genes such as PPARγ,
sterol regulatory element-binding protein 1C (SREBP-1c), and
FASN, which might be the reason for fetal fat accumulation in
GDM (141).

lncRNA H19 gene was expressed abundantly in the
placenta and recent studies showed that its expression
was reduced in IUGR placentas compared to healthy
placental controls, suggesting that it regulates IUGR (168,
169). The underlying mechanism is that lncRNA H19
regulates the PI3K/AKT pathway, disrupts trophoblast
cell function (170), and promotes autophagy by targeting
miR-18a-5p (Table 3) (169). Additionally, autophagy
is magnified in IUGR by the reduction of lncRNA
H19 (169).

Future prospects

Prenatal nutrition plays a critical role in shaping the road
of health and disease later in life. There are not many studies
regarding ncRNA dysregulation as well as its role in offspring
exposed to different maternal nutrition. However, it is clear that
existing studies have found significant differences in expression
and action, so we turned to the possibility of using miRNAs as
early diagnostic tools and therapeutic targets.

The sampling site of ncRNAs is particularly important.
In this review, we mainly discussed ncRNAs derived from
liver, fat, pancreas, skeletal muscle, and bone marrow of
animal offspring and placenta, umbilical cord blood and dried
blood spots of human newborns. Of note, studies of ncRNAs
derived from maternal and fetal blood is in small amount.
Also, some sources of ncRNAs such as breast milk, are
not covered. But ncRNAs in human breast milk also affect
the health of newborns (171). So this is an area that can
be pursued in the future. In addition, in clinical practice,
placenta and cord blood is relatively easy to obtain and
ethics committee approval compared with fetal liver, pancreas

etc. And alternations of placental miRNAs expression may
serve as a record of intrauterine exposure (172). Therefore,
placenta is a excellent type of sample to study how maternal
nutrition affect fetus.

In addition, the time of sample collection is worth
mentioning. Since the offspring metabolism, such as
impaired glucose tolerance or insulin resistance, shows
varying degrees of impairment in infancy, adulthood, and
older age. Similarly, the expression of ncRNAs is not static.
So it is important to find the cut-off time for changes
in glucose and lipid metabolism or ncRNAs expression
so that we can detect metabolic disease at an early stage
and respond to it.

Some miRNAs have been shown to be, or have great
potential to be, early warning indicators of obesity, T2D,
or NAFLD changes. First, serum miR-122 showed the great
diagnostic accuracy for NAFLD (AUROC ≥ 0.85) (62).
There have also been attempts to discriminate SGA and
AGA groups using serum miRNAs associated with metabolic
alterations (such as miR-122), but there were no positive
results (173). The levels of hepatic miR-122 in the offspring
exposed to maternal malnutrition were reduced, as we noted
earlier. Although the detection time points were different,
we can speculate that miR-122 is critical. Perhaps before
malnourished offspring had time to exhibit a catch-up growth
phenotype, miRNAs have changed toward the direction of
overnutrition due to a mismatch between prenatal and
postnatal environments. Serum miR-15b can be used to
identify T2D patients (AUROC = 0.969) (114). miR-141 in the
placenta could serve as a potential biomarker to distinguish
IUGR from normal controls, with an area under the ROC
curve of 0.839, a sensitivity of 88.5%, and a specificity of
71.7% (153).

miRNAs can also be potential therapeutic targets. At first,
anti-miR induced let-7 knockdown (133) and let-7 anti-miR
transfection (26) are possible treatments for T2D and NAFLD,
respectively. Next, the loss of miR-342 can protect against
obesity and diabetes (111). Finally, a maternal diet enriched
in olive oil may prevent the reduced expression of miR-122 in
fetuses of GDM mothers, thus preventing the abnormal liver
lipid metabolism (78, 81).

We concluded that the expression levels of miR-21, miR-
370, miR-16, and miR-143 in offspring are related to maternal
nutritional models. However, hepatic miR-122 expression in
offspring decreased regardless of the nutritional status of
the mother. Of note, the patterns of some ncRNAs cannot
be summarized due to too few studies. Again, these results
indicated that ncRNA plays a broad role in mediating the effects
of an adverse intrauterine environment on poor metabolic
health in offspring.

The early life environment influences the risk of developing
diseases such as the MetS. How the maternal nutrition status
influences the health and disease of her offspring can be
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explained by epigenetics. However, the mechanisms by which
developmental programming may be transmitted to further
generations are unclear. We believe that the role of ncRNA in
linking maternal nutritional status to offspring metabolism will
be developed over time.
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