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Background: The association between systemic iron status and lung function

was conflicting in observational studies. We aim to explore the potential causal

relationships between iron status and the levels of lung function using the

two-sample Mendelian randomization (MR) design.

Methods: Genetic instruments associated with iron status biomarkers were

retrieved from the Genetics of Iron Status (GIS) consortium (N = 48,972).

Summary statistics of these genetic instruments with lung function were

extracted from a meta-analysis of UK Biobank and SpiroMeta consortium

(N = 400,102). The main analyses were performed using the inverse-variance

weighted method, and complemented by multiple sensitivity analyses.

Results: Based on conservative genetic instruments, MR analyses showed

that genetically predicted higher iron (beta: 0.036 per 1 SD increase, 95%

confidence interval (CI): 0.016 to 0.056, P = 3.51×10−4), log10-transformed

ferritin (beta: 0.081, 95% CI: 0.047 to 0.116, P = 4.11×10−6), and transferrin

saturation (beta: 0.027, 95% CI: 0.015 to 0.038, P = 1.09×10−5) were

associated with increased forced expiratory volume in 1 s (FEV1), whereas

higher transferrin was associated with decreased FEV1 (beta: −0.036, 95%

CI: −0.064 to −0.008, P = 0.01). A significant positive association between

iron status and forced vital capacity (FVC) was also observed. However, there

is no causal association between iron status and FEV1-to-FVC ratio (P = 0.10).

Similar results were obtained from the liberal instruments analyses andmultiple

sensitivity analyses.

Conclusion: Our study provided strong evidence to support that higher iron

status is causally associated with higher levels of FEV1 and FVC, but has no

impact on airway obstruction, confirming iron status as an important target for

lung function management.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a

common disorder worldwide that has caused heavy disease

burden (1). The global prevalence of COPD was estimated at

∼174 million cases based on the Global Burden of Disease Study

2015 (2) and the proportion can reach 28% in populations aged

80 years (3). Persistent decline in lung function as assessed

by forced expiratory volume in 1 second (FEV1) underlies the

pathogenesis of COPD (4). It has been long considered that

exposure to particles and gases from tobacco smoking and

biomass fuel are the major etiology of lung function decline.

However, emerging evidence supports the notion that events

early in life affect lung function in adults (5). This fundamentally

changed the concept of COPD to show that factors determining

the maximal lung capacity attained during development may

play important roles in the pathogenesis of the disease (5).

Seeking potential risk factors that are involved in lung function

will assist in preventing the deterioration of lung function and

associated death.

As an essential trace element, iron participates in various

aspects of lung diseases, including oxygen delivery, immune

response, and oxidative stress (6). Iron has been reported to be

critical for effective immune response in defending respiratory

tract infection (7). Besides, the early life iron status may

determine the maximum lung function by influencing the

development of airways and lungs. Current evidence on the

association between iron status and lung function is conflicting.

An observational study conducted in US women aged 20–49

years in National Health and Nutrition Examination Survey

(NHANES) reported that total body iron status was positively

associated with FEV1 (8). Similar results were achieved in

children aged 10–12 years, where participants with lower

iron status have decreased lung function (9). However, these

findings contrast with the results of a large cross-sectional

study performed in 42,927 Korean men that suggests a

negative association between ferritin level and lung function

as indicated by FEV1 and forced vital capacity (FVC) (10).

In addition, serum ferritin has been associated with increased

risk of restrictive respiratory disease in postmenopausal

women (11).

Making causal inference from relationships that may be

attributable to confounding in these observational studies

is challenging. Recently, Mendelian randomization (MR) has

emerged as a reliable method to estimate causal association

between exposure and outcome by using genetic variants

as proxy for exposure (12). Given the non-modifiable and

unconfounded nature of genetic instruments, MR study can

largely overcome these issues in traditional observational

studies. TheMR design has been previously adopted to study the

causal associations of iron status with risk of asthma and lung

cancer (13, 14). However, the causal nature between systemic

iron status and lung function remains to be investigated. The

aim of the present study was to explore the association of

genetically instrumented iron status with lung function using the

MR approach.

Methods

Study design

Figure 1 depicted the overall design of the present study.

The causal association between iron status and lung function

was examined in a two-sample MR design using genome-wide

association study (GWAS) summary-level data. Three crucial

assumptions should be hold for a valid genetic instrument:

(1) it is robustly associated with exposure of interest; (2)

it is not associated with potential confounders; and (3)

it should exert no effect on the outcome through factors

other than exposure, i.e., no horizontal pleiotropy (15). We

extracted single-nucleotide polymorphism (SNP)-iron status

associations from GWAS of iron status (16). SNP-lung function

associations were retrieved from a meta-analysis of UK Biobank

and SpiroMeta consortium (17). After data harmonization,

MR effect estimates were calculated followed by multiple

sensitivity analyses to test the robustness of the results. The

associations of iron status with potential confounding factors

were also examined.

We performed this MR study as per the Strengthening the

Reporting of Observational Studies in Epidemiology-Mendelian

randomization (STROBE-MR) guidelines (18). All datasets used

in the present study are publicly available from each original

studies, where patient consent and ethical approval had been

obtained. No additional informed consent and ethical approval

are required.

Data sources for iron status

Genetic instruments associated with four serum markers

of iron status, i.e., iron (µmol/l), ferritin (log10-transformed,

ug/l), transferrin saturation (%), and transferrin (g/l) were

obtained from the Genetics of Iron Status (GIS) consortium,

the largest GWAS on iron status to date (16). The GIS

consortium identified genetic loci associated with iron status

by meta-analyzing results from 11 cohorts among 23,986

participants of European descent in its discovery phase,

followed by replication in up to 24,986 participants of

European descent from 8 additional cohorts (16). The mean

age of participants was 46.89 ± 17.84 years, and 45%

of the total participants were men. Genetic associations

between SNPs and systemic iron markers were adjusted for

age, principal component scores and other study specific

covariates (16).
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FIGURE 1

Study design and overview of the MR study. Summary-level GWAS statistics from participants of European descent were used in present study.

R2 represents the causal e�ect estimates of iron status on spirometric function, calculated using formula R2 = R3/R1. R1 and R3 denote the

direct relations of genetic instruments on iron status and spirometric function (FEV1, FVC, and FEV1/FVC ratio), respectively. BMI, body mass

index; FEV1, forced expired volume in 1 s; FVC, forced vital capacity; GWAS, genome-wide association study; IVs, instrumental variables; IVW,

inverse variance weighted; LD, linkage disequilibrium.

Genetic instruments selection

SNPs showed significant associations (P < 5 × 10−8) with

iron status were extracted fromGIS consortium (Supplementary

Table S1). A total of 5, 6, 5, and 9 SNPs were identified as genetic

instruments for serum iron, ferritin, transferrin saturation, and

transferrin, respectively (Supplementary Table S2). Then, SNPs

with linkage disequilibrium (LD) were clumped based on 1000

Genomes LD reference panel (European population) using the

TwoSampleMR package of R. All of the SNPs were in linkage

equilibrium (r2 ≤ 0.01 and window size = 10MB). One SNP,

rs1799945, was missing from the FEV1 dataset without suitable

proxy SNP (r2 > 0.8) was excluded. Finally, exposure and

outcome SNPs were harmonized to align alleles on the forward

strand. Palindromic SNPs were also omitted prior to further

MR analysis.

We selected two sets of genetic instruments for iron

status: (1) Conservative genetic instruments, which

comprised 3 core SNPs (rs855791, rs1799945, rs1800562;

Supplementary Table S1) associated with elevated serum iron,

ferritin and transferrin saturation, but with decreased serum

transferrin level at genome-wide significance (P < 5 × 10−8).

These 3 SNPs were used for the main analyses, since systemic

iron status was positively associated with serum iron, ferritin

and transferrin saturation, but was negatively associated with

serum transferrin level (19). (2) Liberal genetic instruments,

where SNPs that were associated with at least one of the four

iron biomarkers at genome-wide significance level (P < 5 ×

10−8) were included (Supplementary Table S2) (16). The liberal

genetic instruments contained more SNPs than conservative

genetic instruments and were expected to increase the statistical

power, but at the expense of increased pleiotropic bias risk.

Data sources for lung function

3 spirometric indices of lung function were considered

in current study: FEV1, FVC, and FEV1-to-FVC Ratio

(FEV1/FVC). Summary-level statistics for lung function were

obtained from a meta-analysis of UK Biobank (n = 321,047)

and SpiroMeta consortium (n = 79,055) with up to 400,102

participants of European ancestry (17). UK Biobank is a

population-based cohort study that comprises participants aged

between 40 to 69 years (20). Only participants who had at least

two measures of FEV1 and FVC, and complete information for

age, sex, height, ever smoking status, and spirometry method

used were included. Haplotype Reference Consortium was

used as reference panel to impute genotypes, where age, sex,

height, smoking status and genotyping array were adjusted (17).

For SpiroMeta consortium, genotypes were imputed to either

1000 genomes project phase 1 panel or haplotype reference

consortium panel. age, sex and height were adjusted in the

model. Details of UK Biobank and SpiroMeta consortium have

been described elsewhere (17, 20).
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TABLE 1 Baseline characteristics of participants included in

the analysis.

Characteristics UK Biobank SpiroMeta study

Participants, n 321,047 79,055

Age, y; mean (SD) 56.44 (8.02) 49.67 (15.80)

Age at lung function measurement, y 39–72 14-99

Male (%) 178,489 (44.40) 35, 734 (45.20)

Height, cm; mean (SD) 168.57 (9.13) 168.27 (9.24)

FEV1, L; mean (SD) 2.84 (0.76) 2.98 (0.93)

FVC, L; mean (SD) 3.74 (0.96) 3.75 (1.12)

FEV1/FVC; mean (SD) 0.76 (0.06) 0.79 (0.10)

PEF, L/min; mean (SD) 406.19 (117.55) NA

Never smokers (%) 173,658 (54.09) 37,939 (47.99)

Ever smokers (%) 147,389 (45.91) 41,116 (52.01)

FEV1, forced expired volume in 1 sec; FVC, forced vital capacity; PEF, Peak

expiratory flow.

Baseline characteristics of the 400,102 participants of

European ancestry included for lung function analysis are shown

in the Table 1. The mean age of participants was 55.10 years,

and 53.54% were men. The mean FEV1, FVC, FEV1/FVC, and

PEF were 2.86, 3.74, 0.76, 406.19 L/min, respectively. Of the

participants, 188,505 (47.11%) were ever smoker, and 211,597

(52.89%) were never-smokers.

Mendelian randomization analysis

After data harmonization, Wald ratio for individual SNP

was calculated by SNP-outcome coefficient divided by SNP-

exposure coefficient. Random- or fixed-effect inverse-variance

weighted (IVW) method was applied to combine the Wald

ratio estimates to give an overall estimate of the causal effect

across all SNPs included for each iron status. This method can

provide unbiased causal estimates when instrumental variables

are valid and pleiotropy is absent or balanced (21). To evaluate

the heterogeneity in MR analysis, Cochran’s Q statistic and

corresponding P-value for the IVW method were calculated.

When significant heterogeneity was observed (P < 0.05), the

random-effect IVW method was applied to pool the Wald ratio

estimates; otherwise, the fixed-effect IVWmodel was used (22).

Sensitivity analysis

MR estimates can be influenced by invalid instrument bias

or potential pleiotropy. To test the validity and robustness

of the MR results, we performed several sensitivity analyses:

weighted median, MR-Egger regression, MR pleiotropy residual

sum and outlier test (MR-PRESSO), and MR-robust adjusted

profile scores (MR-RAPS) methods. Limited by the number

of SNPs (n = 3), we can only conduct partial sensitivity

analyses for the conservative instrumental variable analyses.

The weighted median method can provide consistent effect

estimates when more than 50% of the weight in the analysis

was derived from valid genetic instruments (23). MR-Egger

regression was used to check and adjust for potential directional

pleiotropy. The value of intercept term significantly deviates

from 0 (P for MR-Egger intercept < 0.05) suggests the existence

of directional pleiotropy. Meanwhile, MR-Egger regression can

provide pleiotropy-corrected effect estimates but with relatively

low precision, particularly when the number of instrumental

variables is small (24). The MR-PRESSO method was applied

to detect horizontal pleiotropic outlying SNPs (25). It can

also provide outlier-removed causal estimates. MR-RAPS is a

method which accounts for weak instruments bias and reports

pleiotropy-corrected causal effect using robust adjusted profile

scores (21).

To further explore the possibility of pleiotropy, we search

the online database PhenoScanner (http://www.phenoscanner.

medschl.cam.ac.uk/phenoscanner) for potential secondary

phenotypes associated with SNPs that were used as genetic

instruments for iron status (26, 27). Two lung function-

associated risk factors were considered in our analyses:

body mass index (BMI) and tobacco smoking. All statistical

analyses were performed using R (version 3.6.1, R Core

Team, Vienna, Austria) with TwoSampleMR, MR pleiotropy

residual sum and outlier, MR-robust adjusted profile scores

packages. Results are reported as beta with corresponding 95%

confidence interval [CI] per SD unit increase in each iron status

biomarker. A 2-sided P-value < 0.05 was set as the threshold of

statistical significance.

Results

Genetic instruments for iron status

Conservative and liberal genetic instruments for

iron status that were used in MR analyses are shown

in Supplementary Tables S1, S2, respectively. Briefly, the

conservative genetic instruments contain 3 independent

SNPs that have a concordant association with all of the 4

iron-related phenotypes: rs1800562, rs1799945, and rs855791

(Supplementary Table S1). For liberal genetic instruments, a

total of 5, 6, 5 and 9 independent SNPs were selected for serum

iron, ferritin, transferrin saturation, and transferrin, respectively

(Supplementary Table S2). The total variances of iron status

explained by genetic instruments were 3.4% for iron, 0.9%

for (log10) ferritin, 6.7% for transferrin saturation, and 7.2%

for transferrin (16). The F statistics for included SNPs ranged

from 31 to 2947, indicating weak instrument bias was unlikely
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FIGURE 2

The IVW MR estimates for relationship between iron status and lung function using conservative instrumental variables associated with all four

iron biomarkers. The causal e�ects of iron status on levels of FEV1, FVC, and FEV1/FVC ratio are estimated. Results are reported as beta with

corresponding 95% CI per SD unit increase in each iron marker. IVW, inverse variance weighted; MR, Mendelian randomization; FEV1, forced

expiratory volume in 1 s; FVC, forced vital capacity.

(Supplementary Table S2). We summarized the associations of

genetic instruments with iron status and spirometric indices in

Supplementary Tables S4, S5, respectively.

Causal association of iron status with
lung function

The main IVW findings between iron status and lung

function (FEV1, FVC, and FEV1/FVC ratio) using conservative

instrumental variables are shown in Figure 2. The results,

reported as beta for spirometric indices per SD unit increase in

the iron status marker, demonstrated that genetically predicted

higher iron (beta = 0.036, 95% CI: 0.016 to 0.056, P = 3.51

× 10−4), log10-transformed ferritin (beta = 0.081, 95% CI:

0.047 to 0.116, P = 4.11 × 10−6), and transferrin saturation

(beta = 0.027, 95% CI: 0.015 to 0.038, P = 1.09 × 10−5) levels

were associated with increased FEV1. Genetically instrumented

higher transferrin level, which reflects lower iron status, was

significantly associated with decreased FEV1 (beta = −0.036,

95% CI: −0.064 to −0.008, P = 0.01, Figure 2). Similarly,

genetical predisposition to increased levels of iron (beta= 0.039,

95%CI: 0.023 to 0.055, P = 9.76 × 10−7), log10-transformed

ferritin (beta= 0.039, 95% CI: 0.023 to 0.055, P= 9.76× 10−7),

and transferrin saturation (beta= 0.029, 95% CI: 0.024 to 0.033,

P = 1.23 × 10−34) were causally associated with higher FVC,

whereas transferrin level was negatively associated with FVC

(beta = −0.039, 95% CI: −0.061 to −0.018, P = 2.76 × 10−4).

No significant association between iron status and FEV1/FVC

ratio was observed (Figure 2).

We further assessed the association between iron status

and lung function based on liberal genetic instruments, which

includedmore SNPs and were expected to have greater statistical

power (Figure 3). Consistent results were obtained using

the liberal genetic instruments, where genetically predicted

iron status was positively associated with FEV1 and FVC.

However, there is still no significant association between iron

status and FEV1/FVC ratio using these expanded instrumental

variables (Figure 3, Supplementary Table S7). None of the

included SNPs exhibited any relationships with BMI or tobacco

smoking (Supplementary Table S3).

Sensitivity analysis

Using conservative instrumental variable, the causal effects

of iron status on lung function were robust and consistent in

all sensitivity analyses except for MR-Egger, which has wider

CIs (Table 2, Supplementary Table S6). There was no substantial

heterogeneity between individual SNPs in the analyses (all P-

values for heterogeneity were>0.05). Potential pleiotropies were

indicated by MR-Egger regression for the analyses of serum
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FIGURE 3

The IVW MR estimates for relationship between iron status and lung function using liberal instrumental variables associated with each iron

biomarker. The causal e�ects of iron status on levels of FEV1, FVC, and FEV1/FVC ratio are estimated. Results are reported as beta with

corresponding 95% CI per SD unit increase in each iron marker. IVW, inverse variance weighted; MR, Mendelian randomization; FEV1, forced

expiratory volume in 1 s; FVC, forced vital capacity.

iron on FVC, and serum transferrin on FEV1/FVC ratio, as

the intercepts were significantly departed from zero. However,

the estimates from other MR methods—MR-Egger, weighted

median, and MR-RAPS—were in the same direction as of those

from the primary IVWanalyses, providing support for the causal

associations of iron status on FEV1 and FVC (Table 2). The effect

estimates of each SNP on iron status and lung function outcomes

are depicted in scatter plots (Supplementary Figures S1–S3). The

forest plots are shown in Supplementary Figures S7–S9.

In liberal instruments analyses, significant heterogeneities

were observed in most analyses (Supplementary Table S7).

Despite this, the heterogeneity was unlikely to influence

the results, as weighted median approach provided same

direction estimates compared to the main IVW MR (Table 3,

Supplementary Table S7). The MR-Egger regression identified

directional pleiotropy in the analyses of iron on FVC (P for MR-

Egger intercept = 0.023), and transferrin on FEV1/FVC ratio

(P for MR-Egger intercept = 0.012, Supplementary Table S7).

However, even after correcting for pleiotropy, MR analyses

still showed a causal association between serum iron and

FVC (beta = 0.037, 95%CI: 0.013 to 0.060, P = 0.002

in MR-RAPS), and no association between transferrin and

FEV1/FVC ratio (beta = −0.006, 95%CI: −0.024 to 0.012,

P = 0.506 in MR-RAPS; beta = −0.010, 95%CI: −0.040 to

0.019, P = 0.522 in MR-PRESSO). The scatter plots and

forest plots displaying the estimates of each SNP on lung

function outcomes are shown in Supplementary Figures S4–S6,

Supplementary Figures S10–S12, respectively.

Discussion

For the first time, the causal associations of genetically

instrumented systemic iron status with lung function outcomes

were detailly examined using the MR design. The present MR

study went beyond previous work, to provide genetic causal

estimates from larger studies of lung function. Our MR analyses

demonstrated consistent evidence for associations between

increased iron status and higher FEV1 and FVC levels, whenever

using the only 3 SNPs associated with all four iron status

biomarkers (conservative genetic instruments) or additional

genetic instruments associated with each iron status (liberal

genetic instruments) at genome-wide significance. Specifically,

we identified 27 to 81ml increase of FEV1, and 29 to 39ml

increase of FVC per 1 SD increase in each systemic iron status.

However, no association between systemic iron biomarkers

and FEV1-to-FVC ratio was found. Although pleiotropy was
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TABLE 2 Associations of genetically predicted iron status with FEV1 and FVC using the 3 SNPs associated with all 4 iron biomarkers.

Iron status Outcome Method No. of

SNPs

Beta (95% CI) P-value P for

heterogeneity

P for

intercept

Iron FEV1 IVWMR 3 0.036 (0.016; 0.056) 3.51E-04 0.214 0.167

Weighted median 3 0.040 (0.021; 0.058) 4.22E-05

MR-Egger 3 0.073 (−0.012; 0.159) 0.342

MR-RAPS 3 0.037 (0.017; 0.056) 2.47E-04

Ferritin (log10) FEV1 IVWMR 3 0.081 (0.047; 0.116) 4.11E-06 0.375 0.641

Weighted median 3 0.082 (0.044; 0.120) 2.18E-05

MR-Egger 3 0.072 (−0.015; 0.158) 0.353

MR-RAPS 3 0.081 (0.039; 0.123) 1.37E-04

Transferrin saturation FEV1 IVWMR 3 0.027 (0.015; 0.038) 1.09E-05 0.344 0.763

Weighted median 3 0.029 (0.016; 0.041) 9.80E-06

MR-Egger 3 0.027 (−0.009; 0.063) 0.384

MR-RAPS 3 0.027 (0.015; 0.038) 1.05E-05

Transferrin FEV1 IVWMR 3 −0.036 (−0.064;−0.008) 0.012 0.062 0.183

Weighted median 3 −0.033 (−0.051;−0.015) 3.54E-04

MR-Egger 3 −0.023(−0.059; 0.013) 0.429

MR-RAPS 3 −0.034 (−0.052;−0.016) 1.83E-04

Iron FVC IVWMR 3 0.039 (0.023; 0.055) 9.76E-07 0.397 0.023

Weighted median 3 0.039 (0.023; 0.055) 9.76E-07

MR-Egger 3 0.081 (0.016; 0.146) 0.248

MR-RAPS 3 0.039 (0.022; 0.056) 5.51E-06

Ferritin (log10) FVC IVWMR 3 0.039 (0.023; 0.055) 9.76E-07 0.878 0.849

Weighted median 3 0.037 (0.017; 0.056) 2.05E-04

MR-Egger 3 0.081 (0.016; 0.146) 0.248

MR-RAPS 3 0.039 (0.022; 0.056) 5.51E-06

Transferrin saturation FVC IVWMR 3 0.029 (0.024; 0.033) 1.23E-34 0.854 0.790

Weighted median 3 0.030 (0.018; 0.043) 2.78E-06

MR-Egger 3 0.031 (0.006; 0.056) 0.251

MR-RAPS 3 0.029 (0.017; 0.041) 2.48E-06

Transferrin FVC IVWMR 3 −0.039(−0.061;−0.018) 2.76E-04 0.207 0.653

Weighted median 3 −0.037(−0.055;−0.020) 2.68E-05

MR-Egger 3 −0.027(−0.050;−0.005) 0.255

MR-RAPS 3 −0.039(−0.057;−0.021) 1.40E-05

The effect estimates were reported as beta coefficients and corresponding 95% CIs. CI, confidence interval; IVW, the inverse-variance weighted method; MR, Mendelian randomization;

MR-RAPS, MR-robust adjusted profile scores; SNPs, single nucleotide polymorphisms.

observed in some analyses, the overall results were consistent

using sensitivity analyses robust to pleiotropy.

The mechanisms underlying the association between iron

status and lung function remain to be elucidated, but potentially

include iron or iron-containing proteins promote lung and

airway development. Iron is an important micronutrient

element which has been implicated in various cellular processes

such as DNA synthesis, oxygen transport, energy metabolism

and mitochondrial respiration (28). Iron deficiency induced

lower oxygen binding and inadequate oxygen supply could

result in a growth retardation of lung during development (29).

Hypoxic condition arising from iron deficiency redistributed the

cardiac output to vital organs such as brain, heart and kidney,

leading to reduced blood flow to the lung and restriction of lung

growth (29). In animal experiments, iron chelation in lung buds

from embryonic mice significantly reduced vascular branching

and airway development (30). In support of these evidence,

population-based investigations found that maternal iron status

during pregnancy was positively associated with lung function

levels in offspring at age of 10 years (31).

On the other hand, iron status may influence lung

function via regulating immune system. Evidence from cohort

studies showed that airway and lung damages caused by

respiratory tract infections in early life increased the risk
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TABLE 3 Associations of genetically predicted iron status with FEV1 and FVC using the separately selected SNPs associated with each iron

biomarker.

Iron status Outcome Method No. of

SNPs

Beta (95% CI) P-value P for

heterogeneity

P for

intercept

Iron FEV1 IVWMR 4* 0.035 (0.003; 0.067) 0.03 0.012 0.167

Weighted median 4* 0.042 (0.022; 0.061) 3.47E-05

MR-Egger 4* 0.072 (0.031; 0.112) 0.07

MR-RAPS 4* 0.040 (0.018; 0.062) 4.00E-04

MR-PRESSO 4* 0.035 (0.003; 0.067) 0.125

Ferritin (log10) FEV1 IVWMR 6 0.082 (0.019; 0.145) 0.010 2.76E-04 0.641

Weighted median 6 0.064 (0.027; 0.101) 7.16E-04

MR-Egger 6 0.052 (−0.082; 0.187) 0.490

MR-RAPS 6 0.073 (0.028; 0.119) 0.001

MR-PRESSO 5† 0.065 (0.030; 0.100) 0.022

Transferrin saturation FEV1 IVWMR 5 0.028 (0.018; 0.038) 5.90E-08 0.512 0.763

Weighted median 5 0.029 (0.016; 0.042) 7.33E-06

MR-Egger 5 0.025 (0.007; 0.044) 0.07

MR-RAPS 5 0.028 (0.016; 0.039) 1.97E-06

MR-PRESSO 5 0.028 (0.018; 0.038) 0.005

Transferrin FEV1 IVWMR 9 −0.023 (−0.036;−0.009) 9.66E-04 0.059 0.183

Weighted median 9 −0.017(−0.029;−0.005) 0.005

MR-Egger 9 −0.014 (−0.031; 0.003) 0.15

MR-RAPS 9 −0.023 (−0.036;−0.011) 2.01E-04

MR-PRESSO 9 −0.023(−0.036;−0.009) 0.010

Iron FVC IVWMR 5 0.031 (0.002; 0.060) 0.030 0.008 0.023

Weighted median 5 0.034 (0.014; 0.054) 0.001

MR-Egger 5 0.077 (0.046; 0.107) 0.020

MR-RAPS 5 0.037 (0.013; 0.060) 0.002

MR-PRESSO 5 0.031 (0.002; 0.060) 0.101

Ferritin (log10) FVC IVWMR 6 0.079 (0.020; 0.139) 0.008 0.001 0.849

Weighted median 6 0.083 (0.043; 0.122) 4.20E-05

MR-Egger 6 0.068 (−0.060; 0.196) 0.360

MR-RAPS 6 0.076 (0.030; 0.122) 0.001

MR-PRESSO 5 0.065 (0.025; 0.105) 0.034

Transferrin saturation FVC IVWMR 5 0.029 (0.020; 0.039) 3.93E-10 0.607 0.790

Weighted median 5 0.030 (0.018; 0.043) 3.20E-06

MR-Egger 5 0.031 (0.014; 0.049) 0.040

MR-RAPS 5 0.030 (0.018; 0.041) 6.20E-07

MR-PRESSO 5 0.029 (0.020; 0.039) 0.003

Transferrin FVC IVWMR 9 −0.021(−0.035;−0.006) 0.005 0.027 0.653

Weighted median 9 −0.015(−0.028;−0.003) 0.020

MR-Egger 9 −0.024(−0.045;−0.003) 0.060

MR-RAPS 9 −0.024(−0.039;−0.009) 0.002

MR-PRESSO 9 −0.021(−0.035;−0.006) 0.024

The effect estimates were reported as beta coefficients and corresponding 95% CIs. CI, confidence interval; IVW, the inverse-variance weighted method; MR, Mendelian randomization;

MR-PRESSO, MR-Pleiotropy Residual Sum and Outlier; MR-RAPS, MR-robust adjusted profile scores; SNPs, single nucleotide polymorphisms. *One SNP, rs1799945, was missing from

FEV1 outcome dataset without suitable proxy SNP. †Outlying SNP detected: rs651007.
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of FEV1 deficit in adult life (32). Iron homeostasis takes

part in both innate and adaptive immunity during infections

(33). In innate immunity, iron fine-tunes the function of

myeloid cells through controlling the activity of enzymes and

transcription factors and thus the production of antimicrobial

effectors such as nitric oxide and hydroxyl radicals. Iron also

plays crucial roles in adaptive immune response by regulating

clonal expansion of lymphocyte subsets (34). However, iron

overload or deficiency results in immune deficits may predispose

organisms to respiratory infection and airway dysfunction. For

instance, iron deficiency has been linked to higher airway

inflammatory response and increased risk of allergic asthma

(35, 36), both are involved in the pathogenesis of COPD. In

contrast, iron supplement decreases the production of pro-

inflammatory cytokines such as interleukin (IL)-1β, IL-9 and IL-

17, and subsequently reduced airway hyper-responsiveness (37).

Collectively, findings from animal studies and cell line studies

provide biological evidence that iron homeostasis is beneficial

for lung development, reducing airway hyper-responsiveness,

and defending lung infections.

Previous observational studies reported conflicting

associations between systemic iron status and lung function (8–

10, 38). One study conducted in NHANES III which included

participants aged above 20 years provided evidence that iron

status was positively associated with FEV1 and FVC levels (39).

However, another cohort study performed in 42,927 healthy

Korean men suggested that higher serum ferritin, but not iron

or transferrin saturation, was associated with decreased FEV1

and FVC (10). Some studies even reported null association

between ferritin and lung function (8). Most studies to date

linking iron status to poor lung function have co-existing risk

factors for lung disease, making it difficult to rule out that lung

function decline is not merely a result of confounders, rather

than being a cause of iron deficiency. For example, tobacco

smoking is a well-recognized risk factor for poor lung function,

it can also increase the ferritin concentration in respiratory

lavage (40) and serum (41), thus biasing the iron status-lung

function associations in those studies. By employing two-sample

MR method, we could overcome these defects of observational

studies to provide strong evidence for a positive association

between iron status and lung function. Moreover, the pooled

MR estimates for serum iron, ferritin, transferrin saturation,

and transferrin all showed that higher iron status improves

FEV1 and FVC, but not FEV1/FVC ratio.

Taking advantages of the random assign of genetic variants

at conception, the findings of MR studies can be treated similar

to randomized controlled trails (RCTs). However, it is crucial to

hold the three principal assumptions; in particular, the exclusion

assumption (absence of pleiotropy), to provide unbiased causal

evidence between exposure of interest and outcomes (42).

To evaluate the violations of these assumptions, we searched

the large-scale genetic association database PhenoScanner for

potential associations of SNPs with confounders or traits that

could influence lung function (26, 27). Based on prior studies, we

considered BMI and tobacco smoking as potential confounding

factors or sources of pleiotropy as both traits have been

associated with lung function. As a result, we identified no

associations of used SNPs with these phenotypes, as shown in

Supplementary Table S3. However, we did not take asthma into

account in our analyses, because if these SNPs have impacts

on asthma, which in turn affect the lung function (vertical

pleiotropy), then it still should be considered a causal factor for

lung function.

There are several strengths in this MR analyses. To the best

of our knowledge, this is the first MR study to examine the

causal nature between systemic iron status and lung function.

As genetic variants used to instrument the effect of modifying

iron status were randomly allocated within participants,

the frequently occurred bias in conventional epidemiological

studies due to potential confounding, measurement error,

and reverse causation can be largely avoided. The included

genetic instruments all have strong associations with iron

status (F statistics > 10) decreased weak instrument bias.

Meanwhile, our analyses with large sample size (up to 400,102

participants) maximized the statistical power to detect robust

causal associations. No participants overlap between exposure

and outcome dataset also lowered the type 1 error rate.

Moreover, multiple sensitivity analyses with different underlying

assumptions (weighted median, MR-Egger, MR-PRESSO, and

MR-RAPS) all provided similar and consistent estimates in our

study, suggesting the credibility of our conclusion (21).

Several limitations should be considered in our work. First,

the magnitude of causal estimates through genetic effect may be

different from the magnitude of effect of randomized trials. This

can be partly attributed to the difference in magnitude of genetic

instruments and clinical interventions. In fact, MR analyses were

typically designed to determine the causal association between

exposure and clinical endpoints (43). Although MR study

overcomes the bias from confounding, low precision in effect

estimates has been deemed a tradeoff for the unconfounded

association (44). Second, etiology of altered lung function is

multi-factorial and many factors have been linked with lung

function other than iron status. For instance, both FEV1 and

FVC progressively decline with age after pulmonary maturity,

and age has historically been one of the major factors in

the evaluation of lung function. Gender, height and ethnic

group have also been identified as contributing factors for lung

function. However, as only summary-level statistics derived

from general population of both genders were available in

current MR study, we can hardly to conduct stratified analyses

by gender, age, height and ethic group. The causal effects of

iron status on lung function in these specialized populations

may need further investigation. Third, all data used for genetic

analyses were based on participants of European ancestry;

therefore, the results are less generalizable to other populations

or settings.
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Conclusion

In summary, the present MR study provides robust evidence

to show that higher iron status is causally associated with higher

levels of FEV1 and FVC, but has no effect on FEV1-to-FVC ratio.

Our study highlights the role of systemic iron in influencing lung

function among general population. Iron supplementation may

be served as a therapeutic strategy for preventing the decline of

lung function and associated complications in populations with

iron deficiency. Further research is still needed to understand

the underlying mechanisms between iron and lung function, as

well as to determine the causal role of iron on lung function in

specialized populations.
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