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Conjugated linoleic acid
regulates adipocyte fatty acid
binding protein expression via
peroxisome
proliferator-activated receptor α

signaling pathway and increases
intramuscular fat content
Jing Chen, Ruiguo You, Yao Lv, Huimin Liu and
Guoqing Yang*

Laboratory of Animal Gene Engineering, College of Life Sciences, Henan Agricultural University,
Zhengzhou, China

Intramuscular fat (IMF) is correlated positively with meat tenderness, juiciness

and taste that affected sensory meat quality. Conjugated linoleic acid (CLA)

has been extensively researched to increase IMF content in animals, however,

the regulatory mechanism remains unclear. Adipocyte fatty acid binding

protein (A-FABP) gene has been proposed as candidates for IMF accretion.

The purpose of this study is to explore the molecular regulatory pathways of

CLA on intramuscular fat deposition. Here, our results by cell lines indicated

that CLA treatment promoted the expression of A-FABP through activated the

transcription factor of peroxisome proliferator-activated receptor α (PPARα).

Moreover, in an animal model, we discovered that dietary supplemental with

CLA significantly enhanced IMF deposition by up-regulating the mRNA and

protein expression of PPARα and A-FABP in the muscle tissues of mice. In

addition, our current study also demonstrated that dietary CLA increased

mRNA expression of genes and enzymes involved in fatty acid synthesis and

lipid metabolism the muscle tissues of mice. These findings suggest that CLA

mainly increases the expression of A-FABP through PPARα signaling pathway

and regulates the expression of genes and enzymes related to IMF deposition,

thus increasing IMF content. These results contribute to better understanding

the molecular mechanism of IMF accretion in animals for the improvement of

meat quality.
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Introduction

Intramuscular fat (IMF), deposited within muscle tissue,
is an important characteristics of meat quality (1, 2).
IMF determines sensorial qualities of meat including flavor,
tenderness, and juiciness. However, in the past few decades, lean
meat yield and backfat thickness were considered as important
parameters in breeding, which result in decreasing IMF content.
Recently, improving IMF content of meat is a critical interest to
nutritionists, breeders and geneticists for health and economic
reasons. IMF deposition is the result of comprehensive effects
of animal growth, body fat distribution, fatty acid composition,
key genes of fat metabolism and transcription regulators (3–5).
Multiple factors greatly influence IMF content, such as breeds,
gender, age, genes and dietary (6–8). Conjugated linoleic acid
(CLA) is a group of positional and geometric isomers of linoleic,
which has a variety of biologically beneficial activities including
anti-cancer, anti-obesity, anti-inflammatory, anti-diabetic and
immune modulating properties (9–11). CLA has been reported
to modulate body fat composition through distinct actions on fat
deposition, lipolysis of adipose cells and overall lipid metabolism
(12). Previous studies have shown that CLA improved IMF
content and marbling scores in pigs, cattle, lamb and broiler
chicken (13–18). However, there are limited studies about the
mechanism of CLA on increasing IMF content.

Adipocyte fatty acid binding protein (A-FABP) is expressed
in adipose tissue, interacts with peroxisome proliferators
activated receptors (PPARs) and binds to hormone-sensitive
lipase and therefore, plays an important role in the lipid
deposition of muscles and homeostasis in adipocytes (8). The
polymorphism of the A-FABP gene mutation site is positively
correlated with IMF content (19, 20). Meanwhile, many studies
have shown that the high expression of A-FABP gene in
muscle tissue is conducive to improve the IMF content (21–
23). Therefore, A-FABP can be used as a candidate gene
for enhancing IMF content. A-FABP promoter contains a
peroxisome proliferator response element (PPRE) binding site,
and the promoter can be activated by PPARs (24–26). PPARs
belong to the nuclear receptor super-family of transcription
factor, which are divided into three isoforms: PPARα, PPARβ/δ
and PPARγ, associated with adipogenesis, lipogenesis and IMF
accretion in animals (27–29). PPARs are activated by specific
natural ligands such as lipids, retinoids, steroids, and thyroid
hormones. PPARs heterodimerize with retinoid X receptors
(RXRs) and upon ligand activation bind to PPRE in the
regulatory regions of their target genes (30). PPARs regulate
genes coding for proteins participating in fatty acid uptake
and mitochondrial β-oxidation. CLA regulates the expression
of a variety of nuclear transcription factors and genes involved
in lipid metabolism and affected the uptake and oxidation of
fatty acids and lipid anabolism to increase IMF deposition and
improve meat quality (31–33). A recent study revealed that
dietary supplemental with CLA increased the expression of

PPAR-γ and A-FABP, enhanced IMF deposition by 14%, and
reduced subcutaneous fat deposition by 9.2% in Landrace and
Yorkshire hybrid pigs (14). However, the underlying mechanism
of genes expression related to IMF deposition by CLA regulated
is yet to be elucidated.

The present study aims to investigate molecular mechanism
of CLA promoting IMF deposition. In this study, in cellular
level, we observed that CLA treatment enhanced the activity
of PPARα and A-FABP promoter. Overexpression of PPARα in
cells dramatically facilitated the activity of A-FABP promoter,
while siRNA-mediated knockdown of PPARα expression
decreased the activity of A-FABP promoter, which indicated
PPARα maybe bind to the promoter region of A-FABP and
thus regulate its transcriptional expression. Hence, we inferred
that CLA activated the expression of transcription factor
PPARα, which in turn regulating the transcription expression
of A-FABP. Furthermore, in mouse model, our results showed
that dietary supplemental with CLA increased the abundance of
lipid droplets and improved the IMF content in the quadriceps
femoris of mice. Additionally, the mRNA and protein expression
of PPARα and A-FABP were remarkably increased in the
quadriceps femoris of mice fed CLA. We further found that
CLA increased IMF accumulation by regulating the expression
of genes and enzymes related to fatty acid synthesis and lipid
metabolism. These findings uncovered a molecular regulatory
pathway of CLA-enhanced IMF deposition.

Materials and methods

Animals, diets, and treatments

All experiments involving animals were conducted in
accordance with guidelines established by the Animal Care and
Use Committee of Henan Province, China. Kunming mice aged
35 days (n = 40) were housed under standard conditions with
12/12-h light/dark cycles at 22± 2◦C, 50% of humidity and had
free access to water and food. Mice were fed a standard diet for
1 week for adaptation and were randomized into two groups.
Twenty mice in control group were fed a basal diet (Con group)
and those in the experimental groups were fed the basal diet
supplemented with 1.5% CLA (CLA group). The experiment
lasted for 15 days. The composition of CLA diet was showed in
Supplementary Tables 1, 2.

Sample collection

At the end of the experiment, the mice were euthanized with
1% sodium pentobarbital anesthesia. Livers and the quadriceps
femoris muscles of mice were quickly sampled, weighed, and
partially fixed in 4% paraformaldehyde for future analysis.
Others were stored at−80◦C for RNA and protein extraction.
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TABLE 1 Primers or oligonucleotides for PCR.

Gene (Pig) Primers EXP

PPARα Fwd:CCAGCCTCCAGCCCCTCGT PCR

Rev:CATGACCTAGAAGATGCCGAGAC

PPARα promoter Fwd:GCACACGGGGAACAGATAAC PCR

Rev:CTTCCAGAACTGTCCTCACCAATG

A-FABP promoter Fwd:TGGGAAGATTTCAGGATACT PCR

Rev:CATTTTGTGAGCACTCTAGG

Plasmid constructs

DNA fragment of porcine PPARα promoter from −1069
to +143, and porcine A-FABP promoter from −1128 to +3
were amplified by PCR using porcine liver genomic DNA.
For the generation of the luciferase reporter construct, the
PCR products were purified and subsequently digested using
KpnI and BglII restriction enzymes, then cloned into the
corresponding restriction sites of pGL3-basic vector using Clon
Express Ultra One Step Cloning Kit (Vazyme, USA). The
plasmids were named pGL3-pparα and pGL3-afabp. The PCR
conditions were as follows: 94◦C for 3 min, then 35 cycles of
94◦C for 30 s, 65◦C for 40 s and 72◦C for 90 s, followed by a
final extension at 72◦C for 10 min. The porcine PPARα sequence
(GenBank accession number:AY364466) was amplified from
porcine liver by PCR. The PCR product was digested with
restriction enzymes kpnI and EcoRI, and cloned into expression
vector pCMV5-myc to generate pCMV5-myc-pparα. The PCR
conditions were as follows: 94◦C for 3 min, then 35 cycles of
94◦C for 30 s, 67◦C for 40 s and 72◦C for 30 s, followed by a
final extension at 72◦C for 10 min. The primer sequences used
for cloning of promoter and plasmid construction are shown in
Table 1.

Cell lines and cell culture

The 293T (Human Renal Epithelial Cells), C2C12 (Mouse
Myoblasts), 3T3-L1 (Mouse Preadipocytes) and PK15 (Porcine
Renal Epithelial Cells) cell lines were preserved in our
laboratory, and maintained in DMEM (Invitrogen, Carlsbad,
CA, USA) plus 10% fetal bovine serum (Gibco, Waltham,
MA, USA), 2 mM of glutamine (Gibco, Waltham, MA, USA),
50 U/mL penicillin (Gibco, Waltham, MA, USA) and 50 µg/mL
of streptomycin (Gibco, Waltham, MA, USA). All cells were
cultured in a 37◦C incubator with 5% CO2.

Peroxisome proliferator-activated
receptor α knockdown analysis

For knockdown of porcine PPARα, small interfering RNA
(siRNA) was purchased from GenePharma (Shanghai, China).

TABLE 2 siRNA interference sequence.

Gene Sequence EXP

PPARα siRNA-1 Fwd:CCUAAACGUAGGACACAUUTT interfere

Rev:AAUGUGUCCUACGUUUAGGTT

PPARα siRNA-2 Fwd:CCAACGGCAUCCAGAACAATT interfere

Rev:UUGUUCUGGAUGCCGUUGGTT

siRNA-Con Fwd:UUCUCCGAACGUGUCACGUTT negative control

Rev:ACGUGACACGUUCGGAGAATT

The sequences to interfere porcine PPARα (siRNA-1 and
siRNA-2) expression, and control sequences (siRNA-Con) were
listed in Table 2. PK15 were transfected with siRNA-Con
or porcine PPARα siRNA by Lipofectamine R© 3000 reagent
(Thermo Fisher Scientific, USA). At 48 h after transfection,
cells were used to detect mRNA and protein levels of
PPARα.

Luciferase assay

The cells were seeded at a density of 1.2 × 105 cells/well
in 24-well plate for 24 h, and then transfected with different
plasmids (pGL3-pparα, pGL3-afabp, and pCMV5-myc-
pparα) using Lipofectamine R© 3000 reagent. All plasmids
were used in equimolar amounts, and they were co-
transfected with 50 ng pRL-TK, a Renilla luciferase reporter
vector as internal control. After 4 h, the cells were treated
with 100 µM CLA. At 48 h after transfection, cells were
harvested to measure the luciferase activity. Transfected
cells were lysed with Passive Lysis Buffer (Promega), and
assayed for Firefly and Renilla luciferase activities in a
luminometer by the Dual-Luciferase Reporter Assay System
according to the manufacturer’s instructions. The Firefly
luciferase activity was normalized against Renilla luciferase
activity. Results were normalized to the control vector
pGL3-Basic.

The configuration of 100 µM CLA is as follows: 3.57 mL
absolute ethanol was added to 100 mg CLA, from which 1 mL
was blown dry with nitrogen to obtain the storage solution of
CLA. 0.05 mL of the storage solution was added to 1.55 mL of
0.1M NaOH to get 100 mM solution, which was diluted 1h with
DMEM and filtered.

Real time quantitative PCR analysis

Total RNA from cells and muscle samples were extracted
using Trizol (Takara, Dalian, China). cDNA was synthesized
using the PrimeScript II 1 st Strand cDNA Synthesis Kit
(Takara, Dalian, China). RT-qPCR was performed with SYBR
Green PCR master mix (Takara, Dalian, China) on a 7500
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TABLE 3 Primers or oligonucleotides for real-time
PCR (mouse or pig).

Gene Primers EXP

CPT1 Fwd:TCAAGCCAGACGAAGAACA Real-time

Rev:GCACCTTCAGCGAGTAGCG PCR

AMPK Fwd:ACCATACCCATAGGATTGAC Real-time

Rev:CATAGGGATTTGTTGCTCTT PCR

ACOX1 Fwd:ATCACCATCCCAGGAGTA Real-time

Rev:TAGAAGGCTTAGGCAACA PCR

ACOX3 Fwd:CGCTGGCTTGTTTGCTACT Real-time

Rev:CTGGCTGTTGTTTCTTGCTTC PCR

LCAD Fwd:GGCCCTTGATAAATCCTTT Real-time

Rev:TGATCTCGTGATCGTCGTG PCR

CD36 Fwd:GAGGCGGGCATAGTATCA Real-time

Rev:GGCAGGAGTGCTGGATTA PCR

FAS Fwd:CCATCGCTTCCAGGACAAT Real-time

Rev:GGCTTCGCCAACTCTACCA PCR

LACS Fwd:CAGGTCGCAGATAGATGAAC Real-time

Rev:ATTGGTACGAGGAGGATTGT PCR

DGAT1 Fwd:TAGGCTTGTAGAAGTGTCTGATG Real-time

Rev:GAGATTGGTGGAATGCTGAG PCR

ACC Fwd:AAGGCAGTATCCATTCATCACA Real-time

Rev:ACACGGGCAGTCTACCACAG PCR

A-FABP Fwd:GATGAAATCACCGCAGACGACA Real-time

Rev:ATTGTGGTCGACTTTCCATCCC PCR

PPARα Fwd:AGTGCCTGTCTGTCGGGATG Real-time

Rev:CTCTTGCCCAGAGATTTGAGGTC PCR

β-actin Fwd:GCTCTGGCTCCTAGCACCAT Real-time

Rev:GCCACCGATCCACACAGAGT PCR

PPARα (pig) Fwd:TCAAGAGCCTGAGGAAACC Real-time

Rev:CAAATGATAGCAGCCACAAA PCR

GAPDH(pig) Fwd:CACAGTCAAGGCGGAGAACG Real-time

Rev:CCATTTGATGTTGGCGGGAT PCR

Real Time PCR System (Applied Biosystems, CA, USA). The
program was as follows: 95◦C for 5 min, followed by 40
amplification cycles, each at 95◦C for 10 s, then 60◦C for
30 s. The glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
gene was used as a reference gene for the standardization of
the results. The data was analyzed using the cycle threshold
(2−MMCT) method. Primer sequences for target genes were listed
in Table 3.

Intramuscular fat content analysis

The IMF was measured by the Soxhlet extractor method
according to GB5009.6-2016. The muscle samples were cut
into thin slices, and put into glassware, and dried at 105◦C
for more than 13 h to absolute dry. After crushing, 5 g
was weighed and wrapped with quantitative filter paper,
which dried at 105◦C for at least 2 h until its weight did

not change, and the dried paper bag (x) was weighed. The
dried paper bag was put into a Soxhlet extraction bottle and
refluxed at 65◦C by an ether reflux device. When the drip
was transparent, the paper bag was taken out, distributed
in a clean enamel plate, placed in a ventilating cabinet for
30 min, dried at 105◦C for more than 2 h to fully volatilize
the ether until its weight did not change, and weighed (y).
Each sample was repeated for 3 times. The IMF content
was calculated according to formula: IMF content (%) = (x-
y)/a× 100.

Oil Red O staining analysis

The liver and quadriceps femoris muscles of mice were
fixed with 4% formaldehyde, thereafter made into frozen
slices. Slides were dried, fixed in stationary liquid for 15 min
and then washed in distilled water for 30 s. Afterward,
slides were dried and then incubated with Oil-Red-O
working solution for 10 min. Then slides were washed
with in distilled water and 60% isopropanol, and then
incubated with hematoxylin solution for 5 min, washed
in running water for 5 min, mounted using glycerol
jelly mounting medium. Images were captured using an a
fluorescence microscope.

Western blotting analysis

The cells or quadriceps femoris muscles of mice were
lysed with RIPA lysis buffer supplemented with 1% protease
inhibitor cocktail. Equivalent amounts of supernatant samples
were run on 10% acrylamide SDS-PAGE gel. Then the protein
was transferred to nitrocellulose membrane (Millipore, Billerica,
MA, USA). Membranes were blocked with 5% milk for 1 h
and incubated with antibodies against PPARα (1:2000) (Cell
Signaling Technology, Boston, MA), A-FABP (1:2000) (Cell
Signaling Technology, Boston, MA) or β-actin (1:2000) (Cell
Signaling Technology, Boston, MA) at 4◦C overnight. Next,
membranes were incubated with HRP-conjugated secondary
antibody (1:3000) (Cell Signaling Technology, Boston, MA)
for 1 h at room temperature. The protein bands were
visualized with ECL detection kit (Cell Signaling Technology,
Boston, MA). Densitometry analysis was performed using
Image J software.

Statistical analysis

GraphPad Prism 8.0 was used for data management. The
data were expressed as the means ± SEM. Statistical differences
between experimental and control groups were evaluated by
Student’s t-test and statistical significances were indicated as
follows: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05.
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Results

Conjugated linoleic acid enhanced the
activity of peroxisome
proliferator-activated receptor α and
adipocyte fatty acid binding protein
promoters

A recent research has reported CLA can bind PPAR
subtypes to regulate a series of genes expression (29). To
investigate the regulation effect of CLA on porcine PPARα

and A-FABP genes, the promoter sequences of porcine
PPARα and A-FABP were cloned by PCR and verified by
DNA sequencing (Supplementary Figure 1). According to
CLA dose and time test (Supplementary Figures 2A,B),
100 µM CLA was chosen in the subsequent experiment.
The luciferase reporter plasmids containing the PPARα

promoter region (pGL3-pparα) or containing the A-FABP
promoter region (pGL3-afsbp) were transfected into 293T
cells, and then the cells were treated with 100 µM CLA.
We found that CLA significantly enhanced the activity of
the porcine PPARα (Figure 1A) and A-FABP promoter
(Figure 1B).

Peroxisome proliferator-activated
receptor α increased the activity of
adipocyte fatty acid binding protein
promoter

A-FABP contains PPRE sites in its promoter region and
can be regulated by PPARs (24, 26). To further verify the
potential effect of PPARα on the transcriptional regulation
of A-FABP gene, we constructed a PPARα eukaryotic
expression plasmid (pCMV5-myc-pparα). The plasmids
pCMV5-myc-pparα and pGL3-afabp were co-transfected
into 293T cells (Figure 2A), C2C12 cells (Figure 2B)
and 3T3-L1 cells (Figure 2C). The results indicated that
PPARα significantly increased the activity of porcine A-FABP
promoter. In addition, the over-expression of PPARα in
293T, C2C12 and 3T3-L1 cell was detected by western
blotting. PPARα-specific siRNAs treatment efficiently reduced
the expression of PPARα, and the inhibition efficiency
of two candidate siRNAs (siRNA-1and siRNA-2) was 60
and 50%, respectively (Figures 2D,E). The most effective
siRNA, siRNA-1, was used to silence the expression of
porcine PPARα in subsequent trials. SiRNA-mediated
knockdown of PPARα expression reduced the activity of
porcine A-FABP promoter in PK15 cells (Figure 2F). Taken
together, these data suggest that PPARα may be bind to the
promoter region of A-FABP, thus regulating its transcriptional
expression.

Dietary conjugated linoleic acid
promoted intramuscular fat deposition
in the quadriceps femoris of mice

To explore the effect of CLA on regulating fat deposition
at animal level, 5-week-old Kunming mice were randomly
divided into a control group and an experimental group. The
experimental group was fed a diet containing CLA, and the
control group was fed a basal diet. CLA supplementation has
no effect on body weight changes of mice (Supplementary
Figure 3). As shown in Figure 3A, compared to the control
group, abundant large of red lipid droplets in the livers of mice
fed with CLA was significantly increased by Oil Red O staining.
According to fat droplets in liver, the mouse model of dietary
CLA addition in our study was successfully established. The IMF
content in the quadriceps femoris of mice was determined by the
Soxhlet extractor method. As shown in Figure 3C, dietary CLA
addition significantly increased IMF content in the quadriceps
femoris of mice compared with the control group. In addition,
we observed that a large number of red lipid drops in the
quadriceps femoris cells of mice compared with the control
group (Figure 3B). These results showed that CLA significantly
increased the abundance of lipid drops in the quadriceps femoris
cells of mice, thus promoting IMF deposition. Collectively, these
data indicate that dietary CLA has a general effect on the IMF
deposition in mice.

Dietary conjugated linoleic acid
upregulated the expression of
peroxisome proliferator-activated
receptor α and adipocyte fatty acid
binding protein in the quadriceps
femoris of mice

Conjugated linoleic acid promotes IMF deposition and
improves meat quality by increasing the expression of specific
genes in intramuscular adipose tissue (16). In cellular level,
our results showed that CLA enhanced PPARα and A-FABP
promoter activity. Therefore, we analyzed the expression level
of PPARα and A-FABP in the quadriceps femoris of mice. RT-
qPCR results showed that dietary CLA addition significantly
increased the mRNA levels of PPARα and A-FABP in the
quadriceps femoris of mice (Figure 4A). Western blotting
results showed that dietary CLA addition also increased the
protein levels of PPARα and A-FABP in the quadriceps femoris
of mice (Figure 4B). The band intensities were quantified using
ImageJ 1.42q software (Figure 4C). These results demonstrated
that dietary supplementation with CLA increased the expression
of PPARα and A-FABP in the quadriceps femoris of mice. To
more fully explore CLA-induced A-FABP expression is regulated
by PPARα, siRNA-mediated knockdown of PPARα expression
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FIGURE 1

Conjugated linoleic acid (CLA) enhanced the activity of PPARα and A-FABP promoter. (A,B) The 293T cells was plated in 24-well plates and then
transfected with pGL3-pparα, or pGL3-afabp, and pGL3-Basic, pRL-TK. After 4 h, the cells were treated with CLA at a 100 µM final concentration.
Dual luciferase reporter gene system was used to measure the activity of PPARα and A-FABP promoter. Data were analyzed by t-test. **P < 0.01.

FIGURE 2

PPARα increased the activity of A-FABP promoter. (A–C) The 293T (A), C2C12 (B) and 3T3-L1 (C) cell were co-transfected with pGL3-afabp,
pCMV5-myc-pparα, pGL3-Basic, pRL-TK or pCMV5-myc for 48 h. Dual luciferase reporter gene system was used to detect the activity of
A-FABP promoter (upper panel), and western blotting was performed to detect PPARα expression (lower panel). PK15 cells were transfected with
the indicated siRNAs targeting porcine PPARα at different concentrations (10, 25, 50, and 100 µM). RT-qPCR (D) and western blotting (E) were
performed to detect the expression level of PPARα, and GAPDH was used as an internal reference gene. (F) PK15 cells were transfected with
pGL3-afabp or pGL3-Basic for 24 h and then treated with siRNA-1 or siRNA-Con as indicated. Dual luciferase reporter gene system was used to
analysis the activity of the A-FABP promoter. Data were analyzed by t-test. **P < 0.01, ***P < 0.001.
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FIGURE 3

Conjugated linoleic acid promoted fat deposition in liver and the quadriceps femoris of mice. (A,B) The liver tissues and quadriceps femoris
muscles of mice were fixed with 4% formaldehyde. Frozen slides were made from these tissues and then stained with oil red O
(magnification:200X). (C) The IMF content in the quadriceps femoris of mice was determined by the Soxhlet extraction method. Data in panel
(C) were analyzed by t-test. *P < 0.05.

(siRNA-1) or siRNA control (siRNA-Con) was transfected into
3T3-L1 cells in the presence and absence of CLA. We found that
A-FABP expression was significantly increased upon treatment
with CLA, while A-FABP expression was greatly reduced in
response to si-PPARα (Figure 4D). These results indicated that
CLA-induced A-FABP expression was regulated by PPARα in
3T3-L1 cells. Combine the front results, we concluded that CLA
may be increase the expression of A-FABP by binding and
activating PPARα promoter, and then the high expression of
A-FABP increase fat deposition and IMF content.

Dietary conjugated linoleic acid
regulated the expression of genes and
enzymes involved in fatty acid
synthesis and lipid metabolism in the
quadriceps femoris of mice

The IMF content depends on the synthesis, transport and
deposition of fatty acids. Different studies have reported many
genes and enzymes related to fatty acid synthesis and lipid

metabolism showed to be the key drivers of the observable
increase in IMF content in animals (34, 35). The mRNA
levels of genes related to fatty acid synthesis were showed
in Figure 5A. The mRNA levels of acetyl- CoA carboxylase
(ACC) and fatty acid synthase (FAS) mRNAs were significantly
increased, while the mRNA levels of long-chain acyl-CoA
synthetase (LACS) and diacylglycerol acyltransferase (DGAT)
were no significant difference between the control and the
CLA group. The mRNA levels of genes related to lipid
metabolism were showed in Figure 5B. The mRNA levels
of carnitine palmitoyltransferase-1 (CPT-1), acyl-CoA oxidase-
1 (ACOX1), long chain acyl-CoA dehydrogenase (LCAD)
and fatty acid translocase (FAT/CD36) mRNA levels were
significantly decreased, while the mRNA levels of acyl-CoA
oxidase-3 (ACOX3) and adenosine-monophosphate-activated
protein kinase (AMPK) were no significant difference between
the control and the CLA group. These results indicated that
dietary CLA may increase IMF deposition by modulating the
expression of fatty acid synthesis and lipid metabolism related
genes.
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FIGURE 4

Dietary CLA up-regulated A-FABP and PPARα expression in the quadriceps femoris of mice. (A–C) The total RNA from the quadriceps femoris of
mice was extracted and RT-qPCR was performed to detect the mRNA levels of A-FABP and PPARα (A), and GAPDH was used as internal
reference gene. RT-qPCR was analyzed using the cycle threshold (2−MMCT) method. Western blotting was performed to measure the protein
level of A-FABP and PPARα (B), and the relative level of A-FABP and PPARα was analyzed by Image J (C). (D) SiRNA control (siRNA-Con) or
siRNA-mediated knockdown of PPARα expression (siRNA-1) was transfected into 3T3-L1 cells for 4 h, and was then stimulated with CLA
(100 µM) for 48 h. The A-FABP mRNA levels were measured by RT-qPCR. Data in panels (A,C,D) were analyzed by t-test. *P < 0.05, **P < 0.01.

Discussion

Intramuscular fat is an important economic trait for meat
quality. Much attention has been paid to the augmenting
of the IMF content to satisfy the eating experience of the
consumer. In this study, our results demonstrate that the
treatment of CLA in cells enhanced the activity of the PPARα

promoter, and PPARα played an important role in regulating
the transcriptional expression of A-FABP gene. The results
of animal experiments showed that dietary CLA addition
increased the abundance of lipid droplets and increased the
IMF content in the quadriceps femoris of mice. Additionally,
we found that both the PPARα and A-FABP mRNA and
protein expression were consistent with IMF content. In
this study, we confirmed that CLA affects the IMF content

by regulating the expression of A-FABP through PPARα

signaling pathway.
Previous studies found that the dietary CLA

supplementation significantly improved IMF content, and
A-FABP mRNA expression was significantly and positively
correlated with IMF deposition (18). However, there is unclear
the mechanism by which CLA regulates A-FABP expression.
Studies have confirmed that the binding of PPARγ to Long
Chain Fatty Acids (LCFAs) increased its concentration, which
induced and regulated A-FABP expression (36). Additionally,
previous research showed PPARs agonists increased A-FABP
expression in pT1 tumors to prevent cancer progression
(37). A-FABP is known to contain PPRE sites in its upstream
promoter region. PPARs was believed to recognize the
PPRE elements located in the promoter region of target
genes. PPARα binds to the consensus sequence PPRE (5′-
AACTAGGACA (N) AGGTCA-3′) in the promoter region
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FIGURE 5

Dietary CLA regulated the expression of genes involved in fatty acid synthesis and lipid metabolism in the quadriceps femoris of mice. (A,B)
RT-qPCR was performed to determine the expression levels of genes related to fatty acid synthesis (ACC, LACS, DGAT1, and FAS) and lipid
metabolism (CPT1, ACOX1, ACOX3, AMPK, LCAD, and CD36) in the quadriceps femoris of mice. The expression levels were normalized to
GAPDH mRNA levels. Data were analyzed by t-test. *P < 0.05.

of the rat acyl-CoA oxidase (AOX) gene by a series of
mutational analyses. Our results demonstrated that ectopic
expression PPARα significantly increased the activity of A-FABP
promoter, while knockdown of PPARα expression reduced the
activity of A-FABP promoter. These results indicated that
PPARα regulated the transcriptional expression of A-FABP.
Thus, we inferred that PPARα played an important role in
regulating A-FABP expression. However, it needs to be explored
the molecular mechanism of PPARα regulating A-FABP
expression in further.

Previous research has shown that CLA directly or indirectly
affected the PPARγ ligand to regulate PPARγ expression,
thereby regulating A-FABP expression, improving the
adipogenic differentiation ability of cells, and accelerating
the deposition of lipid drops (38, 39). CLA increased the
liver fatty acid oxidation capacity by activating PPARα

(40, 41). CLA induced the expression of fibroblast growth
factor 21 (FGF21) by activating PPARα in the liver, thus
regulating liver lipid metabolism (42). CLA activated PPARα,

thereby increasing the expression and activity of CPT-
1 and promoting the decomposition of triglycerides in
subcutaneous fat and fatty acid oxidation, which reduces
subcutaneous fat deposition (18). In our research, we found
that CLA significantly enhanced the activity of PPARα

promoter and promoted PPARα expression. One study
demonstrated that CLA significantly increased PPARα gene
expression in skeletal muscle (43), which was consistent
with our studies. We conjectured that CLA promoted the
PPARα expression by enhancing the activity of PPARα

promoter, and PPARα enhanced the activity of A-FABP
promoter and increased A-FABP expression. There is a positive
feedback regulation mechanism. In any case, the important
mechanism of CLA-mediated the regulation of the A-FABP
expression through the PPARα signaling pathway is worthy of
further exploration.

Dietary intervention is one of the most common methods
to improve the IMF content of animals. Oregano essential
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oil (OEO) supplementation to a reduced-protein, amino acid-
supplemented diets improved the IMF content (44). Recent
studies have demonstrated that the higher energy level of
the diets increase IMF deposition (45). Several studies have
shown that supplementation of barley, Betaine, L-arginine to
diets of pigs increase marbling score and IMF content (46–
48). Supplementation of CLA to diets also has been reported
to enhance marbling score and IMF content in pigs (49, 50).
Our results are consistent with these findings that dietary CLA
improved IMF deposition in animal experiments. Conversely,
some researches have reported that there is a decrease in IMF
content of CLA fed pigs (51, 52). In consistencies of these results
might be contributed to the source of CLA, the abundance of
fat in dietary, sex, breed and percentage of lean and duration
of the feeding program (53). In addition, our current study also
demonstrates that dietary CLA supplementation upregulates the
expression of A-FABP gene in the quadriceps femoris of mice.
In agreement, several studies have identified that A-FABP is a
candidate gene of IMF content, due to its functional role in
fatty acid transport as well as fat deposition by regulating lipid
metabolism-related genes (54–56). PPARα is highly expressed
in the liver, heart, muscle tissue, etc., which has an important
function in fatty acid catabolism (57). Recent study has revealed
that the activation of PPARα induced the upregulation of fatty
acid transport and β-oxidation (58). Over-expressing PPARα has
been found an increasing fatty acid up-take and oxidation in
muscle of mice (59). Currently, in our research, we discovered
that dietary CLA significantly increased PPARα expression in
the quadriceps femoris of mice. However, previous studies
reported that PPARα was involved in subcutaneous fat oxidation
(60). The possible reason is that PPARα not only has the
function of increasing fatty acid uptake and oxidation, but
also plays an important role in regulating the production
of fatty acids, such as affecting the expression and activity
of A-FABP.

CLA improved IMF accumulation by regulating the
expression of related genes in in fat metabolism and IMF
deposition. It is well known that FAS is identified as a
key multifunctional enzyme involved in lipogenesis (61–63).
Previous studies have reported that higher mRNA abundance
of FAS regulated fatty acid synthesis in skeletal muscle. ACC,
a crucial rate-limiting enzyme, catalyzes the first step in de
novo fatty acid synthesis, resulting in the biosynthesis of long-
chain fatty acids (64). Some studies have indicated that the
expression of FAS and ACC was positively correlated with
IMF content in mammals fed CLA (65, 66). We also observed
an increase mRNA levels of FAS and ACC in the quadriceps
femoris of mice fed CLA. This finding was consistent with
recent researches, which revealed that CLA accelerated the
capacity of fatty acid synthesis by up-regulating the expression
levels of fatty acid synthesis related genes, leading to increase
IMF accumulation. In addition, lipid metabolism participated
in IMF deposition. CPT-1 is an essential rate-limiting enzyme

involved in fatty acid metabolism. CPT-1 has been identified
to transport esters of fatty acids to mitochondria for β-
oxidation, thus implying changes in mitochondrial fatty acid
oxidation (67). In this study, the mRNA levels of CPT-1 were
decreased in the quadriceps femoris of mice fed CLA, which
suggested that fatty acid oxidation in muscle was reduced.
ACOX1 is the rate-limiting enzyme in peroxisomal fatty acid β

oxidation pathway (68). ACOX1 has been identified to involve
in lipid metabolism and fat deposition in mice, pigs, and
fish (69–71). Our results were in agreement with previous
data showing ACOX1 down-regulated by dietary CLA in mice
(72). LCAD, a rate-limiting enzyme, catalyzes the first-step
reaction of mitochondrial fatty acid β oxidation, thus involving
in fatty acid oxidation (73, 74). CD36 has been identified
to facilitate and modulate the uptake of fatty acids. Notably,
CD36 acts a mitochondrial membrane protein that regulates
mitochondrial fatty acid uptake and oxidation (75–77). Our
results showed that CPT-1, ACOX1, LCAD and CD36 were
significantly decreased in the quadriceps femoris of mice fed
CLA, which suggested that CLA may reduce fatty acid oxidation,
thus leading to increase IMF accumulation. Based on these
data, we speculated that dietary CLA supplementation may
increase IMF deposition by regulating expression of gene
in fat metabolism and IMF deposition in the quadriceps
femoris of mice. However, it need to be further clarified
that the specific signaling pathways, transcription factors and
response elements of IMF deposition-related genes expression
by dietary CLA in animals.

Conclusion

In summary, in cellular level, our result demonstrates that
CLA treatments significantly enhanced the activity of porcine
PPARα promoter, and PPARα induced the expression of porcine
A-FABP. Our results preliminarily revealed that CLA promotes
the transcriptional expression of A-FABP through PPARα

signaling pathway. In animal models, our study displays that
dietary supplementation with CLA promotes fat deposition and
increases IMF content by increasing the expression of PPARα

and A-FABP. In addition, our current study also demonstrates
that dietary CLA improves IMF content mainly by regulating
the expression of IMF deposition-related genes. These results
provide a theoretical basis for revealing the mechanism of CLA
regulating IMF deposition.
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