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Introduction: During pregnancy and lactation minerals such as zinc are

required to support maternal and infant health. Zinc is involved in

various cellular processes, with requirements increasing in pregnancy and

lactation. In the setting of a randomized trial, we investigated the e�ects

on human milk (HM) zinc concentrations of a micronutrient-containing

supplement including zinc in the intervention (but not control) group, started

preconception and taken throughout pregnancy until birth. Additionally, we

characterized longitudinal changes in HM concentrations of zinc and other

minerals (calcium, copper, iodine, iron, magnesium, manganese, phosphorus,

potassium, selenium, and sodium).

Methods: HM samples were collected across 7 time points from 1 week to

12 months from lactating mothers from Singapore (n = 158) and New Zealand

(n = 180). HM minerals were quantified using sector field inductively coupled

plasma mass spectrometry. Potential intervention e�ects on HM mineral

concentrations were assessed using linear mixed models with a repeated

measures design and time-weighted area-under-the-curve analyses.

Results: Over the first 3months of lactation, HM zinc concentrations were 11%

higher in the intervention group compared to the control group (p = 0.021).

Higher HM zinc concentrations were most evident at 6 weeks of lactation.

The intervention had no e�ect on HM concentrations of other minerals,

which were not di�erently supplemented to the control and intervention

groups. Temporal changes in HM minerals over 12 months of lactation were
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studied in the New Zealand mothers; HM zinc and copper concentrations

progressively decreased throughout 12months, while iron, potassium, sodium,

and phosphorus decreased until 6 months then plateaued. HM calcium and

magnesium initially increased in early lactation and iodine remained relatively

constant throughout 12 months. HM manganese and selenium fell over the

initial months of lactation, with a nadir at 6 months, and increased thereafter.

The contrasting patterns of changes in HM mineral concentrations during

lactation may reflect di�erent absorption needs and roles at di�erent stages

of infancy.

Discussion: Overall, this study indicates that HM zinc concentrations

are influenced by maternal supplementation during preconception and

pregnancy. Further studies are required to understand the associations

between HM zinc and other minerals and both short- and long-term

o�spring outcomes.

Trial registration: ClinicalTrials.gov, identifier: NCT02509988, Universal Trial

Number U1111-1171-8056. Registered on 16 July 2015. This is an academic-

led study by the EpiGen Global Research Consortium.

KEYWORDS

human milk, minerals, pregnancy, supplement, zinc

1. Introduction

Adequate mineral status during pregnancy and lactation is

essential for the health of the mother and optimal growth and

development of the infant (1). Minerals play important roles in

brain development (iron, zinc, copper, and iodine), bone health

(calcium, phosphorus, and magnesium), and thyroid hormone

metabolism (selenium, zinc, and iodine) (1, 2).

Mineral requirements increase during pregnancy to support

the physiological changes in the mother and the growing

fetus. For example, an ∼18–36% additional zinc is required

during pregnancy (3), the daily recommended intake being

7–15mg (4–6). Zinc deficiency in pregnancy is prevalent

worldwide, especially in countries with poor nutrition (7, 8).

In New Zealand, 18.8% of women aged 19–30 years were

estimated to have inadequate zinc intake (9). In Singapore,

19% of pregnant women (at 26–28 weeks’ gestation) were

estimated to be zinc deficient (10). This has been associated

with adverse complications such as preterm birth, intrauterine

growth restriction, and low infant birth weight (7, 11). In

women with a risk of zinc deficiency, supplementation may be

beneficial (12–14).

Human milk (HM) is the major source of zinc for newborn

infants, who require 2–4 mg/day (aged 0–6 months) and 3–

5 mg/day (aged 7–12 months) (4, 6). As such, physiological

mechanisms to maintain adequate zinc status of the mother and

the infant, viaHM, continues during lactation. This is associated

with mobilization of maternal zinc pools from involuting tissues

as well as the trabecular bone (3, 14). In HM, zinc has been

identified to be bound to protein ligands, casein and serum

albumin associated with 14% and 28% of total HM zinc,

respectively (15). Zinc is involved in various cellular processes,

enzyme functions, and immune functions (16). Zinc has been

associated with growth (17, 18), the immune system (19, 20),

and cognitive development (21) in infants. Therefore, ensuring

optimal maternal zinc status during lactation is crucial for

supporting infant growth.

The Nutritional Intervention Preconception and During

Pregnancy to Maintain Healthy Glucose Metabolism and

Offspring Health (NiPPeR) study was designed to investigate

the effects of an enhanced micronutrient supplement during

preconception and pregnancy on maternal pregnancy outcomes

and infant growth (22). The control and intervention

supplements both contained micronutrients (i.e., calcium,

iron, and iodine) that are part of common pregnancy

supplements. For example, calcium plays a role in fetal

bone formation, and enzyme and hormone functioning,

and supplementation during pregnancy has been associated

with reduced risks of preeclampsia and preterm birth (23).

Iodine is essential for maternal and fetal thyroid hormone

production, and its deficiency increases the risks of infant

mortality and intellectual impairment (24, 25). Iron deficiency

during pregnancy may lead to anemia in mothers, which

has been associated with low birth weight and preterm birth

(26). The intervention supplement contained additional

micronutrients, including zinc. Overall, understanding the

factors that influence HM mineral concentrations, such as

maternal micronutrient supplement use and lactation stage,
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TABLE 1 Detailed nutrient composition of the intervention and control drinks in the NiPPeR study.

Group Nutrient Intervention Control Daily dose Recommended
range#

Minerals Calcium (as
calcium-L-lactate)

X X 150mg 700–1,300 mg

Iodine (as potassium
iodide)

X X 150 µg 140–220 µg

Iron (as ferric
pyrophosphate)

X X 12mg 14.8–27 mg

Zinc (as zinc glycinate
chelate)

X x 10mg 7–15 mg

Vitamins A (β-carotene) X X 720 µg 700–750 µg

B2 (riboflavin) X x 1.8mg 1.38–1.46 mg

B6 (pyridoxine) X x 2.6mg 1.2–1.9 mg

B9 (folic acid) X X 400 µg 300–600 µg

B12 (cobalamin) X x 5.2 µg 1.5–2.6 µg

D3 (cholecalciferol) X x 400 IU (10 µg) 5–10 µg

Other Myo-inositol X x 4 g n/a

Lactobacillus

rhamnosus∗

X x >1× 109 CFU n/a

Bifidobacterium animalis

ssp. lactis†
X x >1× 109 CFU n/a

#Recommended ranges for daily intake during pregnancy according to the reference nutrient intake for the UK (4), recommended dietary allowance for Singapore (5), and recommended

daily intake for New Zealand (6).
∗NCC 4007 (CGMCC 1.3724).
†NCC 2818 (CNCM I-3446).

CFU, colony-forming units; n/a, not applicable.

is essential to ensure optimal nutrition status in breastfeeding

mothers and breastfed infants.

The aim of the present study was to assess the effects

of the intervention supplement taken during preconception

and pregnancy on subsequent HM zinc and other mineral

concentrations. Moreover, the longitudinal changes in HM

minerals (zinc, calcium, copper, iodine, iron, magnesium,

manganese, phosphorus, potassium, selenium, and sodium) in

the first year of lactation were analyzed. We hypothesized

that (i) zinc supplementation during preconception/pregnancy

would influence HM zinc concentrations during lactation,

and (ii) HM concentrations of zinc and other minerals

would have differing patterns of change over 12 months

of lactation.

2. Materials and methods

2.1. Study design

The detailed protocol for the NiPPeR study

(ClinicalTrials.gov, identifier: NCT02509988, Universal

Trial Number U1111-1171-8056; registered on 16 July 2015) has

been published previously (22). In brief, the NiPPeR study was

a double-blind, randomized controlled trial investigating the

effects of a nutritional supplement taken from preconception

and during pregnancy on maternal pregnancy and infant

outcomes. The control supplement comprised of standard

amounts of micronutrients that are present in supplements

commonly used during pregnancy including calcium, iron,

iodine, folic acid, and β-carotene (Table 1). In addition to these

nutrients, the NiPPeR intervention supplement contained

vitamins B2, B6, B12, and D, as well as zinc, myo-inositol, and

probiotics (Table 1). Importantly, zinc was the only mineral

present in the intervention supplement, but not in the control

supplement. The study supplements were packaged as a powder

in sachets, and were taken twice daily as a drink reconstituted

with water. Adherence to the study drinks was ascertained by

sachet counting, with good adherence defined as at least 60% of

the sachets taken (27). The study was conducted in Southampton

(UK), Singapore, and Auckland (New Zealand), with ethics

approval obtained at each site [Southampton—Health Research

Authority National Research Ethics Service Committee South

Central Research Ethics Committee (15/SC/0142); Singapore—

the National Healthcare Group Domain Specific Review Board

(2015/00205); and New Zealand—Northern A Health and

Disability Ethics Committee (15/NTA/21)]. All participants

provided written informed consent.
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FIGURE 1

CONSORT diagram for number of human milk (HM) samples analyzed for mineral concentrations in the NiPPeR study. Reasons for exclusion

during the preconception phase have been published previously (27), while reasons for exclusion during pregnancy and birth in Singapore (SGP)

and New Zealand (NZL) are provided in Supplementary Table 2. There were no HM samples collected in the United Kingdom (UK), so all

participants from that site were excluded from this diagram. *Number of participants who provided at least one HM sample during 12 months of

lactation. †Number of participants who provided at least one HM sample during the first 3 months of lactation.
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TABLE 2 Number of longitudinal humanmilk (HM) samples collected per participant in the first 3 months of lactation in Singapore and New Zealand.

HM samples (n) Control Intervention

Overall Singapore New Zealand Overall Singapore New Zealand

0 27 – 27 33 – 33

1 22 3 19 16 2 14

2 25 9 16 18 7 11

3 23 8 15 27 12 15

4 73 58 15 74 59 15

Total 170 78 92 168 80 88

2.2. Study participants

Participants were recruited by self-referral after study

information was disseminated through local and social media

advertisements. The full inclusion, exclusion, and withdrawal

criteria have been reported previously (22), and are provided in

Supplementary Table 1. Briefly, women aged 18–38 years who

were planning to conceive within 6 months were eligible for

the study and withdrawn if they had not conceived within 12

months. Eligible participants were randomized in a 1:1 ratio

to either the control or the intervention group through the

electronic study database (22), and stratified by site and ethnicity

to ensure balanced allocation of participants.

2.3. Human milk sample collection

HM samples were collected only in Singapore for 3 months

of lactation (from July 2016 toMarch 2019) andNew Zealand for

up to 12months of lactation (fromMay 2017 to November 2019)

(Figure 1). Samples were collected at 1 week ± 3 days, 3 weeks

± 5 days, 6 weeks ± 5 days, and 3 months ± 10 days (4 time

points); in New Zealand, there were additional HM collections

at 6 months ± 14 days, 9 months ± 14 days, and 12 months ±

14 days (7 time points overall). In Singapore, samples could only

be collected until 3 months due to logistical constraints. HM

samples were collected in the morning, and mothers were asked

to refrain from breastfeeding for 2 h prior to collection from the

unilateral breast from where samples would be collected. Whole

HM samples were collected from a single breast using an Ameda

Lactaline breast pump (Ameda, Inc, Murarrie, Australia). The

breast was pumped for 15min or until fully emptied, under the

supervision of a trained staff. Soon after collection, HM samples

were vortexed for homogenization, divided into aliquots and

then stored at −80◦C until analysis. HM samples were not

collected if the mother refused, had ceased breastfeeding, her

milk supply was low, or there were complications with milk

expression. The total number of samples collected at each time

TABLE 3 Number of longitudinal human milk (HM) samples collected

in New Zealand during 12 months of lactation.

HM samples (n) Control Intervention

1 21 16

2 17 17

3 10 20

4 13 7

5 11 12

6 13 11

7 7 5

Total 92 88

point are outlined in Figure 1. The number of participants with

longitudinal samples to 3 months of lactation is summarized

in Table 2, and to 12 months of lactation in New Zealand

in Table 3.

2.4. Human milk mineral quantification

HM mineral quantification was carried out by ALS

Scandinavia AB (Luleå, Sweden). HM calcium, cobalt, copper,

iron, potassium, magnesium, manganese, sodium, nickel,

phosphorus, selenium, and zinc were quantified using sector

field inductively coupled plasma mass spectrometry (SF-ICP-

MS), ELEMENT 2 (Thermo, Bremen, Germany) equipped

with an ASX 500 sample changer (CETAC Technologies

Inc., Omaha, USA), using a modified version of methods

described by Rodushkin et al. (28, 29), with the sample

intake for the microwave-assisted acidic decomposition reduced

to 0.2mL. Briefly, HM samples (0.2mL), were transferred

in perfluoroalkoxy polymer lined vessels and mineralized

with a microwave oven (MDS-2000, CEM Corporation,

Matthews, USA) using analytical grade nitric acid (Merck,
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Darmstadt, Germany) after additional purification by sub-

boiling distillation in a quartz still. After mineralization, the

resulting solutions were diluted with Milli-Q water (Millipore

Milli-Q, Bedford, USA) and spiked with internal standard

solution containing scandium, indium, and lutetium. Iodine was

also quantified using SF-ICP-MS ELEMENT 2 with an ASX

500 sample changer, but following the instrumental method by

Engström et al. (30). Sample preparation was slightly modified

from Krachler et al. (31) using the alkaline reagent composition

given by Engström et al. (30) and a dilution factor of 1:50. Briefly,

prior to ICP-MS analysis, HM samples were diluted (with a

dilution factor of 1:50) with alkaline diluent containing 0.01M

ammonia (Suprapur, Merck), 0.2mM (NH4)2EDTA (Fluka)

and 0.07% Triton X-100 (Merck). All intra- and inter-assay

coefficients of variation were <10%.

2.5. Statistical analyses

Mineral concentration measurements below the lower level

of quantification (LLoQ) were assigned a value of 0.5 × LLoQ

(Supplementary Table 3). To minimize the removal of values

from the data set, we adopted a conservative approach defining

extreme values (i.e., outliers) as measurements outside the mean

± 5 standard deviations (SD) range. There were no values below

mean – 5 SD range, but for someminerals there were a few values

greater than the mean + 5 SD classified as extreme values (i.e.,

>99.99997th percentile) (Supplementary Table 3) and removed

from analyses. It was not possible to undertake reliable statistical

analyses on cobalt and nickel as a large proportion of values were

below the LLoQ (41.4 and 83.0%, respectively). For all other

minerals, data were log-transformed to approximate a normal

distribution, then back-transformed for reporting.

Potential intervention effects onHMmineral concentrations

were only examined on the samples collected in the first 3

months of lactation, which were collected in both Singapore and

New Zealand. In a sensitivity analysis this was also assessed in

a subgroup of participants who provided consecutive samples

across the 4 time points in the first 3 months. Data were

analyzed using linear mixed models with a repeated measures

design. Parameters included were randomization group, visit,

their interaction term (group∗visit), and study site, as well as

adherence to the study protocol, maternal pre-pregnancy body

mass index (BMI), and gestational age at birth as covariates. The

participant’s study ID was also included as a random factor to

account for the multiple measurements on the same individual

(non-independence). If the interaction term was statistically

significant, between-group comparisons were only reported on

a per-visit basis.

The time-weighted area-under-the-curve (TwAUC) was also

calculated for each participant who had at least 3 valid HM

measurements within the first 3 months of lactation, using the

following formula:

TwAUC =
AUC

aget − age0
(1)

where age0 and aget were the infant’s ages when the first and

last measurements used in the AUC were collected, respectively.

TwAUC data were analyzed using general linearmodels adjusted

for study site, adherence, maternal pre-pregnancy BMI, and

gestational age at birth.

Subgroup analyses were also performed to examine potential

treatment effects over the first 3 months of lactation separately

for Singapore and New Zealand. Temporal changes in HM

minerals from 1 week to 12 months of lactation were plotted

and reported for the New Zealand site only. These were also

examined in a subgroup of New Zealand participants who

provided HM samples for at least five out of six time points

between 3 weeks and 12 months.

Study outcomes are reported as the back-transformed least-

squares means (i.e., adjusted means) for each group or the

adjusted mean differences (aMD) between groups, and their

respective 95% confidence intervals (CI). Note that the aMD

for back-transformed values represent proportional differences

between groups. Statistical analyses were carried using SAS

version 9.4 (SAS Institute Inc., Cary, NC, USA) and graphs

created with GraphPad Prism version 8.2.1 (GraphPad Software,

San Diego, California USA). All statistical tests were two-sided

with significance maintained at p < 0.05, without adjustments

for multiple comparisons or imputation of missing values.

3. Results

3.1. Study population

At Singapore and New Zealand sites combined, 387

participants continued to postpartum stage of the study, of

which 338 participants (87.3%) provided at least one HM sample

during the study period (Figure 1). Maternal demographic and

pre-pregnancy BMI characteristics were similar in control and

intervention groups (Table 4), noting that participants were

mostly Chinese in Singapore and Caucasian in New Zealand

(Supplementary Table 4). Adherence to the study drinks was

high and averaged at about 87% consumption for both groups.

The mean (±SD) duration of supplementation was 405 ±

105 days in the control group and 393 ± 98 days in the

intervention group. Passive smoking during pregnancy was

more common among controls than in the Intervention group

(19.4 vs. 9.5%, respectively; p = 0.013) [comparison made with

a Fisher’s exact test]. Other pregnancy and birth outcomes

were also similar between the two groups overall (Table 4)

and within sites (Supplementary Table 4). The characteristics for

the subgroup who provided HM samples were similar to the

total group of participants from Singapore and New Zealand

Frontiers inNutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2022.1034828
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Han et al. 10.3389/fnut.2022.1034828

TABLE 4 Baseline and perinatal characteristics of participants in the

NiPPeR study who provided at least one human milk sample in 12

months of lactation.

Overall (n = 338)

Control Intervention

n 170 (50.3%) 168 (49.7%)

Adherence (%) 87.4± 11.2 86.9± 13.4

Duration of
supplementation (days)

405± 105 393± 98

Age at delivery (years) 31.9± 2.9 32.4± 3.2

Maternal pre-pregnancy
BMI (kg/m2)

24.4± 5.2 23.4± 4.4

Ethnicity

Caucasian 70 (41.2%) 67 (39.9%)

Chinese 70 (41.2%) 69 (41.1%)

South Asian 10 (5.9%) 10 (6.0%)

Malay 10 (5.9%) 10 (6.0%)

Other 10 (5.9%) 12 (7.1%)

Maternal pre-pregnancy BMI status

Underweight or
normal weight

100 (58.8%) 103 (61.3%)

Overweight 41 (24.1%) 48 (28.6%)

Obesity 29 (17.1%) 16 (9.5%)

Missing – 1 (0.6%)

Highest level of education

Bachelor’s degree or
higher

137 (80.6%) 136 (81.0%)

Lesser qualification∗ 33 (19.4%) 32 (19.0%)

Household income quintile

5 (lowest) 4 (2.4%) 1 (0.6%)

4 12 (7.1%) 16 (9.5%)

3 44 (25.9%) 43 (25.6%)

2 60 (35.3%) 55 (32.7%)

1 (highest) 44 (25.9%) 43 (25.6%)

Missing 6 (3.5%) 10 (6.0%)

Smoking during pregnancy

None 134 (78.8%) 148 (88.6%)

Passive 33 (19.4%) 16 (9.6%)

Active 3 (1.8%) 3 (1.8%)

Missing – 1 (0.6%)

GDM

No GDM 126 (74.1%) 125 (74.4%)

GDM 42 (24.7%) 43 (25.6%)

Missing 2 (1.2%) –

(Continued)

TABLE 4 (Continued)

Overall (n = 338)

Control Intervention

Hypertension/pre-eclampsia

No 167 (98.8%) 165 (98.2%)

Yes 2 (1.1%) 3 (1.8%)

Missing 1 (0.6%) –

Mode of delivery

Vaginal delivery 125 (73.5%) 119 (70.8%)

Cesarean section 44 (25.9%) 49 (29.2%)

Missing 1 (0.6%) –

Infant gestational age

Gestational age (weeks) 39.1± 1.6 39.2± 1.5

Preterm 14 (8.2%) 11 (6.5%)

Term or post-term 156 (91.8%) 157 (93.5%)

Infant birth weight

Birth weight (kg) 3.24± 0.54 3.23± 0.53

Appropriate for
gestational age

144 (84.7%) 143 (85.1%)

Small for gestational
age

16 (9.4%) 19 (11.3%)

Large for gestational
age

10 (5.9%) 6 (3.6%)

Parity

Primiparous 114 (67.1%) 95 (56.5%)

Multiparous 56 (32.9%) 73 (43.5%)

Infant sex

Male 76 (44.7%) 79 (47.0%)

Female 94 (55.3%) 89 (53.0%)

Data are n (%) or mean ± standard deviation (SD). Adherence to the study protocol

was determined by sachet counting. Duration of supplementation calculated by counting

the number of days from randomization date to delivery date. Body mass index (BMI)

status was defined using ethnic-specific thresholds for BMI categories: for Asians, under

or normal weight <23.0 kg/m2 , overweight 23.0–27.49 kg/m2 , obesity ≥27.5 kg/m2 ; for

non-Asians, under or normal weight<25.0 kg/m2 , overweight 25.0–29.99 kg/m2 , obesity

≥30.0 kg/m2 . Gestational diabetes (GDM) was defined by International Association of

Diabetes and Pregnancy Study Groups criteria (59). Gestational age was determined using

a pre-specified algorithm as previously described (60) with preterm defined as birth <37

weeks of gestation, and term or post-term as birth at ≥37 weeks of gestation. ∗Including

incomplete and complete high school qualifications, and other tertiary level qualifications

below bachelors (e.g., diploma or certificate).

sites who continued to the postpartum stage of the study

(Supplementary Table 5).

3.2. Impact of intervention on zinc and
other minerals

The mean HM zinc concentrations over the first 3

months of lactation were 11% higher in the intervention

Frontiers inNutrition 07 frontiersin.org

https://doi.org/10.3389/fnut.2022.1034828
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Han et al. 10.3389/fnut.2022.1034828

TABLE 5 Mineral concentrations in human milk (HM) over the first 3 months of lactation in the intervention and control groups.

Mineral Intervention Control aMD p-value

Zn (µg/L)∗ 2,490 (2,338, 2,652) 2,246 (2,111, 2,388) 1.109 (1.016, 1.210) 0.021

Calcium (mg/L)† 286 (277, 296) 287 (278, 297) 0.996 (0.951, 1.043) 0.868

Copper (µg/L) 386 (373, 400) 387 (374, 401) 0.997 (0.949, 1.048) 0.910

Iodine (µg/L)† 113 (106, 122) 117 (109, 125) 0.972 (0.883, 1.070) 0.562

Iron (mg/L)† 0.25 (0.24, 0.27) 0.25 (0.23, 0.26) 1.028 (0.952, 1.110) 0.485

Magnesium (mg/L) 29.1 (28.3, 29.9) 28.6 (27.8, 29.3) 1.018 (0.981, 1.057) 0.339

Manganese (µg/L) 2.55 (2.39, 2.72) 2.42 (2.27, 2.58) 1.053 (0.963, 1.152) 0.257

Phosphorus (mg/L) 153 (148, 158) 150 (145, 155) 1.021 (0.975, 1.068) 0.375

Potassium (mg/L) 544 (534, 555) 548 (539, 558) 0.993 (0.968, 1.019) 0.584

Selenium (µg/L) 16.5 (16.0, 17.0) 16.6 (16.2, 17.1) 0.990 (0.952, 1.030) 0.626

Sodium (mg/L) 143 (135, 152) 148 (140, 157) 0.964 (0.888, 1.047) 0.388

∗Mineral present only in the intervention drink. †Minerals present in both control and intervention drinks. Data are the least-squares mean (i.e., adjusted mean) for each group or

the adjusted mean difference (aMD) and respective 95% confidence intervals derived from repeated measures analyses, adjusted for visit, an interaction term (group∗visit), study site,

adherence, maternal pre-pregnancy body mass index, and gestational age at birth. All data have been log-transformed to approximate a normal distribution, and then back-transformed,

so the aMD represents a proportional difference between groups (i.e., intervention vs. control). Bold font indicates a statistically significant difference between groups (at p < 0.05).

TABLE 6 Time-weighted area-under-the-curve for zinc concentrations (µg/mL/day) in human milk samples collected in the NiPPeR study between

birth and 3 months of age.

Site Sample size
(intervention/control)

Intervention Control aMD p-value

Overall 100/96 2,399 (2,252, 2,546) 2,163 (2,013, 2,314) 236 (34, 437) 0.022

Singapore 70/66 2,754 (2,583, 2,926) 2,473 (2,297, 2,650) 281 (33, 529) 0.027

New Zealand 30/30 2,083 (1,835, 2,331) 1,857 (1,608, 2,105) 226 (−132, 585) 0.211

Data are the least-squares means (i.e., adjusted means) for each group or the adjusted mean differences (aMD) and respective 95% confidence intervals, adjusted for group, visit, study site,

adherence, maternal pre-pregnancy body mass index, and gestational age at birth. Bold font indicates a statistically significant difference between groups (at p < 0.05).

than in the control group (p = 0.021; Table 5), with a

similar difference observed for the TwAUC (p = 0.022;

Table 6). When zinc concentrations at individual visits were

examined, the difference between groups was most evident at 6

weeks: 2,126µg/L (95% CI 1,962, 2,304) and 1,790µg/L (95% CI

1,654, 1,938) in the intervention and control groups, respectively

(p = 0.003; Figure 2A). The intervention effect on HM zinc

was also present in the subgroup of mothers who had all four

consecutive samples examined in the first 3 months (n = 147,

data not shown).

As expected, for other HM minerals not differently

supplemented between the groups, there were no observed

differences between the intervention and control groups in the

first 3 months of lactation (Figures 3A–J). The exceptions were

isolated (and likely random) findings on magnesium at 1 week

(Figure 3E) and sodium at 3 weeks (Figure 3J).

In analyses stratified by site, among the 158 Singapore

mothers, average zinc concentrations over the first 3 months

were 15% higher in the intervention group compared to controls

(p = 0.015), as also observed for the TwAUC (p = 0.027;

Table 6). This difference was also most evident at 6 weeks [2,364

µg/L (95% CI 2,132, 2,621) vs. 1,919 µg/L (95% CI 1,729,

2,131), respectively; p = 0.006] (Figure 2B). No differences in

zinc concentrations were detected in the 180 New Zealand

mothers, likely due to a smaller number of participants in the

first 3 months, although a similar pattern overall was observed

(Figure 2C).

3.3. Changes in minerals over time in
New Zealand (0–12 months)

Zinc concentrations in HM in New Zealand decreased

markedly over the first 3 months of lactation and continued

to decline until 12 months (Figure 4). In both control and

intervention groups, zinc concentration peaked at 1 week

[4,452 µg/L (95% CI 3,659, 5,416) and 4,781 µg/L (95% CI

3,987, 5,734), respectively], with an ∼4.5-fold reduction by 3

months in each group [1,057 µg/L (95% CI 930, 1,201) and

1,020 µg/L (95% CI 901, 1,156), respectively] (Figure 4). Zinc

concentrations continued to decline and reached a nadir at 12

months at the end of our HM collection period [340 µg/L (95%

CI 392, 295) and 365 µg/L (95% CI 423, 315), respectively]

(Figure 4).
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FIGURE 2

Zinc concentrations in human milk of control ( ) and intervention ( ) groups in the NiPPeR study during the first 3 months of lactation: (A)

Overall, (B) Singapore, and (C) New Zealand. Data are the least-squares means (i.e., adjusted means) for each group, adjusted for visit, an

interaction term (group*visit), study site, adherence, maternal pre-pregnancy body mass index, and gestational age at birth; error bars represent

the respective 95% confidence intervals. **p < 0.01 for the di�erence between intervention and control groups at a given time point. The

number of HM samples per group analyzed at a given time point are provided in the tables below the x axes.

For other minerals, different patterns of change were

observed over time (Figure 5; Supplementary Table 6). Calcium

and copper concentrations progressively decreased throughout

12 months of lactation, while iodine remained stable throughout

the study period (Figure 5). Concentrations of iron, potassium,

sodium, and phosphate gradually declined until 6 months, but

then remained relatively constant until 12 months (Figure 5). In

contrast, magnesium concentrations increased during the first

3 months of lactation but were largely unchanged thereafter

(Figure 5). The concentrations of manganese and selenium fell

over the initial months of lactation, with a nadir observed at

6 months, and increasing concentrations thereafter (Figure 5).

The patterns of temporal changes in HM minerals were

unchanged across all groups when assessed in a subset of New

Zealand participants from whom HM samples were collected in

at least five of the six visits between 3 weeks and 12 months (data

not shown).

4. Discussion

The present study showed that the NiPPeR intervention

supplement containing zinc starting before conception and

taken throughout pregnancy increased subsequent HM zinc

concentrations compared to a control supplement without zinc.

Overall, the effect was most evident at 6 weeks and persisted

throughout the first 3 months of lactation. This effect was more

evident in Singapore than in New Zealand, perhaps due to a

smaller sample size early in lactation at the latter site.

To the best of our knowledge, this is the first study

examining the impact of zinc supplementation prior to as

well as during pregnancy on HM zinc concentrations, with

most previous intervention studies beginning well into the

first trimester of pregnancy. A study in Indonesian women

observed no effects of zinc supplementation (30 mg/day) during

pregnancy (from before 20 weeks gestation until delivery)

on HM zinc concentrations at the first and sixth months

of lactation, although the direction of change was similar

to that observed in the present study (32). In contrast, in

the current study, we demonstrated a 19% increase in HM

zinc concentrations at 6 weeks of lactation as a result of

zinc supplementation (10 mg/day) taken before and during

pregnancy. Such effects of supplementation may not have been

detected in the previous study due to lack of intervention during

preconception, a smaller sample size as compared to the present

study, and lack of a HM collection time point at 6 weeks where

we observed the peak difference. The authors of the Indonesian

study acknowledged that wide variation in the single HM sample

collected at any time across the first month of lactation could

have masked the intervention effect (32), as zinc concentrations

dynamically change during this time as we have observed

(Figure 2). Nevertheless, both studies indicate that pregnancy

zinc supplementation does not influence HM concentrations at

6months of lactation, as the pregnancy intervention effect would

be expected to decline postnatally over time.

Previous studies reported no associations between maternal

zinc intake or plasma zinc at the time of lactation and HM

zinc concentrations (2, 33–36). It has been suggested that

HM zinc concentrations are maintained through mobilization

of maternal zinc pools during lactation (3). For example,

previous studies have observed increased intestinal zinc

absorption during lactation compared to preconception (37)

or early pregnancy (38). Also, active zinc transport has been

suggested to be tightly regulated in the mammary gland

(3, 39). Zinc transporters (ZnTs) are localized throughout

the body including the intestines, bone, and the mammary

gland (40). ZnT2 and ZnT4 are predominantly found in

the mammary glands. Studies have identified increased gene
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FIGURE 3

Mineral concentrations in human milk of control ( ) and intervention ( ) groups in the NiPPeR study during the first 3 months of lactation: (A)

calcium, (B) copper, (C) iodine, (D) iron, (E) magnesium, (F) manganese, (G) phosphorus, (H) potassium, (I) selenium, and (J) sodium. Data are

the least-squares means (i.e., adjusted means) for each group, adjusted for visit, an interaction term (group*visit), study site, adherence, maternal

pre-pregnancy body mass index, and gestational age at birth; error bars represent the respective 95% confidence intervals. *p < 0.05 for a

di�erence between intervention and control groups at a given time point. The number of HM samples per group analyzed at a given time point

are provided in the tables below the x axes.
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FIGURE 4

Zinc concentrations in human milk from control ( ) and

intervention ( ) groups in New Zealand in the NiPPeR study

during 12 months of lactation. Data are the least-squares means

(i.e., adjusted means) for each group adjusted for visit, a

group*visit interaction term, adherence, maternal

pre-pregnancy body mass index, and gestational age at birth;

error bars represent the respective 95% confidence intervals.

The number of HM samples per group analyzed at a given time

point are provided in the tables below the x axes.

expression of ZnT4 in mammary glands of rodents during

lactation (41–43) and ZnT2 in human breast cell lines

(39, 44). In the NiPPeR intervention group, the estimated

cumulative exposure of zinc was 3,416mg, considering the

prescribed dose (10 mg/day), average duration, and average

adherence rate (86.9%). Zinc acquired and stored in the body

during preconception and pregnancy through supplementation

could have contributed to HM zinc concentrations in the

intervention group. For example, ∼30% of total body zinc

is found in bone (11) and over the first 6 months of full

lactation, 4–6% of bone mass is lost, enabling maternal bone

to contribute ∼20% of HM zinc (45). Hence, it can be

speculated that in the NiPPeR study, zinc supplementation

during preconception and pregnancy led to greater storage in

bone and other maternal tissues that contributed to increased

HM zinc concentrations.

In addition, we have observed higher HM zinc

concentrations in the Singapore site compared to the New

Zealand site. We speculate this could be due to differences

in dietary patterns during pregnancy, potentially resulting in

different amounts of dietary zinc stored in the body that can

contribute to HM zinc during lactation.

It is unknown if other factors such as smoking during

pregnancy influence HM composition. In the current study,

passive smoking rates during pregnancy were higher in the

control group than in the intervention group. When smoking

was adjusted for in our model assessing intervention effects

on HM mineral concentrations (including zinc), smoking

(predominantly passive) during pregnancy was not associated

with HM mineral concentrations and did not alter the

overall intervention effect on HM zinc (data not shown).

However, mother’s smoking behavior might change after

delivery and unavailability of smoking rates during lactation

in the current study limits our understanding of potential

effects of smoking on HM minerals. Nonetheless, previous

studies reported no difference in HM zinc concentrations

between smoking and non-smokingmothers (46, 47). Therefore,

this is expected to have limited impact on the observed

intervention effect on increased HM zinc concentrations in the

current study.

HM zinc concentrations progressively decline throughout

lactation, which may be due to changes in transport activity

or maternal dietary intake, although the latter is less likely.

Previously, Silvestre et al. (48) showed that zinc concentration

in unsupplemented women was the highest in colostrum at

7,990 ± 3,230 µg/L, which decreased to 1,050 ± 710 µg/L by

day 90. Similarly, Djurovic et al. (45) reported a decrease in

zinc concentration from 4,700 ± 1,740 µg/L at day 1 to 460 ±

360 µg/L at 6 months. These concentrations are comparable to

those in our study at the respective time points. Here, beyond 6

months, HM zinc concentrations continued to steadily decrease

until 12 months of lactation, which has also been described

previously (49).

While previous studies have examined HM mineral

concentration only for a short period of time, ranging from few

weeks to 6 months of lactation, we were able to describe patterns

in HM zinc and other mineral concentrations for a longer

lactation period, until 12 months. Changes in HM mineral

concentrations over lactation may reflect different roles of these

minerals at different stages of infancy.

It was reported previously that HM calcium concentrations

increase in the first 6 weeks of lactation (50, 51). We observed

that not only calcium but also magnesium increases within

the first 3 months then steadily decreases until 12 months

of lactation. Such higher concentrations of HM calcium and

magnesium may promote bone formation in early infancy (50).

As reported previously, we also observed decreases in HM

copper (49, 52, 53), iron (54, 55), phosphorus (50), potassium

and sodium (55–57) over the first 6 months of lactation. Beyond

this time, copper concentrations steadily decreased while iron,

phosphorus, potassium, and sodium concentrations remained

relatively stable until 12 months of lactation. On the other hand,

iodine concentrations were reported to remain constant in the

first 8 weeks of lactation (58); similarly, we observed that beyond

this time point, it continued to remain unchanged throughout 12

months of lactation.

There are limited studies that have investigated changes

in HM manganese and selenium concentrations over time.

Both were reported to decrease in the first 4 months for

manganese (49) and in the first month for selenium (52). We
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FIGURE 5

Mineral concentrations in human milk from control ( ) and intervention ( ) groups in New Zealand in the NiPPeR study during 12 months of

lactation: (A) calcium, (B) copper, (C) iodine, (D) iron, (E) magnesium, (F) manganese, (G) phosphorus, (H) potassium, (I) selenium, and (J)

sodium. Data are the least-squares means (i.e., adjusted means) for each group adjusted for visit, a group*visit interaction term, adherence,

maternal pre-pregnancy body mass index, and gestational age at birth; error bars represent the respective 95% confidence intervals. **p < 0.01

for the di�erence between intervention and control at a given time point. The number of HM samples per group analyzed at a given time point

are provided in the tables below the x axes.
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demonstrated similar initial falls in manganese and selenium

over the initial months of lactation, with a nadir at 6 months,

and increasing concentrations thereafter. How these changes in

HM manganese and selenium relate to the developmental stage

of the infant and their implications for infant outcomes requires

further investigation.

5. Strengths and limitations

This study investigated the impact of nutritional

supplementation during preconception and pregnancy on

HM mineral composition during lactation. An international,

multicenter design allowed the investigation of HM mineral

composition in a large population of diverse ethnic

groups. The Singapore and New Zealand study sites used

standardized sample collection, processing, storage and

mineral quantification methods, minimizing any potential

variations that might have occurred during these processes.

In addition, as we have tightly controlled the visit windows,

so each HM collection time point was at a distinctive stage of

lactation, making it possible to describe the changes in HM

mineral concentration between the different stages of lactation.

However, due to logistical constraints, longitudinal samples

could not be collected from every participant. To address

the imbalance in the number of samples at each time point, a

repeated measures design was used for statistical analyses. While

maternal diet and use of other supplements during lactation was

not considered in this study, previous studies reported that HM

zinc concentrations are not associated with dietary zinc intake

(33). Therefore, other dietary sources of zinc are expected to

have limited impact on HM concentrations in the current study.

6. Conclusions

This study showed that maternal supplementation of zinc

from as early as preconception and pregnancy influences HM

zinc concentrations during lactation. This ensures not only

adequate maternal zinc status during these times but also

adequate zinc transfer to the infants via HM. In the future,

ongoing evaluation of offspring from this cohort will help to

understand the associations between HM zinc concentrations

and both short- and long-term offspring outcomes.
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