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Fermented minced peppers are a traditional fermented food that has

a unique flavor due to various microbial communities involved in

fermentation. Understanding the changes in microbial communities and

volatile components of fermented minced peppers is particularly important

to unveil the formation of unique flavor of fermented peppers. In this

study, the microbial communities and volatile compounds in fermented

minced pepper was analyzed by high-throughput sequencing and GC-

MS, as well as their underlying correlations were also established. Results

indicated that 17 genera were identified as dominant microorganisms in

the fermentation of minced pepper, accompanied by the detection of 64

volatile compounds. Further hierarchical clustering analysis (HCA) displayed

that dynamic change of volatile metabolites were involved in the fermentation

process, where alkane volatile components were mainly generated in the

early stage (3–5 days), and alcohols volatile components were in the middle

stage (7–17 days), while ester volatile components were mainly produced

in both the early stage (3–5 days) and last stage (17–20 days). Bidirectional

orthogonal partial least squares (O2PLS) analysis revealed that 11 genera were

core functional microorganisms of fermented minced pepper. Cladosporium

and Hansenpora were significantly correlated with the formation of 9 and

6 volatiles, respectively. These findings provide new insights into aroma

profile variation of fermented minced peppers and underlying mechanism of

characteristic aroma formation during fermentation.
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Introduction

Fermented minced pepper, a traditional fermented vegetable
in the southern region of China, is widely consumed due to
its nutritional and sensory properties (1). Aroma is one of
the key criteria to evaluate the quality of fermented minced
peppers, together with its appearance and taste. Alcohol,
ester, and ketone compounds are regarded as the critical
components in fermented peppers, which determine its special
favor (2, 3). Numerous factors contribute to the quality
of fermented peppers, such as biological origin, substrate
conditions, microbial composition, and processing methods.
Specifically, the composition of used substrates and fermentative
microorganisms are the main factors (4). During the natural
fermentation, microorganisms play a critical role in generating
special flavor characteristics of fermented peppers via complex
physiochemical reaction of secondary metabolites (5, 6).

In recent years, large numbers studies have been conducted
to dig out the underlying mechanism and correlation between
microorganisms and aroma and sensory characteristics of
fermented food, such as Fu brick tea, cheese, and fermented
bamboo shoots, etc. Li et al. (7) has explored the key aroma
compounds and microorganisms, and the relationship
between volatiles, sensory descriptors and microorganisms
of Fu brick tea during processing, and found Aspergillus,
Candida, Debaryomyces, Penicillium, Unclassified_k_Fungi,
Unclassified_o_Saccharomycetales genera six fungal genera
were identified as core functional microorganisms associated
with volatile metabolism (7). Zheng et al. (8) identified
eight bacterial genera and seven fungal genera was the core
microbiota for flavor production of cheese (8). Guan et al.
(9) found that Lactobacillus, Clostridium, Enterobacter, and
Akebia play a crucial role in the formation of the unique
flavor formation of suansun by investigating the dynamics of
physicochemical parameters, flavor compounds and microbial
communities during the natural production of sour bamboo
shoots (9). Nature microbial community determines the
formation of volatile components of fermented peppers and the
quality of product (10). To standardize fermentation and avoid
undesirable substance of fermented peppers, it is urgent to apply
pure starter cultures instead of traditional natural fermentation.
Therefore, it is vital to elucidate the key microbial community
in traditional fermented peppers in China, which determine
favor aroma and desirable properties of fermented peppers. So
far most of the studies have mainly focused on the composition
of volatile compounds in traditional Chinese fermented minced
peppers or the differential volatile compounds between raw
material and finished products. However, the information of
the correlation between microbial diversity and flavor profile of
fermented minced pepper was still insufficient.

In this study, fermented minced pepper was studied
to (a) investigate the bacterial and fungal community
during the fermentation process using a high-throughput

sequencing method, (b) monitor the changes in volatile flavor
components during fermentation using gas chromatography-
mass spectrometry, and (c) assess the correlation between
volatile flavors and microbial communities during fermentation
using bidirectional orthogonal partial least squares (O2PLS)
regression. Those findings were valuable for gaining insight
into the mechanisms of aroma formation in fermented minced
pepper, and improving the quality of fermented minced peppers
with desirable sensory properties.

Materials and methods

Preparation of fermented minced
pepper

Fresh Capsicum annuum L. Var. Dactylus M were cleaned,
minced, salted with 8% (w/w) salt, placed in 24 sterile pickle jars
with the same mass, covered, sealed with water, and fermented
in a 20◦C incubator. To study the changes in microbial diversity
during fermentation, three Mason jars were removed at the
same time on days 3, 5, 7, 9, 11, 14, 17, and 20 of fermentation
for aseptic sampling. For sampling, 100 g of each product was
transferred into tubes. minced pepper samples were labeled as 3,
5, 7, 9, 11, 14, 17, and 20 days, and stored at –80◦C. Fresh minced
pepper was labeled as 0 days.

DNA extraction, amplification, and
sequencing

Total DNA was extracted from all samples with
an E.Z.N.A Soil DNA kit (OMEGA, Bio-Tek, USA),
according to the manufacturer’s instructions, and stored
at –20◦C. We used the universal forward primer 27 F (5′-
AGAGTTTGATCCTGGCTCAG-3′) and the reverse primer
533 R (5′-TTACCGCGGCTGCTGGCAC-3′) to amplify the
V1–V3 region of bacterial 16S rDNA gene. We used a broadly
conserved primer set (ITS1 and ITS4) to amplify the ITS
region of fungal ITS rDNA. The 454 Life Sciences primer
B sequence was found within the forward primer ITS1 (5′-
TCCGTAGGTGAACCTGCGG-3′), while the 454 Life Sciences
primer A sequence was found within the reverse primer ITS4
(5′-TCCTCCGCTTATTGATATGC-3′). Each PCR product
was tagged using a specific 10-nt barcode. The PCR reactions
(20 µL) were performed using 5 µM of reverse and forward
primers, 10 ng of template DNA, 2 µL of 2.5 mM dNTPs,
and 2 µL of 5 × fast Pfu master mix. Thermal cycling was
performed as follows: initial denaturation for 2 min at 95◦C,
30 cycles of denaturation for 30 s at 95◦C, annealing for 30 s
at 55◦C, and extension for 30 s at 72◦C. The final extension
was performed at 72◦C for 5 min. The replicated PCR products
were mixed in a PCR tube, visualized on a 2.0% agarose
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FIGURE 1

Dynamics of the relative abundance (A) and abundance (B) of microorganisms at the genus level during the production of fermented minced
peppers.

gel, and purified with an AxyPrep DNA Gel Extraction Kit
(AXYGEN), according to the manufacturer’s instructions.
Prior to sequencing the PCR product, its DNA concentration
was analyzed with a QuantiFluor-ST (Promega, USA) and
its quality was determined with an Agilent 2100 bioanalyzer
(Agilent, USA). The resulting amplicons from each reaction
mix were then mixed, in equimolar proportions, based on
their concentrations. Emulsion PCR was then performed to
produce the amplicon libraries, according to the methods used
by 454 Life Sciences. A 454/Roche A sequencing primer kit
was used on a Roche Genome Sequencer GS FLX Titanium
platform at Shanghai Majorbio Bio-Pharm Technology Co.,
Ltd., (Shanghai, China) to carry out the pyrosequencing
of the amplicons.

Bioinformatics analyses

QIIME (Version 1.171) was used to process the resulting
raw DNA sequences, while the standard barcodes and primer
sets were not included. We trimmed all sequences with quality
scores that were lower than 20, while those sequences with
lengths less than 200 bp, or which possess ambiguous or
homologous base scores less than 6, were removed. We denoised
the pyrosequencing data, identified the chimera, and used
UCHIME (Version 4.2.402) to remove them from the datasets.

1 http://qiime.org/

2 https://www.drive5.com/usearch/manual/uchime_algo.html
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FIGURE 2

Hierarchical clustering analysis (HCA) of microbial abundance during the production of fermented minced peppers. The colors corresponded to
normalized mean levels from low (blue) to high (red).

Once the low-quality sequences were removed, the sequences
of suitable quality were grouped into operational taxonomic
units (OTUs) using USEARCH (Version 6.13) and 0.97 cut-
off settings. The Ribosomal Database Project (RDP) classifier
and NCBI Taxonomy Browser were used to sort the taxonomic
classifications of the resulting sequences.

Extraction of volatile components from
minced peppers

The headspace solid-phase microextraction (HS-SPME)
method was employed to extract the volatile compounds from
the minced pepper samples. The volatile components were
analyzed according to the methods previously described (2).
Samples (30 g each) were blended with 30 ml of distilled water,
and 2 g of the sample was immediately transferred into a 15 ml
SPME vial (Supelco, Bellefonte, PA, USA) followed by addition
of 50 µL 2-octanol (10−6 mol/L) in methanol as an internal
standard. After sample preparation, each vial was placed in
a water bath at 70◦C for 15 min with agitation to reach an
equilibrium state. Subsequently, a fiber coated with 50/30 µm
DVB/CAR/PDMS (Supelco, Bellefonte, PA, USA) was injected
into the vial for 30 min to absorb volatile compounds.

Determination of volatile components
using GC–MS

GC-MS analysis was carried out using a Shimadzu GC-2010
gas chromatograph connected to a QP2010 mass spectrometry
system (Shimadzu Corp., Kyoto, Japan). A DB-Wax fused
silica capillary column (30 m long × 0.25 mm internal
diameter × 0.25 µm film thickness) was used with helium as

3 http://drive5.com/usearch/

the carrier gas at a constant flow rate of 1 ml/min. The heating
gradient program was 40◦C for 2 min, followed by increasing
at 4◦C/min to 80◦C and remaining for 1 min. Thereafter, the
temperature was raised to 240◦C at 3.5◦C/min and held on this
stage for 4 min. Helium (purity 99.999%) carrier gas flow was
at a constant pressure of 2 psi. All mass spectra were acquired
in the electron impact (EI) mode (70 eV ionization energy,
source temperature 225◦C). EI mass spectra ranged from 30 to
550 a.m.u. Volatile compounds were identified by comparing
the mass spectra of the samples with the data system (NIST 08
and WILEY 05). Quantitative results were calculated from the
peak areas of the GC-MS chromatograms.

Statistical analysis

The samples were analyzed in triplicate to generate
results in the physicochemical analyses. Significant differences
were determined using a one-way ANOVA in SPSS 20.0
(International Business Machines Corp., USA). The line graph
was created using OriginPro 2019 (OriginLab Corp., USA).
To study the dynamic succession of microbial communities,
hierarchical clustering analysis (HCA), principal component
analysis (PCA), and Spearman’s correlation coefficient
calculations were performed using OriginPro 2019 (OriginLab,
Inc., USA). The heatmaps and stacked histogram of the relative
abundance of microbes at the genus level were created using
OriginPro 2019 (OriginLab Corp., USA). O2PLS modeling
was used to outline the relationship between the microbiota
and volatile components assessed in this study. This consisted
of a simultaneous projection of both the X and Y matrices
on low-dimension hyper planes. The R2 (close to 1) and Q2

(> 0.4) are both necessary conditions for producing an optimal
model and indicate suitable predictive ability. The O2PLS of
the multivariate analysis was performed using SIMCA 14.1
(Umetrics, Sweden), while the visualized network planning
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The results of principal component analysis (PCA) showed the correlation between microorganisms and fermentation time during the
production of fermented minced peppers.
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FIGURE 4

Heatmap of Spearman rank correlation between microorganisms during the production of fermented minced peppers. Black letters are
bacteria. Red letters are fungi.
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FIGURE 5

Dynamics of the relative proportion of volatiles during the production of fermented minced peppers.

of the Pearson correlation coefficient was conducted using
Cytoscape 3.8.2.

Results and discussion

Dynamics and succession of the
microbial community

A total of 104,784 16S rDNA and 10,781 ITS rDNA valid
reads were generated from nine fermented minced pepper
samples, with a total of 3,844 and 967 OTUs for bacteria and
fungi, respectively, at an identity level of 97%. As showed in
Supplementary Figures 1, 2, Shannon and Simpson diversity
index analysis indicated that bacterial diversity in fermented
minced pepper was initially increased with fermentation time,
and reached maximum at the 9 days. Subsequently, decreased
as fermentation prolonged (Supplementary Figure 1). On the
other hand, fungal diversity was most abundant in initial time
and gradually decreased from 0 to 7 days as fermentation
proceeded (Supplementary Figure 2). Additionally, a rapid
increase of Chao1 and ACE index was observed from 7 to
9 days. Subsequently, there were decreased from 14 to 17 days,
implying that the abundance of fungal species fluctuated during
the fermentation.

The top 1% of the abundance were used as the main
species to study the dynamics of the microbial community
during the fermentation of minced peppers. As depicted in
Figures 1A,B. Dynamic changes of microbial communities
were occurred as fermentation time proceeded. The dominant
microorganisms including 12 bacterial and five fungal genera
were identified. Initially, the original microbial community in

unfermented minced pepper mainly consisted of Rhizobium
(4%), Debaryomyces (2%), Rhodotorula (2%), Trichosporon
(2%), unclassified (83%), and other (2%). During fermentation,
the relative abundance of Rhizobium was higher at 3–5 days
and 9–14 days (13–61%), reached maximum at 14 days.
Hanseniaspora was the microorganism relatively stable in
abundance during minced pepper fermentation. Its growth rate
was most rapid during the fermentation from 0 to 3 days,
and 40% relative abundance was achieved at 3 days. Weissella
and Lactobacillus were the most abundant microorganisms in
relative abundance at 7 days (88%) and 17–20 days (84%),
respectively (Figure 1A). Similar results were obtained by
the dynamics of microbial genus level abundance during the
production of fermented minced peppers (Figure 1B).

Hierarchical clustering analysis and heat map were
used to explore similar growth trends in different
microorganisms during fermentation (Figure 2). Aureimonas
and Stenotrophomonas, Pseudomonas and Sphingobium,
Methylobacterium and Novosphingobium, and Rhodotorula
and Trichosporon displayed similar growth trends during
minced pepper fermentation. The variation of microorganisms
with fermentation time during minced pepper fermentation
was further analyzed by PCA (Figure 3). Aureimonas and
Lactococcus were the main genera in the early fermentation
process and were highly correlated with 9 and 11 days. While
Rhizobium was associated highly with 14 days, Weisseria
was found to be strongly associated with 5 and 7 days,
and Lactobacillus was shown to be correlated highly with
17 and 20 days. This result suggests that microorganisms
become dominant at different stages of fermentation as they
evolve and compete, leading to large variations in microbial
abundance and diversity at each fermentation time. Co-
occurrence/exclusion analysis is an effective method to elucidate
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FIGURE 6

Hierarchical clustering analysis (HCA) of volatile components during the production of fermented minced peppers. The colors corresponded to
normalized mean levels from low (blue) to high (red).

correlations in complex microbial communities (11, 12). The
interactions between microorganisms during minced pepper
fermentation were shown in Figure 4. Positive correlations
were found between bacteria such as Aureimonas, Rhizobium,
Stenotrophomonas, Brevundimonas, and Methylobacterium.
While Lactobacillus as a bacterium was negatively correlated
with most bacteria. For fungal community, positive correlations
were found between Mucor, Debaryomyces, Rhodotorula, and
Trichosporon. Hanseniaspora, as a fungus, was negatively
correlated with these fungi. In addition, Mucor was negatively
correlated with all bacteria. No significant correlations were

found between Debaryomyces, Rhodotorula, Trichosporon, and
Hanseniaspora and bacteria.

Indeed, several of the detected genera had previously been
detected in dairy products, fermented vegetables, meat, and
wine, and may contribute to the formation of nutrients and
the unique flavors of fermented foods. Lactobacillus plays
an important role in the fermentation of many foods, such
as dairy products, vegetables, meat, and wine (13). Lactic
acid fermentation positively affects the flavor and nutritional
content of foods by producing organic acids, bacteriocins
and volatile compounds, and contributes to improved sensory
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and quality safety of foods. Weissella is one of the common
microorganisms used in the preparation of cheese and
fermented vegetables. Several studies have demonstrated the
antimicrobial ability of compounds produced by Weissella
against the growth of Gram-positive and Gram-negative
bacteria as inhibitors of phytopathogenic and deteriorating
fungal and bacterial growth of fruits and vegetables (14, 15).
In addition, some endophytic fungi in peppers play certain
roles during fermentation. Hanseniaspora are endophytic
fungi whose abundance is maintained during fermentation;
however, their metabolites may have biological activity. For
example, the yeast Hanseniaspora, isolated from grapes and
grape juice, helps to shorten the fermentation time and
reduce the ethanol content of the fermentation product,
and increases the total polyphenol and flavonoid content of
the wine giving it a higher antioxidant potential (16, 17).
Debaryomyces is the main yeast used in fermented meat
products such as dry fermented sausages. Several studies
have demonstrated that Debaryomyces contributes to food
maturation and aroma presentation, and to the formation of
flavor substances such as esters (18, 19). The ability of these
detected microorganisms to produce specific flavor compounds
has not been systematically investigated. This lack of research
has resulted in a lack of development potential for improving
existing fermented minced pepper products or developing new
products.

Volatile components change during
the pepper fermentation

The volatile components in minced pepper during
fermentation were analyzed and quantified by GC-MS. A total
of 64 volatile compounds including 17 esters, 14 alcohols, 11
aldehydes, 3 ketones, 16 hydrocarbons, and 3 heterocyclic
compounds were identified (Figure 5). Among them, alcohols
volatiles were the most abundant, accounted for 4.01–48.43%
of the identified volatiles, and followed by hydrocarbons
(20.76–45.50%), esters (6.92–30.91%), aldehydes (5.14–
22.18%), ketones (2.14–7.25%), and heterocyclic compounds
(3.26–7.15%). The alcohol volatile component was highest in
unfermented minced pepper (0 days), accounting for 82.87% of
the volatile component. As fermentation proceed, the content
of alcohols decreased by 34.4%. Previous studies have shown
that the significant decrease in alcohol content is partly due
to the high volatility of these compounds, leading to their
volatilization during fermentation (20). Also, the content
of esters and hydrocarbons increased by 19.60 and 13.66%,
respectively. This could be caused by microbial metabolism
during the fermentation of minced peppers. In addition, the
levels of aldehydes, ketones and heterocyclic compounds
containing volatiles fluctuated during the manufacturing
process, but no significant differences were observed.

Hierarchical clustering analysis classified the volatile
components of minced pepper fermentation process into five
categories according to their contents at different fermentation
times. And heat map analysis showed the changes of different
volatile components during minced pepper fermentation
(Figure 6). During fermentation, 11 alkanes, 7 esters, 3 ketones,
and 2 heterocyclic compounds were found to be higher in
5 days, 8 alcohols, 6 hydrocarbons, 5 aldehydes, and 3 esters
in 5–17 days, and 8 esters and 2 alcohols in 17–20 days.
These results implied that volatile components of alkanes were
mainly produced in the early stage (3–5 days) of fermentation
process. Alcohols were mainly generated in the middle stage
(5–17 days), while the esters were mainly formed in the early
stage (3–5 days) and the late stage (17–20 days). It is noteworthy
that some esters were produced late in the minced pepper
fermentation processes, which may be due to the fact that
esters are synthesized by enzymatic esterification reactions of
microorganisms with alcohols and acids as substrates (21).
Esters have a sweet or fruity taste and can enhance the flavor
of fermented foods by reducing the intensity of unpleasant
odors (22). It was found that the concentration of most
esters increased significantly after fermentation. Among them,
4-methylpentyl 2-methylbutanoate and 4-methylpentyl 3-
methylbutanoate were found to be the most abundant esters in
fermented minced pepper. They have an euryhaline herbal odor
and a faint waxy odor, respectively (23). Alcohol volatiles have
higher gas thresholds than ester volatiles and usually produce
fruity and irritating odors, as well as being important precursors
to esters (24). Among all alcohols detected in fermented minced
pepper, linalool was the most abundant, which has a transient
floral and herbal aroma, was detected in large amounts in
both unfermented minced peppers, with a gradual increase in
content during fermentation. Those results were in accordance
with the studies conducted by (2, 25). Linalool which is a key
odorant in fermented peppers was derived from glycosides by
the action of microbial glycosidases during the fermentation
process (26, 27). In addition, β-guaiene was found to be the
most abundant terpene volatile component, and this compound
contributes significantly to woody flavor and is thought to
enhance flavor quality (28). Previous findings have indicated
that the content of certain volatiles changes considerably during
the fermentation of peppers inoculated with autotrophic or
xenobiotic microorganisms (29). Therefore, these changes in
volatiles may be related to the metabolism of microorganisms
during the fermentation process.

Correlation between microbiota and
volatile components

Further studies to unveil the underlying correlation
between microorganisms and volatiles during the fermentation
was conducted. Results of O2PLS model displayed that in
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Analyses of correlation between microbiota and volatile components by bidirectional orthogonal partial least squares (O2PLS) modeling during
the production of fermented minced peppers. Correlation network between microorganisms and volatile components during fermentation.
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fermented minced pepper, there were 45 independent variables
X, including 41 genera of bacteria and 4 genera of fungi. And
64 dependent variables Y, with R2 (0.939) and Q2 (0.405).
The correlation index between microorganisms (X) and
volatile compounds (Y) was investigate by O2PLS analysis
with Pearson’s correlation method (Supplementary Table 1).
And it was visualized in Figure 7. There were 30 genera of
microorganisms (24 bacteria and 6 fungi) and 28 volatile
components in network. Cladosporium was correlated with
9 volatile components (| ρ| > 0.7). But it mere positively
related with alcohols. The highest correlation (ρ = 0.902) was
with linalool. Similarly, Hanseniaspora was correlated with six
volatile components (| ρ| > 0.7), including 3 hydrocarbons
and 3 alcohols, and only negatively correlated with α-terpineol
(ρ = -0.80846). Citricoccus was correlated with 4 volatile
components (| ρ| > 0.7), including 2 alcohols and 2 esters,
and all were positively correlated. In addition, the results
showed that a few microbial genera were negatively correlated
with volatile components. For example, Cladosporium and
Mortierella showed negative correlations with the differences
of seven and two volatile components, respectively. This
phenomenon may be due to the decrease in competitiveness
between these microorganisms during the fermentation
process (30). Furthermore, the selection of core functional
microorganisms correlated with flavor from species-rich
communities is challenging and requires consideration of both
dominance and functionality. To identify the core functional
microorganisms in the fermentation process of minced peppers,
three criteria were considered: (a) VIP value≥ 1; (b) correlation
coefficient ≥ 0.7; (c) number of microbes highly correlated (|
ρ| ≥ 0.7) with chemical compounds ≥ 1 (10) (Supplementary
Table 1). Based on these criteria, 11 genera were identified

in fermented minced pepper, including Candida, Citricoccus,
Cladosporium, Epilithonimonas, Guehomyces, Hanseniaspora,
Mortierella, Nitratireductor, Ochrobactrum, Oerskovia, and
Pichia.

Correlation analysis predicted the relationship between
volatile components and microorganisms. In fact, several
studies have demonstrated the correlation between microbiota
and flavor. Hanseniaspora has an important role as a non-
Saccharomyces yeasts in the production of aromatic compounds
such as esters, higher alcohols, acids, and monoterpenes (31, 32).
It has been shown that H. guilliermondii produces β-phenylethyl
acetate and ethyl acetate (16, 33). Pichia can produce flavor
substances such as phenylethanol, 2-methylbutyric acid, 3-
methylbutyric acid, and ethyl linoleate (34). A significant
inverse relationship between acetyl ester hydrolase activity and
acetate production was found in Pichia kudriavzevii 129 (35).
Candida was considered important in fermentation because of
its ester production capacity, where Candida antarctica lipase
B (Calb) was found to catalyze the synthesis of several spice
esters, including ethyl acetate, isoamyl acetate, cis-3-hexenyl
acetate, geranyl acetate, ethyl butyrate, isoamyl butyrate, and
cis-3-hexenyl butyrate (36–38). Cladosporium was reported to
bioconvert limonene to α-pinoresinol (39, 40). Thus, these
core microorganisms may come together to form a core
microbiota that contributes to the production of certain
key metabolites during the production of fermented minced
pepper. Further studies should focus on the mechanisms of
volatile component production by functional microorganisms.
Meanwhile, the specific expression of related genes during
fermentation requires subsequent meta-analysis to monitor
how the metabolism of microorganisms affects the formation
of key odorants.
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Conclusion

In this study, changes in the main volatile components
and the dynamics of the microbial community and the
relationships between them were elucidated. The succession
and competition of microorganisms during the fermentation
process resulted in large differences in microbial abundance
and diversity at different fermentation times. A total of 11
microbial genera, including Candida, Citricoccus, Cladosporium,
Epilithonimonas, Guehomyces, Hanseniaspora, Mortierella,
Nitratireductor, Ochrobactrum, Oerskovia, and Pichia were
identified as core functional microorganisms. They promoted
the production of 14 volatile components such as nerolidol,
ethyl isovalerate, 4-methylhexyl 2-methylbutanoate and
linalool, which are responsible for providing important
fruit or floral aromas to fermented minced peppers. These
findings have contributed to the elucidation of the potential
role of specific bacterial genera in the formation of specific
flavors during fermented minced pepper production, and
have helped in the development of fermented minced
pepper starter cultures with unique flavors and consistent
quality.
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