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Except for improving glycemic control, liraglutide, one of the glucagon-like
peptide-1 receptor agonists, has exerted promising therapeutic effects for
dyslipidemia. It has been proved that gut microbiota plays a dramatic role
in regulating lipid metabolism. This study aims to explore whether liraglutide
could improve dyslipidemia by modulating the gut microbiota in mice fed
a high-fat diet (HFD). The C57BL/6 mice were fed a HFD to establish an
animal model of dyslipidemia, and then administered with liraglutide or
normal saline (NS) for 12 weeks. Indices of glucolipid metabolism were
evaluated. Gut microbiota of the mice was analyzed by 16S rRNA gene
sequencing. Compared with HFD group, liraglutide significantly alleviated
weight, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL)
levels, meanwhile elevating high-density lipoprotein cholesterol (HDL) levels
(all p < 0.05). The gut microbiota analysis revealed that liraglutide greatly
reduced the relative abundance of Firmicutes and augmented that of
Bacteroidetes, with a concomitant drop in the Firmicutes/Bacteroidetes
ratio. Meanwhile, liraglutide dramatically changed the overall composition,
promoted the growth of beneficial microbes (Akkermansia, Lactobacillus,
Parabacteroides, Oscillospira, etc.), and inhibited the growth of harmful
microbes (AF12, Shigella, Proteobacteria, Xenorhabdus, etc.). Especially, the
relative abundance of Akkermansia increased the most after liraglutide
treatment. Correlation analysis suggested that TC and LDL were positively
correlated with some harmful bacteria, and negatively associated with
beneficial bacteria. This study confirmed that liraglutide had a certain
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therapeutic effect on dyslipidemia in HFD-fed mice and could regulate
the composition of the gut microbiota associated with lipid metabolism,
especially Akkermansia. Thus, affecting gut microbiota might be a potential
mechanism of liraglutide in attenuating dyslipidemia.

Akkermansia, dyslipidemia, glucagon-like peptide-1 receptor agonist, liraglutide, gut

microbiota

Introduction

Dyslipidemia, including the elevation of serum total
cholesterol (TC), total triglycerides (TG), and low-density
lipoprotein cholesterol (LDL) as well as relative reduction
of high-density lipoprotein cholesterol (HDL), is one of
the worldwide prevalent health hazards. In China, the
prevalence of dyslipidemia has exceeded 43%, according to
2019 statistics (1). Increasing evidences have emphasized
that lipid metabolic disturbance, especially the imbalance of
serum LDL and HDL levels, acts as a major risk factor
for atherosclerotic cardiovascular disease (ASCVD), including
hypertension, myocardial infarction, stroke, and sudden cardiac
death (2-4). Thus, early detection and treatment of dyslipidemia
are imperative to reduce cardiovascular events.

The widely used lipid-lowering drugs such as statins,
fibrates, bile acid sequestrates and niacin, have shown great
potential in preventing and treating dyslipidemia (5). Many
synthetic anti-obesity medications have also been used to
improve dyslipidemia, as obesity is an important risk for
dyslipidemia; however, they all exert undesirable adverse
reactions such as myopathy, pancreatitis (6), and transaminase
elevations, as well as treatment resistance, which may hinder
medication compliance (7, 8). Therefore, any treatment that
safely lowers lipid levels is in great demand for the management
of dyslipidemia and obesity.

Glucagon-like peptide-1 (GLP-1) is a gastric-derived
anorexigenic peptide produced by intestinal enteroendocrine L
cells mainly upon fat and carbohydrate intake. Once secreted,
GLP-1 will be rapidly degraded by dipeptidyl peptidase-4 (DPP-
4), therefore its half-life is only a few minutes (9). Liraglutide,
one of the glucagon-like peptide-1 receptor agonists (GLP-
1RAs), shares 97% of the amino acid sequence with endogenous
human GLP-1, but has a prolonged half-life of 13 h because of
its resistance to DPP-4 degradation. Although liraglutide mainly
improves blood glucose levels, recent data has also revealed it
has a beneficial effect on cardiovascular outcomes (10, 11), by

Abbreviations: GLP-1RA, glucagon-like peptide-1 receptor agonists;
HFD, high-fat diet; FBG, fasting blood glucose; TG, triglycerides; TC,
total cholesterol; LDL, low-density lipoprotein; T2DM, type 2 diabetes
mellitus; AUC, area under the curve; IPITT, intraperitoneal insulin
tolerance test.
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modulating other risk factors, such as dyslipidemia (12), blood
pressure (13), and endothelial dysfunction (14). Liraglutide is
also the first GLP-1RA approved for treating obesity in both
type 2 diabetes mellitus (T2DM) and non-T2DM patients (15),
because it has the advantage that its weight loss and lipid-
lowering efficacy is independent of hypoglycemic mechanisms.

Additionally, gut microbiota has been reported to play
a crucial role in the maintenance and establishment of
human health (16). A lager number of studies have shown
that altered gut microbiota composition has been associated
with dyslipidemia (3, 17) and cardiometabolic diseases (18).
Increasing the abundance of some beneficial bacteria could
improve dyslipidemia. Therefore, modulating gut microbiota
may be a beneficial strategy to prevent the development of
dyslipidemia (19). On the other hand, there is evidence that
GLP-1 may change the composition of gut microbiota by
influencing the biological function of intestinal epithelium
(20). Further, GLP-1RAs are known to affect the intestinal
environment and change the gut microbiota (21, 22). For
example, liraglutide was reported to control glucose-induced
insulin secretion partly through influencing the gut microbiota
and the intestinal immune system (23). Its beneficial effect on
weight loss via modulating the structure of gut microbiota was
also confirmed in both diabetic obese and simple obese rodents
(22, 24). Therefore, we speculated that liraglutide might also be
able to improve dyslipidemia by modulating the gut microbiota.

To this aim, we treated high-fat diet (HFD)-fed mice
with liraglutide or vehicle (saline solution) for 12 weeks. At
the end of the experiment, 16S rRNA gene sequencing was
used to analyze the gut microbiota of the mice. The change
of gut microbiota contributed to the beneficial effects of
liraglutide against dyslipidemia, which might serve as a potential
therapeutic target for dyslipidemia.

Materials and methods

Animals and the experimental design
A total of 24 male C57BL/6 mice (4 weeks old), provided by

the Laboratory Animal Research Center of Jiangsu University
(Zhenjiang, China), were randomly assigned to two groups:
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normal control group (NC, n = 8) and HFD group (n = 16).
These mice were singly housed in a specific-pathogen-free
(22 %+ 2°C) environment with a 12/12-h light/dark cycle and
could free access to a standard laboratory diet and water.
After 1 week of adaptation, the NC group was administered
a standard diet, whereas the HFD group was administered
a HFD (37% carbohydrate, 18% protein, and 45% fat) for
12 weeks to induce dyslipidemia. Then, the HFD group was
further randomly subdivided into the HFD group (n = 8)
and the HL group (HFD + liraglutide, n = 8). The HL
group received a daily subcutaneous injected with liraglutide
(Victoza, Novo Nordisk, Denmark, 0.2 mg/kg body weight),
while the NC and HFD groups were injected with an equal
volume of NS for another 12 weeks. Fasting body weights
were monitored every 2 weeks. After overnight fasting, all the
mice were sacrificed at the 24th week, and the blood and fecal
samples were collected, which were stored at—80°C until the
next analysis. The day before sacrifice, all mice were fasted
overnight and the intraperitoneal insulin tolerance test (IPITT)
was carried out.

Biochemical analysis

Fasting blood glucose (FBG) was measured by
chemiluminescence method, and automatic biochemical
analyzer was used to detect lipid profile. All animal experiments
were performed according to protocols (UJS-IACUC-

2020032535) approved by the Animal Research Committee
at the Institute of Laboratory Animals, Jiangsu University
Medical College.

Fecal DNA extraction and 16S rRNA
gene sequencing

Microbial DNA of fecal samples was extracted by using the
Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad,
CA, USA), which was then used as the template to amplify
the V3 and V4 hypervariable regions of ribosomal 16S
rRNA genes by PCR (25 cycles, Initial denaturation 98°C
for 2 min— Denaturation 98°C for 15 s— Annealing 55°C
for 30 s —Extension 72°C for 30 s—Final extension 72°C
for 5 min). The specific forward primer was 338F 5'-
ACTCCTACGGGAGGCAGCA-3" and the reverse primer was
806R 5'-GGACTACHVGGGTWTCTAAT-3". All PCR were
performed in triplicate with 25 pl reaction mixture containing
5 wl of 5x reaction Buffer, 5 pul of 5x GC Buffer, 2 ul of
2.5 mM dNTPs, 1 pl of each primer (10 M), 0.25 pl of Q5
DNA Polymerase, and 2 pl of template DNA. The amplified
PCR products were extracted on 1.20% agarose gels and purified.
16S rRNA gene sequencing was performed using the Illumina
NovaSeq-PE250 platform at Shanghai Personal Biotechnology
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Co., Ltd. (Shanghai, China) to obtain 2 x 480 bp paired-
end reads.

Statistical analysis

Data analyses were conducted with SPSS version 26.0
(SPSS Inc., Chicago, IL, USA). Data were presented as
means =+ standard error of the mean (SEM), and statistical
significance among the three groups was analyzed by one-
way analysis of variance (ANOVA). The raw data obtained
by sequencing were stored in FASTQ format and performed
with QIIME 2 (2019.4) (25). Sequences were then quality
filtered, denoised, merged, and chimera removed using the
DADA2 plugin (26). Amplicon sequence variants (ASVs)
were aligned with mafft (27) and used to construct a
phylogeny with fasttree2 (28). Alpha-diversity metrics (Chaol,
Observed species, Shannon, and Simpson), and beta diversity
metrics [weighted UniFrac (29), unweighted UniFrac (30),
Jaccard distance, and Bray-Curtis dissimilarity] were estimated
using the diversity plugin to reflect community richness and
diversity. Principal coordinates analysis (PCoA) and principal
components analysis (PCA) were then performed based on
the matrix of beta diversity distance to study the differences
between different microbial communities. Relative abundance
of bacteria was assessed by the linear discriminant analysis effect
size (LEfSe). Spearman’s correlation analysis was performed
to explore relationship between metabolic parameters and gut
microbiota composition. The area under the curve (AUC) of
blood glucose in IPITT was calculated. Statistical difference was
setas p < 0.05 value.

Results

Liraglutide suppressed body weight
gain and ameliorated lipid profile

The body weights of mice in all the three groups showed an
overall tendency to increase as the experiment went on. After
the injection of liraglutide, significant weight loss was observed
within the first 2 weeks. During the period of administration, the
body weights of the HL group were basically close to those of
NC group (p > 0.05), while the average body weight of the HFD
group was the highest among the three groups (p < 0.05). At the
end of experiment, the weights of the HL group were decreased
obviously (Figure 1A, p < 0.05).

The key biochemical parameters of serum were monitored
to explore the impact of liraglutide on dyslipidemia. Compared
with the HFD group, supplementation with liraglutide
dramatically attenuated the lipid profile levels, including TC,
TG and LDL (Figures 1B-D). Especially, TC and LDL levels
in HL group were statistically significant compared with the
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Liraglutide attenuated weight gain and blood lipid profile. (A) Body weight. (B) Total cholesterol (TC) levels. (C) Triglyceride (TG) levels.
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other two groups (Figures 1B,D, p < 0.05). Contrarily, HDL
levels were decreased greatly in HFD group, but increased
dramatically after liraglutide treatment (Figure 1E, p < 0.05).

Liraglutide improved insulin sensitivity

It could be clearly observed that the average FBG level of
the HFD group was generally higher than those of the NC
and HL groups, with statistically significant difference between
the HFD group and the NC group (Figure 2A, p < 0.05).
There was no difference of FBG levels between the HL group
and the NC group (Figure 2A, p > 0.05), indicating that
liraglutide could attenuate body weight gain and improve
dyslipidemia without increasing the risk of hypoglycemia. The
results of IPITT showed that compared with the HFD group,
liraglutide apparently improved the 5-point blood glucose levels
(Figure 2B, p < 0.05). Although the blood glucose level of the
HL group at 0 min was slightly higher than that of the NC
group, the blood glucose levels at 30, 60, 90, and 120 min after
intraperitoneal insulin administration were lower than those in
the NC group. Meanwhile, the AUC of blood glucose levels was
the lowest in the HL group (Figure 2C, p < 0.05). These results
demonstrated that liraglutide could greatly increase insulin
sensitivity in HFD-fed mice.

Liraglutide altered the structure of gut
microbiota in high-fat diet-fed mice

The PCoA and the PCA plots levels suggested greatly
different structural patterns between the three groups
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(Figures 3A,B). It was noteworthy that the dots of HL group
were close to the NC group, revealing that after liraglutide
invention, the diversity of the gut microbiota was similar with
that of the NC group. This means that liraglutide treatment
could partially reversed the changes in the gut microbiota
caused by HFD in mice.

As illustrated in Figure 3C, Chaol and Observed species in
the HL group were significantly higher than those of the HFD
group (p < 0.05). Compared with the NC group, Shannon and
Simpson indices in the HFD group were also dropped, while the
values of the HL group were significantly increased (p < 0.05).
This indicated that liraglutide treatment could contribute to an
increase in both diversity and richness of the gut microbiota.

Liraglutide improved the microbial
composition in high-fat diet-fed mice

At the phylum level (Figure 4A), high-fat feeding obviously
augmented the relative abundance of Firmicutes and reduced
the relative abundance of Bacteroidetes, thus the ratio of
(E/B)
Inversely, liraglutide administration significantly reversed

Firmicutes to Bacteroidetes increased accordingly.
the relative abundance of Firmicutes and Bacteroidetes, with
a concomitant drop in the F/B ratio. At the genus level
(Figure 4B), the abundance of Akkermansia, Lactobacillus,
Parabacteroides, Oscillospira, Sutterella, and Allobaculum were
suppressed by HFD, while their growth was promoted by
liraglutide. Especially, Akkermansia was significantly enriched
in the HL group. Further, at the species level, Akkermansia
muciniphila had the most variable proportion of the whole
species, which was 25.13% in the NC group, 1.90% in the HFD
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FIGURE 2
Liraglutide reduced FBG and improved insulin sensitivity in HFD-fed mice. (A) Fasting blood glucose (FBG) levels. (B) Blood glucose after
intraperitoneal insulin tolerance test (IPITT). (C) The area under the curve (AUC) of IPITT. Data are presented as the mean + SEM. *p < 0.05 vs.
NC group; #p < 0.05 vs. HFD group.

group, and 33.18% in the HL group. This result also showed that
liraglutide greatly augmented the abundance of A. muciniphila
(Figure 4C).

Additionally, the LEfSe method was applied to explore the
biomarkers of dyslipidemia in gut microbiota (Figures 4D,E).
In total, there were 20, 6, and 10 obviously different OTUs
in NC, HFD, and HL group, respectively (Figure 4E).
Cladogram analysis also supported the different levels of
labeled taxa obtained from the LEfSe in the experimental
groups (Figure 4D). After liraglutide treatment, the HL
group was enriched in Verrucomicrobia at the phylum
level, Verrucomicrobiae and Betaproteobacteria at the class
level, Verrucomicrobiales and Burkholderiales at order level,
Verrucomicrobiaceae and Prevotellaceae at the family level,
and Akkermansia at the genus level. It is worth noting that
Akkermansia belongs to the family Verrucomicrobiaceae,
and further the
Verrucomicrobiae, and phylum Verrucomicrobia.

to order Verrucomicrobiales, class

Relationship between gut microbiota
composition and metabolic
parameters

In order to comprehensively analyze the correlation
between metabolic parameters and the composition of intestinal
microflora, Spearman’s correlation analysis was performed.
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As shown in Figure 5, AFI2, Shigella, and Xenorhabdus
were positively correlated with weight and lipid profile,
Bifidobacterium,
Aquabacterium were found to be negatively related to weight

while Adlercreutzia, Allobaculum, and
and lipid profile (p < 0.05). Besides, Akkermansia was negatively
associated with TC and LDL (p < 0.05). Interestingly, these
negatively related strains were enriched in the intestine of mice
in HL group, but deficient in HFD group. Thus, it could be
supposed that these related microbiota stains might be essential

factors for the beneficial effect of liraglutide on dyslipidemia.

Discussion

The pathophysiology of dyslipidemia is very complex,
which has been only partially elucidated. In this study,
liraglutide treatment could effectively attenuate body weight
and lipid profile levels in mice with HFD-induced dyslipidemia.
Meanwhile, liraglutide mainly exerted the hypolipidemic effect
by modulating the composition of gut microbiota, especially by
increasing the abundance of Akkermansia.

There are tens of thousands of microorganisms colonizing
the human intestinal tract, which can help to break down the
indigestible food. Previous studies have revealed that the gut
microbiota accounts for 30% of the energy absorption of the host
(31, 32). Besides, it carries out varieties of metabolic activities in
the body of the host and produces a range of metabolites which
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Liraglutide altered the overall structure of gut microbiota in HFD-fed mice. (A) Principal coordinates analysis (PCoA). (B) Principal components
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further affect human’s health (33). The relationship between
the gut microbiota and metabolic diseases, especially obesity,
is one of the main foci of research in recent years. Emerging
evidence has clarified that gut microbiota can regulate the lipid
metabolism, which is closely associated with dyslipidemia (17,
19, 34).

In recent decades, the gut microbiota, dominated by
Bacteroidetes and Firmicutes, has been reported to have a
critical impact on the development of obesity (19, 34).
Firmicutes/Bacteroidetes (F/B) ratio is also commonly used to
reflect the changes in microbial structure at the phylum level
and is used as a marker to measure overweight and obesity
(35). The HFD can significantly decrease the relative abundance

Frontiers in Nutrition

of Bacteroides and increase the abundance of Firmicutes
(34), resulting in gut microbiota dysbiosis. The dysbiosis, in
turn, further disrupts the normal lipid metabolism and then
causes dyslipidemia, forming a vicious cycle. Many researches
demonstrate that a higher F/B ratio has a positive correlation
with obesity in obese mice and patients (34) (36). When
obese subjects reduced their intake of HFD and lost weight,
the proportion of Bacteroidetes increased miraculously (37).
Similar results were also confirmed in ob/ob mice and HFD-
induced obese (DIO) mice (38, 39). Our study revealed that the
abundance of Firmicutes increased and Bacteroides decreased
at the phylum level in HFD group, which was similar with
the above results. After liraglutide intervention, the proportion
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of Firmicutes was dramatically reduced, while the relative
abundance of Bacteroides was greatly augmented. The ratio of
F/B was then accordingly decreased after liraglutide treatment.
To further evaluate precise changes in the gut microbiota,
we analyzed the microbiota differences at other taxonomic
levels. Compared with the NC group, HFD reduced the
abundance of Akkermansia, Lactobacillus, Parabacteroides,
Oscillospira, Sutterella, and Allobaculum, etc. After 12 weeks
of liraglutide administration, the relative abundance of these
genera was dramatically increased, especially the proportion of
Akkermansia having the greatest change. Many studies have
shown that the above strains are negatively related to obesity,
and they are also referred to as thin bacteria (40, 41). For
example, the well-known Lactobacillus genus is typically one
of the top three probiotics, and its abundance is inversely
related to the growth of body weight and fat mass (42). Kim
et al. found that long-term oral administration of Lactobacillus
gasseri BNR17 contributed to the reduction of visceral fat in
obese adults (43); Jang et al. elucidated that oral administration
of a variety of Lactobacillus inhibited HFD-induced NF-
kB activation and increased the activation of AMP-activated
protein kinase and SIRT-1 expression in liver, so as to reduce
obesity and relieve inflammatory symptoms (44). Oscillospira
is another beneficial bacterium, which is strongly correlated
with leanness and obesity, as well as human health (34).
The abundance of Oscillospira was discovered to be decreased
significantly in patients with non-alcoholic steatohepatitis,
which had a negative correlation with BMI and inflammatory
indicators (45). In addition, numerous evidences demonstrate
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that Oscillospira plays a critical role in many metabolic activities
that are associated with dyslipidemia and obesity (34) (46).
Paracobacteria has far-ranging cholic acid conversion functions,
hydrolyzing kinds of bound bile acids and converting them
to secondary bile acids (such as ursodeoxycholic acid and
lithocholic acid). These secondary bile acids play a role in
improving lipid metabolism disorders via activating intestinal
FXR signaling pathway (47).

As mentioned above, the proportion of Akkermansia in the
HL group enriched the most. When analyzing the difference
between species at different taxonomic levels, we found that
Verrucomicrobia, Verrucomicrobiaes, Verrucomicrobiaceae, and
Akkermansia in the feces of HL group mice had relatively
high LDA values, suggesting that these taxa might be used
as the marker species. In the further analysis of the level of
microflora, the result showed that A. muciniphila had the largest
change in the proportion of the whole species, which was
nearly 18 times of HFD group. What is more, A. muciniphila
belongs to the genus Akkermansia, which further belongs
to family Verrucomicrobiaceae, order Verrucomicrobiales, class
Verrucomicrobiae, and phylum Verrucomicrobia. Therefore,
A. muciniphila might play a key role in the effects of weight
loss and lipid-lowering mediated by liraglutide. Akkermansia, a
strictly anaerobic Gram-negative enteric bacterium first isolated
and proposed by Derrien et al. in 2004 from human feces, is non-
motile and usually found in 1-4% abundance in the gut (48).
Akkermansia has the specific function of degrading intestinal
epithelial mucins and can use mucins as sole carbon and

nitrogen sources for growth, with the main metabolites being
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The relationship between microbiota composition and metabolic parameters. *p < 0.05, **p < 0.01, and ***p < 0.001.
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oligosaccharides and short chain fatty acids (49). Although
Akkermansia is associated with metabolic diseases and beneficial
effects have been reported in host metabolism, its molecular
mechanism has not been identified. Some researchers have
found that Akkermansia can reduce the expression of genes
involved in fatty acid synthesis and transport in both liver
and muscle, alleviate endoplasmic reticulum stress, and thus
improve lipid accumulation and metabolic disorders (50).
Akkermansia was also found to increase thermogenesis and
GLP-1 secretion in HFD- fed C57BL/6 mice by inducing
uncoupling protein 1 in brown adipose tissue and GLP-1
secretion throughout the body (51). In this study, Akkermansia
was reported to be negatively correlated with TC and LDL.
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Thus, we speculated that Akkermansia might be a key specie
to promote the reduction of lipid levels, and liraglutide might
reduce hyperlipidemia in HFD-fed mice by enriching the
abundance of Akkermansia.

In the current study, liraglutide not only promoted
the growth of beneficial bacteria, but also greatly inhibited
the growth of harmful bacteria such as AFI2, Shigella,
Proteobacteria, etc. Spearman correlation analysis showed that
these genera were also positively correlated with body weight
and lipid profile. AF12 is a poorly investigated taxon, which was
reported to be enriched in obese mice (52). Shigella is a kind
of Gram-negative pumilobacter, which is the typical intestinal
pathogen of human bacterial dysentery. All strains of Shigella
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have strong endotoxin, like lipopolysaccharide (LPS), which can
combine with toll-like receptor 4 to activate a variety of cell
signaling pathways, induce chronic subclinical inflammation,
and make the intestinal wall permeability increased, thus
promoting the absorption of toxins. Then, those toxins act
on the central nervous system and cardiovascular system,
causing a series of clinical toxemia symptoms, such as fever,
mental disturbance, and even toxic shock (53). Data from
different sources indicate that the increase of circulating LPS
level helps to explain why the relative abundance of Shigella is
significantly increased in both obese rodents and humans (54,
55). Additionally, as a potential diagnostic biomarker of gut
microbiota dysbiosis, the increased abundance of Proteobacteria
was reported to be correlated with metabolic disorders (52,
56). The abundance of these harmful bacteria was significantly
decreased by liraglutide, indicating its potential effect on
preventing dyslipidemia and the related metabolic endotoxemia.

Another interesting finding in this study was that liraglutide
increased the abundance of Sutterella, which was negatively
associated with inflammation (57). Contrarily, the prevalence
of Proteobacteria was markedly attenuated by liraglutide, as
the increased relative abundance of Proteobacteria was found
to be positively related to inflammation (56). Accumulating
evidence suggests that inflammation is a critical and reversible
mechanism by which obesity promotes the progression of the
inflammatory diseases such as T2DM, NAFLD, dyslipidemia,
and various types of cancer (58, 59). Inflammation induced
by HFD is a contributing factor to metabolic disorders, and
local hyperlipidemia is also speculated to be strongly associated
with adipocyte death, altered adipose tissue function, and
chronic low-grade inflammation (60). However, to clarify
whether liraglutide breaks the link between inflammation and
dyslipidemia through regulating related gut microbiota, we need
to do further experiments.

The innovation of this study is that we put forward that the
growth of Akkermansia might be closely related to liraglutide
mediating weight loss and lipid reduction. However, whether
transplantation of the gut microbiota of mice after liraglutide
intervention into HFD-fed mice could also display similar
lipid-lowing function needs to be further explored. Another
limitation is that this study only conducted a single dosage
of liraglutide and did not explore the suitable dose range and
potential therapeutic relevance, which is incomplete. Thus, we
need further studies to do so verify this phenomenon.

Conclusion

In summary, liraglutide could prevent HFD-induced
dyslipidemia, and mainly exerted the hypolipidemic effect by
modifying the structure and composition of gut microbiota
in HFD-fed mice. As the relative abundance of Akkermansia
increased the most after liraglutide treatment, we speculated
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that Akkermansia might play a key role in liraglutide’s
lipid-lowering effect. To confirm this hypothesis, further
investigations are needed.
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