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Broccoli (Brassica oleracea L. var. ltalic) is rich in nutrition. However, it is
susceptible to yellowing after harvest, leading to nutritional and economic
losses. In this study, diacetyl, a natural food additive compound, was selected
to inhibit the yellowing of broccoli florets and maintain the nutrient quality
during storage time. It was found that 20 nl Lt diacetyl treatment for
12 h could significantly delay the yellowing and decrease the weight loss
and lignin content of broccoli florets. Meanwhile, diacetyl could maintain
higher contents of chlorophyll, vitamin C and flavonoids and suppress the
transcript levels of chlorophyll degradation—related genes in broccoli florets.
Moreover, accumulations of reactive oxygen species (ROS) were inhibited
by diacetyl treatment. Under diacetyl treatment, the generation of ethylene
was prevented by inhibiting the activities and related-gene expressions of
1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase.
Based on our findings, exogenous diacetyl could be employed as a novel
bioactive molecule for retarding the yellowing and maintaining the quality of
postharvest broccoli.

broccoli, yellowing, ethylene biosynthesis, maintain quality, diacetyl

Introduction

Broccoli (Brassica oleracea L. var. Italic) is favored by consumers as it is rich in
vitamin C, soluble fibers, and nutraceutical compounds (1). However, it tends to rapidly
senesce after harvest. Senescence often causes quality deterioration, such as yellowing,
water loss, increasing in lignin content, and decreasing of vitamin C, flavonoids, and
other nutrients, eventually leading to losses of the commercial value (2).

Several studies have been devoted to investigating the mechanism of broccoli
senescence. Ethylene was reported to play an essential role in regulating the postharvest
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quality of broccoli (3). Wounding could induce ethylene
synthase in broccoli florets (4). 1-Aminocyclopropane-1-
carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO)
were crucial enzymes in the ethylene synthesis pathway, which
played a critical role in regulating the quality of broccoli (5).
Lowering the gene expression and activities of ACS and ACO
could retard the floret yellowing of broccoli (6). The inhibition
of BoACO2 expression in broccoli decreased the biosynthesis
of ethylene and kept it green. Previous studies showed that the
BoACS1, BoACS2 and BoACS3, which encoded ACC synthase,
were differentially expressed in the senescence course of broccoli
florets (7). Meanwhile, reactive oxygen species (ROS) were also
sharply accumulated by harvesting broccoli and up-regulated
by ethylene (8, 9). Excessive ROS accumulations induced by
biotic or abiotic stresses caused oxidative stress damage to
broccoli, which accelerated chlorophyll degradation and then
led to the loss of quality. The antioxidant system of plant was
gradually enhanced to resist oxidative stress with the senescence
processing (10, 11). In previous study, the broccoli displayed
yellowing during senescence with the decreasing chlorophyll
content, which was triggered by ROS and ethylene (11). Thus,
lower ethylene and ROS contents were beneficial to maintaining
the broccoli quality.

Series of enzymes

were reported to

Firstly,

regulate the
chlorophyll degradation. chlorophyll degradation
is the transformation of chlorophyll b into chlorophyll a, which
is catalyzed by CBR (chlorophyll b reductase) and HCAR (7-
hydroxymethyl chlorophyll a reductase) (2). The CBR enzyme
is encoded by the genes of NYCI (NON-YELLOW COLORING
1) and NOL (NYC-LIKE) (12). During the early chlorophyll-
degrading process, it is confirmed that pheophytinase (PPH,
encoded by PPHs genes) took part in removing pheophytin
and forming pheophorbide. Then pheophorbide a oxygenase
(PAO, encoded by PAO gene) accelerates the unfolding of the
porphyrin macrocycle, which further promotes the chlorophyll
degradation (13). Moreover, SGR (Stay Green) gene, the
upstream of the PAO pathway, was also involved in the
degradation of chlorophyll (14).

Various physical and chemical techniques have been used
to maintain the quality of broccoli. Physical techniques include
low temperature (15), modified atmosphere packaging (16),
ultraviolet irradiation (17), and so on. But these methods
require a huge expense. Some chemical compound was
also used in postharvest quality maintenance. For example,
1-methylcyclopropene (1-MCP) is a chemical agent for
retarding yellowing of broccoli effectively (18). Although some
chemosynthetic preservatives are effective and the residue
is low enough, the food safety issue is still concerned by
consumers. Some natural food additives are reported to be
used for preserving fruit and vegetables. For example, chitosan
oligosaccharides can alleviate the calyx senescence of mandarin
fruits by decreasing the abscisic acid content (19, 20). Folic
acid can inhibit the senescence of broccoli by improving the
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antioxidant capacity (21). Therefore, the development of safe
and natural preservatives is the hotspot of future research (22).

Diacetyl, also known as 2,3-butanedione, is naturally present
in bay leaves, honey, wine, and balsamic vinegar (23, 24). It
was also an aroma component of ripe fruit, such as jalapeno
peppers, sweet peppers (25), and lucuma (Pouteria lucuma) fruit
(26). The US Food and Drug Administration (FDA) believes
that the ingestion of diacetyl in food is generally recognized
as safe (GRAS)!. Diacetyl is also a widely used food additive
in China (GB1886.51-2015). Recent studies have shown that
diacetyl can act as an anti-microbial organic composition
applied in mandarins, grapes, apples and strawberries (27, 28).
Moreover, diacetyl can inhibit abiotic stress-induced senescence
in Arabidopsis according to the latest study (29). It implies that
diacetyl can be used in vegetables senescence during storage.
Little information is available on the influence of diacetyl on the
postharvest quality of fruit and vegetables during storage.

The objective of this study was to study the effect of diacetyl
on inhibiting the yellowing of broccoli florets and maintaining
the nutrient quality during storage time. Thus, the postharvest
broccoli florets were treated with various concentrations of
diacetyl during storage time.

Materials and methods

Chemicals

Diacetyl (PubChem CID:650) was obtained from Macklin
Biochemical Co., Ltd. (Shanghai, China).

Plant material and treatments

Broccoli (Brassica oleracea L. var. Italica, cv. You-xiu) was
purchased from Aolaifeng Market, Tai’an, Shandong, China, and
transported to our laboratory as soon as possible. The broccoli
heads with tight florets and uniform size, maturity, color, and
free from diseases and mechanical damage were chosen for the
subsequent study. The selected broccoli heads were washed with
tap water, drained, and dried with paper towel. All operations
of measurement and fumigation with diacetyl were carried out
in the ventilation equipment to ensure that the experimental
operators were not exposed to the volatile.

Experiment 1 was carried out to investigate the effect of
diacetyl on the visual quality of broccoli florets and determine
the suitable concentration to inhibit the senescence. The
broccoli heads were cut carefully with a sharp knife into florets
with length of 7-8 cm and approximately 15 g each. Then the
florets were randomly divided into six groups, about 350 g per

1 https://www.fda.gov/food/food-additives- petitions/food-additive-
status-list
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group. The selected 350 g broccoli florets as one replicate (three
replicates for each concentration) were put in a container with
a total volume of 5 L (LocknLock Co., Ltd.), sealed, and then
fumigated at 25 & 1°C for 12 h at concentrations of 0, 1, 5,
10, 20, and 40 pl L=! (volume of liquid diacetyl/volume of
the container) diacetyl. The concentration in the control group
was 0 pul L1 After fumigation, the container was opened,
ventilated, and then covered with the lid again but not sealed.
The florets were kept at 25 & 1°C for 4 d. The changes in quality
were evaluated visually and recorded using images daily.
Experiment 2 was designed to investigate the effect of
diacetyl on the objective qualities of florets and explore the
mechanism. Twenty-one boxes of broccoli florets were prepared
and fumigated in the same way as in experiment 1 but with only
0 and 20 ul L™! (the selected optimum concentration of diacetyl
from Expt. 1). At shelflife of 0, 1, 2, 3, and 4 d after fumigation,
broccoli florets were randomly selected every day from each
treatment and three independent biological replicates were set.
After measuring the color changes, chlorophyll content and
ethylene production for each floret, the remaining florets were
frozen with liquid nitrogen, ground into powder, and finally
stored at —80°C for further physiology and biochemical analysis.

Color changes and chlorophyll content

The color of broccoli florets was assayed using the method
proposed by Xu et al. (21). It was measured with a digital
colorimeter (CR-400, Konica Minolta, Japan) and the a* (red,
+or green, —), b* (yellow, +or blue, —) values were determined
daily. The sampled broccoli florets from each replicate were
randomly selected and tested at 5 equidistant points. The
contents of chlorophyll a and b were determined according
to the method of Sun et al. (30). Three samples of the fresh
broccoli florets were collected at each time point (0d, 1d, 2 d,
3 d, 4 d), and 0.5 g of fresh broccoli florets were taken. Then
30 ml of ethanol (95%) was added to extract for 22 h (normal
temperature and avoid light). The resulting supernatant was
collected and used as a blank control. The absorbance at 470 nm,
665 nm, and 649 nm wavelength was measured to calculate
the concentrations of chlorophyll a and b using the following
equation:

Ca=13.95 x A665nm-6.88 x A649nm

Cb =24.96 x A649nm-7.32 x A665nm

Ca and Cb are the concentrations of chlorophyll a and
b, respectively.

Weight loss, vitamin C, flavonoid, and
lignin contents

The weight loss was assayed as described by Xu et al. (21).

The content of vitamin C was measured according to the
method reported by Sohail et al. (31). Frozen broccoli floret
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powder (10 g) was extracted with 20 ml of meta-phosphoric
acid-acetic acid solution. Then 5 ml of solution was added to
2 ml of the ground extract, and the mixture was filtered through
a cheesecloth. Samples were titrated in 2,6-dichloroindophenol
dye solution until a light pink color developed and kept for 5 s.
The content of vitamin C was represented as g kg~ ! of broccoli.

Flavonoid content was determined according to the
NaNO,-Al (NO3)3 colorimetric method (32). Frozen broccoli
floret powder (1 g) was mixed with 30 ml of 70 % ethanol,
extracted for 1.5 h at 65°C, and then centrifuged at 10,000 x g
for 20 min at 25°C. The supernatant extract (1 ml) was added
to 70 % ethanol (1 ml) and 0.3 ml of 5 % NaNO,, mixed
thoroughly and placed for 6 min. Then 0.3 ml of 10 % Al (NO3)3
was added to the mixture. The mixture was placed at 25°C for
6 min. Subsequently, 2 ml of 4 % NaOH was added and reacted
for 10 min. The absorbance was measured at 510 nm. Rutin
was used as a standard to calculate the flavonoid content. The
concentration of flavonoid was represented as g kg~ 1.

The lignin content was determined as described by Yu et al.
(33). Frozen broccoli floret powder (2 g) was weighed, added
to a 15-ml centrifuge tube containing 5 ml of precooled 95 %
ethanol, and centrifuged at 10,000 x g for 15 min. The sediment
was washed with 95 % ethanol and ethanol-hexane, collected,
and completely dried at 60°C. The dried sediment was mixed
with 1 ml of 25 % acetylacetonate in acetic acid and reacted at
70°C for 30 min. Then 1 ml of 2 mol L™! NaOH was added to
the aforementioned mixture to end the reaction, followed by the
addition of 0.1 ml of 7.5 mol L™! hydroxylamine hydrochloride
and 2 ml of glacial acetic acid, and centrifugation at 12,000 x g
for 10 min. The absorbance of supernatant was measured at
280 nm. The lignin content was represented as g kg~ ! based
on fresh weight.

Ethylene generation rate, ACS enzyme
activity, and ACO enzyme activity

The ethylene generation rate was determined according
to Zaharah et al. (34). One hundred gram of fresh broccoli
florets were sealed in a 5-L container and stored at 25°C for
12 h. Furthermore, 1 ml of headspace gas was injected into
a gas chromatography (7820A, Agilent Technologies, Inc., the
United States of America). The ethylene level was calculated
according to the linear relationship between the peak area and
ethylene concentration.

1-aminocyclopropane-1-carboxylic acid
synthase activity

The ACC synthase activity was measured according to the
method described by Zaharah et al. (34). Briefly, 10 ml of
extraction buffer (containing 1 mmol L~! ethylene diamine
tetraacetic acid (EDTA), 1 mmol L™! phenylmethylsulfonyl
fluoride (PMSF), 4 mmol L™! dithiothreitol (DTT), 3 %
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polyvinylpolypyrrolidone (PVPP), and 10 jumol L~ pyridoxal
phosphate) was mixed with 2 g of frozen powder of broccoli
flower buds, swirled and shocked immediately, and then
centrifuged at 4°C and 12,000 x g for 30 min. The supernatant
was collected to obtain the enzyme extract.

The enzyme extract (0.5 ml) and reaction buffer (1.5 ml)
were added to a 10-ml sample bottle (with a rubber stopper)
and placed at 30°C for 1 h. Then 0.1 ml of 25 mmol L™}
HgCl, solution was injected to terminate the reaction, and the
mixture was placed in an ice bath for 10 min. Subsequently,
0.2 ml of precooled 5 % NaClO-saturated NaOH solution was
added, shaken quickly for 5 s, and incubated in the ice bath
for 5 min. The gas (1 ml) was extracted from the headspace,
and the amount of ethylene generation was determined by
gas chromatography.

1-aminocyclopropane-1-carboxylic acid
oxidase activity

1-aminocyclopropane-1-carboxylic acid oxidase activity was
measured according to the protocol of Zaharah et al. (34).
A volume of 10 ml of extraction buffer (containing 10% glycerin,
5% PVPP, 5 mmol L~! DTT, 30 mmol L~! sodium ascorbate,
and 0.1 mmol L~! FeSO,) was mixed with 2 g of frozen powder
of broccoli flower buds. The remaining measurement steps were
the same as that in Section 2.5.1.

The enzyme extract (0.5 ml) and reaction buffer (1.5 ml)
were added to a 20-ml sample bottle (with a rubber stopper).
Subsequently, 1 ml of NaHCO3; was injected into the sample
bottle and incubated at 30°C for 30 min. Then 1 ml of
the gas was extracted from the headspace to determine the
ethylene release.

Hydrogen peroxide (H>O5) content,
superoxide anion (O,7) content,
peroxidase (POD) enzyme activity and
catalase (CAT) enzyme activity

The contents of HO, and O~ were assayed according to
the protocols of Hu et al. (35) and Jin et al. (36).

The activities of CAT and POD were determined based on
the method proposed by Hu et al. (35). One gram of frozen
broccoli powder was added to 5 ml of 0.1 mol L=! PBS (pH = 7)
containing 0.05 g PVPP, swirled and shocked immediately and
centrifuged at 4 °C and 12,000 x g for 15 min, the supernatant
was used to analyze the enzyme activity. The CAT activity was
assayed by recording the decrease every 30 s for 3 min at 240 nm,
the reaction system consisted of 2 ml of PBS, 0.8 ml of 0.3
% H0; and 0.5 ml of supernatant. The POD activity was
measured according to the oxidation of guaiacol by hydrogen
peroxide. The reaction liquid included 50 ml of PBS, 19 L of
30 % H,0O; and 28 pl of guaiacol. The absorbance value of the
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mixture was recorded every 30 s for 3 min at 470 nm. The results

were expressed in U kg™ !.

Ribonucleic acid extraction and
RT-gPCR analysis

Total RNA of broccoli florets was extracted using an
Omini Plant RNA Kit (Cowin Biosciences, Beijing, China) and
cDNA was obtained using a HifiScript cDNA Synthesis Kit
(Cowin Biosciences, Beijing, China), respectively, following the
manufacturers’ instructions. The concentrations of total RNA
and cDNA were determined using the BioPhotometer D30
(Eppendorf AG, Germany).

The primers of RT-qPCR wused in this study were
reported in published articles (2, 5, 37-39). All primers used
(Supplementary Table 1) in this study were synthesized by
Sangon Biotech Co., Ltd. (Shanghai, China). The Ultra SYBR
Mixture Kit (Cowin Biosciences, Beijing, China) was used in RT-
qPCR assays.

Statistical analyses

In this study, all experimental designs were fully performed
with three biological replicates. The SPSS software was used
to conduct the significant difference by the least significant
difference test (P < 0.05, P < 0.01). The data were expressed
as means =+ standard deviations.

Results

Effects of diacetyl treatment on
yellowing of broccoli florets during
shelf life

The broccoli florets gradually lost green color and then
decayed, leading to the development of off-odors. On day 4, the
florets of the control obviously yellowed and decayed. Whereas,
5, 10, 20, and 40 pl L™! diacetyl treatments maintained greener
color and better quality compared with the control. The results
showed that the anti-yellowing effect was increased with higher
concentrations of diacetyl (Figure 1A). Thus, we selected 20 pl
L~! diacetyl treatment for the further research (Figures 1B-D).
It was found that a* and b* values of broccoli florets showed an
increasing trend in four days (Figures 1C,D). The b* values of
diacetyl treatment were lower than that in control, indicating a
decreased yellowing degree with diacetyl treatment. The a* value
of the control increased obviously, while the value of the florets
under diacetyl treatment changed a little during shelf life and
was lower than the control at the end of four days. The values of
a* and b* (Figures 1C,D) were consistent with the visual color
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(Figure 1B). Our study suggested that suitable concentrations of
diacetyl treatment could maintain the visual quality of broccoli
during ambient storage.

Effects of diacetyl treatment on
broccoli florets quality during shelf life

Then the quality of broccoli florets was studied during shelf
life. Firstly, weight loss of broccoli florets was measured with
or without the diacetyl treatment. It was found that broccoli
florets showed a slower weight loss under diacetyl treatment
compared to the control (Figure 2A). Broccoli is rich in vitamin
C and flavonoid (2), thus the contents of vitamin C and
flavonoid were also analyzed. As demonstrated in Figures 2B,C,
diacetyl-treated florets showed higher contents of vitamin C
and flavonoid than the control during shelf life. Meanwhile,
texture is one of the important quality indices of fruit and
vegetables. The lignin content is closely correlated with textural
changes. As a component of the cell wall, the lignin content
can reflect the senescence degree (40). According to Figure 2D,
accumulation of lignin increased slowly in the diacetyl-treated
broccoli florets. Therefore, these results suggested that diacetyl
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treatment could maintain the quality of broccoli florets during
shelf life.

Effects of diacetyl treatment on
chlorophyll degradation of broccoli
florets during shelf life

The levels of chlorophyll a and b presented an overall
downward trend during broccoli florets shelf life, whereas
diacetyl-treated plants maintained a higher chlorophyll content
than the control (Figures 3A,B). It indicated that diacetyl could
inhibit the degradation of chlorophyll in broccoli florets. These
results were consistent with the differences in a* and b* values
between the control and treated florets.

Then various chlorophyll degradation-related genes were
selected to perform further exploration. The transcript levels
of BONOL, BoNYC1, BoHCAR, BoCLH2, BoSGRI, BoPPH, and
BoPAO genes showed an upward trend during shelf life in both
control and treated broccoli florets (Figures 3C-I). However,
the transcript levels of all these genes were always lower
after diacetyl treatment. The results were consistent with the
chlorophyll content (Figures 3A,B). It suggested that diacetyl

frontiersin.org


https://doi.org/10.3389/fnut.2022.1055651
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/

Lietal.

>

IS
1

*

Control
=®= Diacetyl

Weight loss (%)
[ W
*

J—

0
Shelf life (d)
C
o~ L0 Control
'en =8= Diacetyl
= (.8
&0
= S—
£ 0.6 : T
£ *
g *
e 04}
)
g 02k
E %
=
0.0 L 1 1 1 1
0 1 2 3 4
Shelf life (d)
FIGURE 2

10.3389/fnut.2022.1055651

o
()
1

Control
=@= Diacetyl

Vitamin C content ( g kg'l)
(=
N

0.0 1 1 1 1 1
0 1 2 3 4
Shelf life (d)
25r Control N *
= =®= Diacetyl N
"on 20
d
20 *
e 15F
2
=
S 10
k=
& st
—
0 1 1 1 L 1
0 1 2 3 4
Shelf life (d)

Diacetyl reduced the weight loss (A) and inhibited the decrease in the contents of vitamin C (B) and flavonoid (C) and the increase in the lignin
content (D) in broccoli florets during shelf life. Data are the average of three replicates & SD. Asterisk (*) indicates a significant difference among

the control and diacetyl treatment groups at the same time at P < 0.05.

inhibited chlorophyll degradation by suppressing the expression
of chlorophyll degradation-related genes in broccoli florets.

Diacetyl treatment could inhibit
senescence-associated genes through
repressing reactive oxygen species
accumulations in broccoli florets

The accumulations of ROS showed increasing trends in
broccoli over time. Whereas, the levels of H,O, and O,~
were lower than that in control with the diacetyl treatment
(Figures 4A,B). Then the activities of POD and CAT were
determined. It was found that the activities of POD and CAT
were higher in diacetyl treated broccoli, although all showed
an overall increasing trend (Figures 4C,D). It suggested that
diacetyl treatment could improve the antioxidant capacity and
scavenge the accumulation of ROS during shelf life.

Excessive accumulations of ROS could aggravate the
expression of senescence associated genes (41, 42). Thus, the
transcript levels of several broccoli senescence-marker genes,
including BoCP5, BoLSC807, BoLSC810 and BoSAGI12 (5, 43),
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were detected. All of them were induced in the control groups
during shelf life (Figures 4E-H), while these senescence-
associated genes did not show significant difference with those
in the diacetyl-treated group. These results exhibited that
diacetyl could inhibit the postharvest senescence of broccoli
through decreasing ROS accumulation.

Diacetyl treatment inhibit ethylene
generation in broccoli florets during
shelf life

It was reported that ethylene played an essential role in
regulating the senescence of broccoli during postharvest (3).
Thus, the contents of ethylene were measured after diacetyl
treatment. It showed that the ethylene generation rate in
the control was much higher than that in the treated florets
(Figure 5A). This result indicated that diacetyl could inhibit the
generation of ethylene in broccoli florets. Then the activities of
ACS and ACO were detected in broccoli. The ACS and ACO
activities under diacetyl treatment were lower than that in the
control after 1 d (Figures 5B,C). As shown in Figures 5D-I,
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the gene expression of BoOACO1, BoACO2, BoACO3 BoACSlI,
BoACS2, and BoACS3 was also obviously suppressed by diacetyl
treatment. These results demonstrated that lower ethylene
generation in broccoli florets with diacetyl treatment could be
ascribed to lower ACS and ACO transcript levels and enzyme
activities. Therefore, suppressing ethylene production is crucial
to maintaining broccoli quality by diacetyl treatment.

Discussion

After harvest, the disruption of water and nutrient supply
to broccoli heads can boost senescence, resulting in chlorophyll
degradation and loss of nutritional value (21). The harvested
broccoli florets usually turn yellow in two days at 25°C.
Our study indicated that diacetyl could inhibit the yellowing
of broccoli florets (Figure 1) and delayed the nutritional
loss of vitamin C, flavonoid and the generation of lignin at
suitable concentrations (Figure 2). Excessive ROS accumulation
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could accelerate the quality loss of broccoli. Scavenging
ROS overproduction and maintaining ROS homeostasis were
considered as a strategy to maintain the quality of postharvest
broccoli. For example, 24-epibrassinolide was able to alleviate
yellowing of broccoli by enhancing the antioxidant capacity
(11). In this study, diacetyl treatment improved the enzyme
activities of POD and CAT to prevent the contents of H,O,
and O, 7. Therefore, diacetyl treatment alleviated yellowing of
broccoli via improving the antioxidant capacity and maintaining
the ROS equilibrium.

Broccoli florets faded at the beginning of yellowing because
of the degradation of chlorophyll (21). Some genes, including
BoCLH2, BoPPH, BoPAO, BoNYCI, BoNOL, BoHCAR and
BoSGR1, have been reported to be involved in the regulation
of chlorophyll degradation during broccoli senescence (37, 44).
Previous studies showed that ethylene induced the expression
of BoPPH and SGRI, which were accompanied by the yellowing
of broccoli (44). Likewise, the gene expression of BoPPH and
BoSGR1 were induced by broccoli senescence in this study.
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However, it was suppressed after diacetyl treatment, which
could be relevant to the suppression of ethylene production. In
our research, the expressions of BONYCI and BoNOL, which
strikingly increased in untreated broccoli florets, were inhibited
by diacetyl treatment during shelf life. Thus, the transcript
levels of BONYCI and BoNOL were attenuated by diacetyl to
retard chlorophyll degradation. HCAR could interact with other
chlorophyll catabolic enzymes, such as SGR1/NYEI, NYCI and
NOL, during leaf senescence in Arabidopsis (45). Meanwhile,
Jara et al. (2) suggested that HCAR played a protective role
due to its contribution to the stability of photosystem II, which
prevented the release of chlorophyll. Thus, diacetyl could inhibit
the expression of BoHCAR, which might be associated with
BoSGR1, BoNYC1, and BoNOL.

Previous studies concluded that ethylene accumulation was
relevant to the quality loss of broccoli. Ethanol vapor and
phytosulfokine o treatment could inhibit the senescence of
broccoli by repressing the ethylene synthesis-related genes’
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transcription and enzyme activities (6, 46). Similarly, the
diacetyl treatment reduced the activities of ACS and ACO
through inhibiting the expression of ethylene synthesis genes,
such as BoACSI1, BoACS2, BoACS3, BoACO1, BoACO2, and
BoACO3, thereby further reducing ethylene generation in
this study (Figure 5). Moreover, some studies have shown
that ethylene could regulate the transcription levels of genes
encoding major chlorophyll degradation and ROS metabolism
enzymes (47, 48). For example, ethylene insensitive 3 (EIN3), a
positive regulator of ethylene signaling, accelerated chlorophyll
degradation by physically binding to NOL, NYCI and PAO
promoters to induce their expression. Moreover, OREl was a
direct target of EIN3, and was induced by ethylene. It could
also activate the expression of ACS2 and subsequently promote
the ethylene production (49, 50). Thus, we demonstrated that
diacetyl treatment suppressed the synthesis of ethylene and
then inhibited ROS accumulation, ultimately repressed the

frontiersin.org


https://doi.org/10.3389/fnut.2022.1055651
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/

Lietal.

transcription level of chlorophyll degradation gene (Figures 3-
5). We emphasized that the suppression of ethylene generation
by diacetyl treatment was the principal factor for delaying the
quality loss of broccoli.

Diacetyl, which naturally exists in some foods, is popular
as a food-flavoring additive (24). According to centuries of
human acquaint with diacetyl in fermented foods, FDA believes
that there is no apparent health concerns about diacetyl used
in food (see text footnote 1). The daily intake of diacetyl is
3,300 pg/person per day in Europe and 8,000 jg/person per
day in the United States (World Health Organization). The
diacetyl content in yogurt is 200-3,000 mg kg~! (51). The dose
of diacetyl used in this study was 20 pl L™1, about 281 mg
kg~ ! fresh broccoli, and the residual value of diacetyl in broccoli
must be lower than the used dose. Therefore, the residual dose
in broccoli should be safe for human beings. In summary,
diacetyl has the potential to be used for maintaining the quality
of broccoli based on its efficacy and the availability of safe
management measures during and after fumigation treatment.

Overall, our study established that diacetyl decreased the
postharvest quality decline, suppressed the degradation of
chlorophyll, and improved the antioxidant capacity in broccoli,
which was accompanied by lower ethylene generation. Several
studies illustrated that ethylene had complex interactions with
abscisic acid (ABA) and jasmonic acid (JA) during plant
senescence (9). However, it is still unclear whether diacetyl
could regulate the ethylene synthesis through ABA and JA in
our research. Meanwhile, some questions need to be further
explored. such as “how diacetyl affected the expression of

» «

ethylene synthesis-related genes,” “whether exogenous diacetyl
treatment could stimulate endogenous resistance to stress
factors and enhance the anti-senescence ability of plants” and
“whether exogenous diacetyl can act as a signaling molecule
to stimulate endogenous diacetyl and then enhance the anti-
senescence ability of plants.” Based on our studies, we believed
that diacetyl could be a novel and valuable molecular tool to
explore the mechanism of senescence of postharvest fruit and

vegetables in future.

Conclusion

Appropriate concentrations of diacetyl could inhibit the
yellowing and maintain the nutritional quality of broccoli
florets. Diacetyl treatment prevented the excessive accumulation
of ROS and improved the antioxidant capacity. Furthermore,
diacetyl treatment suppressed the expression of ethylene
synthesis—related genes, decreased the ethylene synthesis—
related enzyme activities, which led to reduced ethylene
generation. Therefore, diacetyl treatment could be considered as
ameaningful strategy for alleviating senescence and maintaining
the quality of postharvest broccoli, it also has a potential to be
used as a molecular tool to explore plant senescence.
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