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A new method is described based on ultrahigh-performance liquid

chromatography-mass spectrometry (UHPLC) with electrospray mass

spectrometry detection for comprehensive quantitative analysis of 66

polyethoxylated tallow amine (POE-tallowamine) homologs in citrus. Efficient

separation, reduced band broadening, and high sensitivity were achieved by

employing an acetonitrile-aqueous solution containing a 10 mM ammonium

formate gradient on a hydrophilic interaction chromatography (HILIC)

column with a modified QuEChERS (quick, easy, cheap, effective, rugged, and

safe) method. The quantitative accuracy and precision of the method were

improved by the use of matrix-matched calibration standards. At spiked levels

of (50 + 250) µg/kg, (200 + 1000) µg/kg, and (500 + 2500) µg/kg POE-5

and POE-15 (1:5), the average recoveries of the POE-tallowamine homologs

ranged from 71.9 to 112%, with RSDs < 16.6%. The limits of detection (LODs)

and limits of quantification (LOQs) for POE-tallowamine homologs were

0.01–2.57 and 0.03–8.58 µg/kg, respectively. The method was successfully

applied to determine POE-tallowamine in citrus samples from typical Chinese

regions in 2021. POE-tallowamine was detected in all 54 samples, and the

highest concentration (143 µg/kg) of POE-tallowamine was found in Jelly

orange from Zhejiang Province, which might indicate a higher usage and

demand of glyphosate herbicides in Zhejiang.
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Introduction

Polyethoxylated tallow amine (POE-tallowamine) is a class
of synthetic surfactants widely used in a variety of pesticides,
especially in glyphosate-based herbicide formulations (1–
3). POE-tallowamine can improve the plant coverage and
penetration of glyphosate through surface tissues (4). However,
POE-tallowamine has been demonstrated to have higher toxicity
than its active substance glyphosate in a great number of
studies (2, 5–7). Considering the concerns about the toxicity
of POE-tallowamine and its potential adverse effects on human
health, POE-tallowamine has been listed as a co-formulant
that is not accepted for inclusion in plant protection products
by the European Union (EU) (8). The US Environmental
Protection Agency (EPA) and Canada have recently limited the
additive dose of POE-tallowamine to less than 25 and 20%
in pesticide formulations, respectively (9, 10). The increased
attention focused on the occurrence of POE-tallowamine in
agroecosystems necessitates the development of sensitive and
robust analytical methods for determining these compounds in
complex agroproduct matrices.

A typical POE-tallowamine comprises one linear aliphatic
chain and two polyethoxylate chains attached to a single
nitrogen atom with a range of 2–23 ethoxylate units (EO,
n = 2–23, Supplementary Figure 1). The linear aliphatic
chain is mainly derived from saturated palmitic acid (C16:0),
saturated stearic acid (C18:0), and unsaturated oleic acid
(C18:1, ω−9). The EO numbers in two ethoxylate chains
of POE-tallowamine may equal or differ, rendering POE-
tallowamine analysis a major challenge. Reversed-phase liquid
chromatography coupled with mass spectrometry (LC-MS)
is suitable for the determination of POE-tallowamine as a
mixture (11–16). Wang et al. (13) and Rodriguez-Gil et al.
(17) determined the total concentrations of a POE-tallowamine
mixture in soil by a C18 column based on carbon chain length
while lacking single ethoxylated POE-tallowamine homolog
chromatographic separation and quantitation. The coelution of
ethoxylated POE-tallowamine homologs will lead to competitive
ionization suppression during the electrospray process and
isobaric interferences between single- and double-charged
POE-tallowamine ethoxymers (18–21). Recently, hydrophilic
interaction chromatography (HILIC) combined with mass
spectrometry was used widely for the separation of polydisperse
surfactants in petrochemicals that are difficult to separate in
reversed-phase chromatography (19, 22–26). To the best of
our knowledge, there are no reports of useful techniques for
the determination of single ethoxylated POE-tallowamine in
aro-product samples.

In this study, we developed a QuEChER-HILIC-MS method
for quantification of trace levels of individual POE-tallowamine
homologs in citrus samples. A matrix effect study was
conducted, demonstrating that ion suppression from sample
matrices was decreased. This method was then applied to

characterize the distribution of different POE-tallowamine
homologs in citrus samples, providing more foundation
information for human health risk assessment.

Materials and methods

Chemicals and reagents

POE-2 tallow amine, POE-5 tallow amine, and POE-15
tallow amine (a mixture of POE-tallowamine with an average of
2, 5, and 15 EO units, respectively) were purchased from Chem
Service Inc. (West Chester, PA, USA). Acetonitrile (ACN, HPLC
grade) and ammonium formate (HPLC grade) were acquired
from Thermo Fisher Scientific (Waltham, MA, USA). Ultrapure
water (≥18.2 M�·cm) was generated by the Milli-Q purification
system (Millipore, Bedford, MA, USA). Primary secondary
amine (PSA), octadecyl (C18) sorbents, and graphitized carbon
black (GCB) were supplied by Agela Technologies (Tianjin,
China). Sodium chloride and anhydrous magnesium sulfate
of analytical grade were obtained from Sinopharm Chemical
Reagent Company (Beijing, China).

Stock standard solutions of POE-2, POE-5, and POE-15
(10.0 g/L) were prepared in ACN, and the spiked solutions were
a mixture of POE-5 and POE-15 (1:5). The working solutions
were achieved by appropriate dilution with ACN. All of the
solutions were stored at −20◦C. According to Tush et al. (15),
Cz(s/u) EOn was used to describe the individual homologs,
where z is the number of carbon atoms, s is a saturated
tallow moiety, u is a monounsaturated tallow moiety, and n
is the total number of EO units from two ethoxylate chains.
It was assumed that C16s, C18s, and C18u accounted for 90%
of the mixtures, and individual homologs obtained an equal
instrument response, which was consistent with the analysis of
nonylphenol ethoxylates (NPEOs) (27).

Sample collection and preparation

Fifty-four ripe citrus samples were collected from the
main citrus production regions in China, including Guangxi
province, Zhejiang province, Hunan province, and Chongqing
municipality, which contained Shatang mandarin, Jelly orange,
Bingtang sweet orange, Satsuma mandarin, Orah citrus, and W.
Murcott Tangerine. Six to twelve parallel samples were collected
for each species from different regions. All the samples were
homogenized and stored at−20◦C before analysis.

Frozen citrus samples were allowed to thaw completely
before being thoroughly mixed and subsampled for extraction.
After thawing at room temperature, 10 g homogenized
citrus samples were extracted with 10 mL of 1% formic
acid in acetonitrile in a 50-mL polypropylene centrifuge
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FIGURE 1

Mass spectrum of standard polyethoxylated tallow amine (POE-tallowamine) by using ultrahigh-performance liquid chromatography-mass
spectrometry (UHPLC-MS). (A) POE-2 (0.5 mg/L), (B) POE-5 (1 mg/L), and (C) POE-15 (5 mg/L).

tube. Each sample was vortexed for 1 min with a Vortex-
Genie 2 (Scientific Industries Inc., Bohemia, NY, USA) and
ultrasonically extracted by an ultrasonic cleaner (Model KQ-
500DB, Kunshan Ultrasonic Instrument Co., Ltd., Jiangsu,
China) at room temperature for 20 min. Subsequently, 4 g
of anhydrous magnesium sulfate and 1 g of sodium chloride
were added to the centrifuge tube and vortexed for 1 min.
After centrifugation at 5,000 rpm for 10 min, 1 mL of the
supernatant was pipetted into a 2.5-mL clean centrifuge tube
that contained 50 mg PSA and 5 mg GCB, vortexed and
centrifuged at 10,000 rpm for 5 min. Finally, the supernatant

was filtered through a 0.22-µm membrane (Bonna-Agela
Technologies Inc., Tianjin, China) and transferred into a 1.5-mL
autosampler vial for direct analysis by ultrahigh-performance
liquid chromatography-mass spectrometry (UHPLC–MS).

Instrumental conditions

Quantitative analyses of POE-tallowamine were conducted
by a Shimadzu Triple Quadrupole LCMS–8050 system
(Shimadzu, Kyoto, Japan) in positive electrospray ionization
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FIGURE 2

Chromatograms of C16s spiked at POE-5 (1 mg/L) and POE-15 (5 mg/L) in different aqueous phases. (A) 0.2% formic acid in water, (B) 1 mM
ammonium formate in water, (C) 10 mM ammonium formate in water, and (D) 2% formic acid and 10 mM ammonium formate in water.

(ESI) mode. A Waters CQUITY UPLC R© BEH HILIC column
(2.1 × 100 mm, 1.7 µm particle size) was used to separate the
analytes. A gradient procedure was performed using mobile
phases A (water containing 10 mM ammonium formate) and B
(ACN) at a flow rate of 0.30 mL/min. The injection volume was
5 µL, and the column temperature was maintained at 25◦C. The
gradient elution program was as follows: mobile phase B was
initiated with 92% (held for 1 min), followed by a linear decrease
to 80% in 10 min and kept for 2 min. Then, it was increased
to 92% to maintain the initial chromatographic condition
within 4 min. The back pressure was 16.6 MPa. The column
temperature was maintained at 25◦C. MS detection was carried
out using a time-programmed selected ion monitoring mode
with an LCMS-8050 tandem quadrupole mass spectrometer
(Shimadzu, Kyoto, Japan). The ion source temperature was
450◦C. The identification of target compounds was based on

mass measurement of different adducts, namely, [M + H]+ and
[M + H + NH4]2+. System control, data acquisition, and data
analyses were performed with LabSolutions software (version
5.82, Shimadzu).

Results and discussion

Optimization of spectrometry and
chromatography conditions

A typical POE-tallowamine is subclassified based on the
average ethoxylate lengths into POE-2, POE-5, and POE-15.
As shown in Figures 1A,B, the single-charged adduct ions
([M + H]+) were observed in POE-2 (n = 2) and POE-5
(n = 2–9) with mass differences of 44 Da between neighboring
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FIGURE 3

The ion chromatograms of C16s-EO10 and C16s-EO19 in different solvent extraction performances. (A) C16s-EO10 extracted by 1.5% formic
acid in acetonitrile, (B) C16s-EO10 extracted by 1% formic acid in acetonitrile, (C) C16s-EO19 extracted by 0.1% formic acid in acetonitrile, and
(D) C16s-EO19 extracted by 1% formic acid in acetonitrile. The spiked levels were 0.2 mg/L POE-5 and 1 mg/L POE-15.

homologs. This observation was consistent with the results
of previous work (15). For POE-15 (n = 12–20), except for
[M + H]+, double-charged adduct ions ([M + H + NH4]2+)
were simultaneously detected with mass differences of 22 Da
between neighboring homologs (Figure 1C). We found that the
[M + H + NH4]2+ adducts exhibited stronger responses than the
[M + H]+ adducts when POE-15 homologs had more EO units
(n > 13). For example, the responses of double-charged adducts
([M + H + NH4]2+) provided by C16sEO14, C16sEO15, and
C16sEO16 were 1.5-fold, 5-fold, and 9-fold higher than those
of the corresponding single-charged adducts ([M + H]+) in the
chromatograms, respectively (Supplementary Figure 2). This
is the first report on the adduct ions ([M + H + NH4]2+) of
POE-tallowamine. Similar phenomena were found in NPEOs
and tristyrylphenol ethoxylate (TSPEOs) homologs, where two
clusters of characteristic signals (single- and double-charged
adduct ions) were chosen as the precursor ion (28, 29). Similarly,
the responses of double-charged adducts of NPEOs and TSPEOs

also increased with EO chain length. Therefore, [M + H]+

adducts were chosen as base ions of POE-tallowamine homologs
(n = 2–13), whereas [M + H + NH4]2+ adducts were base ions
for POE-tallowamine homologs (n = 14–23) (Supplementary
Table 1).

Considering that the unfavorable separation and coelution
of POE-tallowamine by reversed-phase chromatography
column in previous studies (11–16). POE-tallowamine was
separated based on its hydrophilic moiety by a HILIC column.
One of the main advantages of HILIC is the efficient separation
of polar compounds in aqueous-organic mobile phases rich in
organic solvents (usually ACN) (30). In general, the pH value
and additives of the mobile phase have a significant impact on
retention and selectivity in the chromatographic column (31–
33). Figure 2 presents the chromatograms of standard mixtures
containing 1 mg/L POE-5 and 5 mg/L POE-15 at different
percentages of formic acid and ammonium formate. As
exemplified by C16s in Figure 2A, the chromatographic peaks
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FIGURE 4

Recoveries of different dispersive solid-phase extraction (DSPE) sorbents for polyethoxylated tallow amine (POE-tallowamine) homologs in the
matrix (n = 3). The spiked levels were 0.2 mg/L POE-5 and 1 mg/L POE-15. (A) 50 mg PSA, (B) 50 mg C18, (C) 10 mg GCB, (D) 50 mg PSA + 5 mg
GCB, and (E) 50 mg PSA + 10 mg GCB. The peak numbers are the same as in Supplementary Table 1.

of C16s were not well separated between 1 and 6 min when the
aqueous phase consisting of only formic acid was used, which
displayed a reduction in retention and deterioration in peak
shape. To improve the retention selectivity and peak profiles,
the addition of ammonium formate to the mobile phase was also
investigated. As shown in Figures 2B,C, the chromatographic
peak shape was greatly improved, and the retention time was
moved forward for POE-tallowamine with the increase in the
ammonium formate concentration from 1 to 10 mM. The
reason could be that salt could significantly affect the adsorption
behavior of the stationary phase (30, 34). Compared to 1 mM
ammonium acetate, sharper, and symmetrical peak shapes
were observed by using a concentration of 10 mM ammonium
acetate, with the band broadening reducing approximately
42–50% and the sensitivity increasing one-fold. This result
suggested that the addition of ammonium formate also helped
to the LC-electrolyte effects of POE-tallowamine. Similar effects

of ammonium formate were reported in the separation of
saccharide and antibiotics (34, 35). Moreover, the effect of the
addition of 0.2% formic acid and 10 mM ammonium formate
was also evaluated (Figure 2D). The peak shapes of C16sEO6,
C16sEO10, C16sEO11, and C16sEO15 were distinctly split,
and C16sEO4-7 overlapped obviously, negatively impacting
the quantitation of the target analytes. Consequently, 10 mM
ammonium formate added to the mobile phase was ultimately
selected in our study, providing optimum analytical separation.

Optimization of the sample
preparation

ACN and ACN with different degrees of acidification were
tested to optimize the extraction procedure, including 0.1,
0.5, 1, and 1.5% formic acid (FA) in ACN. As shown in
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TABLE 1 Method validation of polyethoxylated tallow amine (POE-tallowamine) in citrus (n = 3).

Compound 1st spiked
level (µg/kg)

Average
recovery 1 (%)

RSD 1
(%)

2nd spiked
level (µg/kg)

Average
recovery 2 (%)

RSD 2
(%)

3rd spiked level
(µg/kg)

Average
recovery 3 (%)

RSD 3
(%)

Regression
equation

R2 LOD
(mg/kg)

LOQ
(mg/kg)

C16sEO2 0.20 / / 0.79 110 8.12 1.98 108 13.4 Y = 10638.1X +
4.14534e + 006

0.9991 0.09 0.30

C16sEO3 1.38 96.7 7.88 5.54 85.7 2.98 13.8 96.4 1.56 Y = 74328.9X +
755,073

0.9998 0.37 1.23

C16sEO4 2.54 108 8.66 10.2 102 4.84 25.4 95.4 0.36 Y = 119338X +
2.25222e + 006

0.9999 0.16 0.55

C16sEO5 2.54 98.4 3.91 10.2 92.6 3.48 25.4 99.0 1.51 Y = 125945X +
1.051142e + 006

0.9997 0.16 0.53

C16sEO6 3.07 103 0.85 12.3 102 2.43 30.7 99.8 1.65 Y = 106278X +
1.16466e + 006

0.9996 0.67 2.22

C16sEO7 3.46 101 1.00 13.9 92.3 2.73 34.6 99.2 1.91 Y = 91239X +
65,535.5

1.0000 1.51 5.04

C16sEO8 4.29 97.9 1.39 17.2 96.4 7.41 42.9 95.2 6.68 Y = 53491.8X−
486,151

0.9995 1.87 6.25

C16sEO9 5.68 96.6 4.97 22.7 103 3.20 56.8 99.3 2.27 Y = 95794.7X +
384,218

0.9998 0.28 0.94

C16sEO10 7.37 84.2 8.38 29.5 103 5.77 73.7 96.8 0.31 Y = 13061.6X +
51,512.3

0.9957 0.31 1.02

C16sEO11 8.63 88.3 6.02 34.5 99.7 8.63 86.3 100 2.13 Y = 19685.6X−
305,829

0.9929 1.48 4.93

C16sEO12 8.59 104 3.86 34.4 92.9 14.0 85.9 96.8 9.40 Y = 53497.6X−
659,003

0.9979 0.77 2.56

C16sEO13 8.66 90.1 11.3 34.6 92.1 6.69 86.6 98.6 6.42 Y = 72089.3X +
1.15542e + 007

0.9992 0.52 1.75

C16sEO14 8.03 91.1 6.67 32.1 104 7.87 80.3 102 2.70 Y = 47360.7X−
185,358

0.9988 1.24 4.13

C16sEO15 7.24 95.8 2.09 29.0 90.7 4.44 72.4 102 7.32 Y = 106205X−
1.25228e + 006

0.9973 1.81 6.02

C16sEO16 5.85 101 2.61 23.4 97.4 4.69 58.5 98.6 2.34 Y = 141174X−
1.36994e + 006

0.9984 2.26 7.52

C16sEO17 4.46 104 2.56 17.8 89.4 8.72 44.6 96.5 12.1 Y = 150764X +
5.85730e + 006

0.9996 0.24 0.79

C16sEO18 3.17 96.9 2.81 12.7 102 1.95 31.7 91.0 1.12 Y = 67337.9X−
1.39652e + 006

0.9962 1.07 3.56

C16sEO19 1.98 94.3 7.36 7.93 93.7 4.62 19.8 94.3 8.88 Y = 164513X +
3.33064e + 006

0.9986 0.34 1.14

C16sEO20 1.19 94.8 5.76 4.76 96.7 3.63 11.9 89.8 3.24 Y = 153890X−
990,697

0.9996 0.16 0.55

C16sEO21 0.79 97.4 4.35 3.17 95.3 4.45 7.93 101 2.87 Y = 123607X−
1.20720e + 006

0.9988 0.06 0.19

C16sEO22 0.40 103 2.86 1.59 96.7 3.66 3.97 97.8 0.16 Y = 88312.9X−
785,431

0.9985 0.03 0.11

C16sEO23 0.10 102 1.58 0.40 85.4 11.9 0.99 100 3.29 Y = 45964.2X−
407,883

0.9989 0.02 0.06

(Continued)
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TABLE 1 (Continued)

Compound 1st spiked
level (µg/kg)

Average
recovery 1 (%)

RSD 1
(%)

2nd spiked
level (µg/kg)

Average
recovery 2 (%)

RSD 2
(%)

3rd spiked level
(µg/kg)

Average
recovery 3 (%)

RSD 3
(%)

Regression
equation

R2 LOD
(mg/kg)

LOQ
(mg/kg)

C18sEO2 0.16 / / 0.66 108 10.1 1.65 112 12.9 Y = 5755.03X +
5.80699e + 006

0.9943 0.12 0.40

C18sEO3 1.02 71.9 16.6 4.09 81.6 5.35 10.2 79.8 2.82 Y = 59566.9X +
4.01101e + 006

0.9999 0.52 1.73

C18sEO4 1.62 82.3 4.61 6.46 102 6.90 16.2 91.5 2.06 Y = 100730X +
1.24447e + 006

0.9999 0.22 0.72

C18sEO5 1.55 95.4 2.49 6.20 107 2.41 15.5 92.9 2.35 Y = 105369X−
331,227

1.0000 0.42 1.40

C18sEO6 2.34 103 3.09 9.37 99.7 3.19 23.4 94.7 2.93 Y = 54060.3X +
157,924

0.9996 0.38 1.25

C18sEO7 2.87 93.0 3.21 11.5 91.4 2.78 28.7 96.9 1.56 Y = 95244.9X−
1.09864e + 006

0.9997 0.29 0.96

C18sEO8 3.50 80.1 4.92 14.0 90.2 9.27 35.0 95.7 7.50 Y = 6427.08X−
20,036.8

0.9992 1.39 4.62

C18sEO9 4.36 104 8.59 17.4 102.5 3.77 43.6 101 3.75 Y = 70137X +
1.25458e + 006

0.9998 0.84 2.80

C18sEO10 5.39 101 2.06 21.5 91.1 7.79 53.9 90.7 2.11 Y = 63797.9X +
318,786

0.9999 0.24 0.79

C18sEO11 5.88 102 5.47 23.5 103 7.80 58.8 103 4.52 Y = 5814.33X−
154,834

0.9947 2.57 8.58

C18sEO12 6.28 87.7 1.51 25.1 90.6 3.33 62.8 91.4 1.14 Y = 72061X
− 1.15738e + 006

0.9960 0.82 2.75

C18sEO13 6.45 80.1 7.53 25.8 107 9.72 64.5 103 2.00 Y = 26495.5X−
85,556.7

0.9978 1.77 5.91

C18sEO14 6.35 94.0 4.03 25.4 92.3 6.32 63.5 94.3 2.63 Y = 60607X−
179,269

0.9980 0.35 1.17

C18sEO15 5.75 90.6 0.70 23.0 97.7 5.82 57.5 93.5 1.97 Y = 122675X−
770,581

0.9989 1.02 3.40

C18sEO16 4.76 95.3 3.02 19.0 94.4 5.67 47.6 99.0 4.03 Y = 137611X−
2.62652e + 006

0.9970 1.39 4.62

C18sEO17 3.37 100 3.24 13.5 88.6 2.29 33.7 99.7 1.58 Y = 156033X−
1.17992e + 006

0.9992 0.75 2.52

C18sEO18 2.38 106 5.96 9.52 94.6 7.39 23.8 107 4.67 Y = 159386X +
1.32733e + 007

0.9998 0.04 0.13

C18sEO19 1.49 92.0 1.70 5.95 98.4 3.09 14.9 98.1 3.30 Y = 146972X−
2.07112e + 006

0.9975 0.07 0.24

C18sEO20 0.99 101 2.97 3.97 86.4 9.75 9.92 96.6 3.92 Y = 139825X−
793,609

0.9992 0.02 0.08

C18sEO21 0.59 101 2.42 2.38 94.1 4.59 5.95 101 2.50 Y = 108112X−
433,052

0.9990 0.01 0.03

C18sEO22 0.40 96.3 1.71 1.59 90.7 6.84 3.97 102 1.77 Y = 80682.9X−
529,815

0.9983 0.02 0.07

C18sEO23 0.20 100 1.98 0.79 92.4 5.82 1.98 103 1.10 Y = 54178.9X−
451,563

0.9990 0.04 0.12

(Continued)
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TABLE 1 (Continued)

Compound 1st spiked
level (µg/kg)

Average
recovery 1 (%)

RSD 1
(%)

2nd spiked
level (µg/kg)

Average
recovery 2 (%)

RSD 2
(%)

3rd spiked level
(µg/kg)

Average
recovery 3 (%)

RSD 3
(%)

Regression
equation

R2 LOD
(mg/kg)

LOQ
(mg/kg)

C18uEO2 0.36 / / 1.45 101 3.06 3.63 97.6 1.98 Y = 33183.1X +
277,382

0.9998 0.10 0.34

C18uEO3 2.21 102 10.2 8.84 88.8 7.03 22.1 97.0 2.84 Y = 126808X +
2.26834e + 006

0.9996 0.42 1.40

C18uEO4 3.30 95.8 5.72 13.2 108 6.28 33.0 99.2 1.95 Y = 190378X +
862,045

0.9997 0.23 0.76

C18uEO5 3.03 102 0.58 12.1 96.3 4.91 30.3 98.6 1.88 Y = 183825X +
507,157

0.9987 0.56 1.88

C18uEO6 6.27 99.2 3.70 25.1 97.8 4.16 62.7 99.2 1.76 Y = 160410X +
1.12737e + 006

0.9997 0.82 2.72

C18uEO7 7.56 94.2 5.56 30.2 97.8 3.64 75.6 99.3 1.60 Y = 149304X +
3.82661e + 006

0.9995 2.44 8.13

C18uEO8 8.32 102 5.06 33.3 86.2 11.8 83.2 99.4 2.15 Y = 71061.9X +
6,323.82

0.9999 0.75 2.52

C18uEO9 8.76 102 1.93 35.0 104 7.10 87.6 99.2 2.40 Y = 136566X +
977,788

0.9988 0.95 3.16

C18uEO10 9.58 101 6.17 38.3 91.4 9.37 95.8 99.2 0.65 Y = 53277.3X +
1.03266e + 006

1.0000 0.31 1.05

C18uEO11 9.62 91.2 11.7 38.5 98.7 4.59 96.2 103 3.19 Y = 8436.05X−
138,838

0.9972 1.14 3.81

C18uEO12 9.98 96.8 14.7 39.9 92.4 3.06 99.8 85.7 8.20 Y = 25968.3X +
297,608

0.9975 1.55 5.16

C18uEO13 9.55 101 0.80 38.2 104 8.04 95.5 100 2.36 Y = 45051.5X +
824,902

0.9995 0.62 2.06

C18uEO14 8.83 105 4.57 35.3 103 8.85 88.3 96.8 3.53 Y = 74165.5X +
2.53922e + 006

0.9979 0.26 0.85

C18uEO15 7.64 99.8 1.67 30.5 90.9 6.23 76.4 99.6 1.79 Y = 166842X−
252,087

0.9995 1.39 4.63

C18uEO16 6.05 99.1 3.06 24.2 97.7 4.41 60.5 101 2.90 Y = 177829X−
1.54051e + 006

0.9995 0.77 2.56

C18uEO17 4.46 103 1.84 17.8 94.9 4.18 44.6 101 2.27 Y = 195438X +
360,378

0.9994 0.52 1.75

C18uEO18 2.97 98.6 1.03 11.9 94.7 4.94 29.7 101 2.80 Y = 215319X +
138,618

0.9984 0.03 0.10

C18uEO19 1.88 101 2.27 7.54 93.5 4.82 18.8 101 2.70 Y = 207100X−
947,497

0.9993 0.13 0.42

C18uEO20 1.09 98.4 2.38 4.36 90.5 5.82 10.9 101 3.74 Y = 177080X−
1.57976e + 006

0.9996 0.08 0.28

C18uEO21 0.69 98.8 7.16 2.78 96.9 5.11 6.94 94.2 4.47 Y = 140553X−
1.25333e + 006

0.9994 0.07 0.23

C18uEO22 0.40 101 2.88 1.59 92.9 4.85 3.97 98.6 4.20 Y = 106,050X−
959,152

0.9986 0.01 0.04

C18uEO23 0.10 89.1 4.85 0.40 92.1 6.30 0.99 91.1 1.79 Y = 67095X−
1.03891e + 006

0.9978 0.02 0.07

Fro
n

tie
rs

in
N

u
tritio

n
0

9
fro

n
tie

rsin
.o

rg

https://doi.org/10.3389/fnut.2022.1061195
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1061195 November 24, 2022 Time: 15:25 # 10

Li et al. 10.3389/fnut.2022.1061195

Supplementary Figure 3, the recoveries of different extraction
solvents for POE-tallowamine homologs were in the range of
63.1–106%. However, the recoveries of the compounds showed
improvement upon addition of 0.1–1.5% FA, which may be
because the use of acidification during the extraction could
improve the extraction efficiency of cationic surfactants (36,
37). Satisfactory recoveries of antibiotics were also achieved by
adding formic acid to adjust the pH (35). In comparison with
C16sEO10 extracted by 1.5% FA in ACN (Figure 3A). Figure 3B
shows obvious separation of C16sEO10 from impurity peaks
with a good peak shape when extracted by 1% FA in ACN.
The resolution of C16sEO10 was significantly increased by
four-fold under 1% FA in ACN. As shown in Figures 3C,D,
an adverse separation between C16sEO19 and impurity peaks
under 0.1% FA in ACN and a refined separation of C16sEO19
under 1% FA in ACN were clearly observed. This might affect
the hydrophobic interactions of the compounds as a result of
their pH, leading to a better separation of POE-tallowamine
homologs. Therefore, 1% FA in ACN treatment was ultimately
selected as the extraction solvent.

To obtain high sensitivities and lower method limits, the
dispersive solid-phase extraction (DSPE) method was used to
purify the acetonitrile phase. Different DSPE sorbents were
tested during optimization in this study. First, 50 mg PSA,
50 mg C18, and 10 mg GCB were evaluated by purifying crude
citrus sample extracts spiked with POE-5 (200 µg/kg) and
POE-15 (1000 µg/kg). As shown in Figures 4A–C, PSA, C18,
and GCB showed good recoveries for all 66 POE-tallowamine
homologs (PSA: 84.4–105%, C18: 73.1–102%, and GCB: 72.8–
96.6%). The difference is that the analytical sensitivities for
PSA were approximately four-fold higher than those for C18,
as exemplified by C16sEO10 (Supplementary Figure 4). This
might be because PSA has a greater capacity than aminopropyl
sorbent based on the extra secondary amino group and provides
adsorption properties for fatty acids (38–40). Additionally,
previous studies indicated that GCB was highly effective in
reducing coextracted pigments in QuEChERS (39, 41). Thus,
different combinations of PSA and GCB sorbents were further
optimized to improve adsorption effects. With the increase in
GCB from 5 to 10 mg, the recoveries were observed to decrease
from 64.6–112 to 31.8–89.1% (Figures 4D,E). Therefore, 50 mg
PSA and 5 mg GCB were selected as the DSPE sorbent for all
POE-tallowamine homologs in this study.

Method validation

To confirm the practicability of the present method, matrix
effects were evaluated for POE-tallowamine by using the slope
ratio of matrix-matched standard curves with a solvent standard
calibration curve. Matrix-matched and solvent standard curves
were created for POE-tallowamine with different spiked

concentrations in the range of 5–1,000 ng/mL POE-5 and 25–
5,000 ng/mL POE-15. As shown in Supplementary Figure 5,
POE-tallowamine homologs in the tested citrus exhibited matrix
suppression effects. Therefore, matrix-matched calibration
curves were built for the POE-tallowamine analysis to reduce
the influence of the matrix.

The recovery experiment was conducted to evaluate the
method accuracy by spiking at three times the original
concentration of the standard mixture into citrus samples.
As shown in Table 1, at spiked levels of (50 + 250) µg/kg,
(200 + 1,000) µg/kg, and (500 + 2,500) µg/kg POE-5 and
POE-15 (1:5), the relative recoveries ranged from 71.9 to 112%
with a relative standard deviation (RSD) < 16.6% in citrus
samples. The correlation coefficients (R2) of determination were
typically greater than 0.9900, which indicated that linearity
was acceptable for all target compounds over the citrus-
relevant concentration range. Moreover, the limits of detection
(LODs) and quantification (LOQs) of the POE-tallowamine
homologs were estimated by analyzing spiked samples at low
concentrations. LODs and LOQs were calculated on the basis of
peak-peak signal-to-noise (S/N) values of 3 and 10, respectively
(42–44). The obtained LODs and LOQs of the POE-tallowamine
homologs were in the range of 0.01–2.57 and 0.03–8.58 µg/kg
for citrus samples, respectively. These results demonstrated that
the present QuEChERS-HILIC-MS method was suitable for
the determination of POE-tallowamine homologs from various
citrus matrices. It has been reported that a maximum of 15
homologs of C16s, C18s, and C18u were detected in previous
analytical studies (12, 14). However, the proposed method
allowed us to simultaneously and selectively determine 66
POE-tallowamine homologs, significantly improving the high-
throughput analysis of POE-tallowamine.

Concentrations and ethoxymer
distribution of POE-tallowamine in
citrus samples

A total of 54 citrus samples from four main production
provinces were analyzed by the method described in this
study. As shown in Figure 5, POE-tallowamine homologs were
detected in all samples. The total concentrations of POE-
tallowamine ranged from 48.5 to 143 µg/kg, and the highest
concentration was found in Zhejiang Province. For the six
citrus species that we obtained, the highest concentration of
POE-tallowamine was found in Jelly orange, with a range of
94.6–143 µg/kg. These results might indicate a higher usage and
demand of glyphosate herbicides in Zhejiang Province than in
other provinces.

The concentration profiles of POE-tallowamine homologs
in citrus samples are shown in Supplementary Figure 6, with
a concentration range of 0–59.5 µg/kg. Compared to POE-15
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FIGURE 5

Measured concentrations of 6POE-tallowamine in citrus samples from different typical regions. A: Guangxi province, Shatang mandarin, B:
Zhejiang province, Jelly orange, C: Hunan province, Bingtang sweet orange, D: Chongqing municipality, Satsuma mandarin, E: Chongqing
municipality, Orah citrus, and F: Chongqing municipality, W. Murcott Tangerine.

standards, which are widely used in glyphosate-based herbicide
formulations (15), the contributions of EO units (n = 2–4)
in citrus samples increased from 0 to 33.4%. The different
distributions of POE-tallowamine homologs were possibly due
to different POE-tallowamine technical mixtures applied in
agroecosystems (14, 15, 45). Degradation that occurs similar
to NPEOs may also contribute to the varying concentration
profiles of POE-tallowamine homologs (46, 47). It has been
reported that NPEOs with a shorter chain could exhibit
stronger toxicity and persistence than those with a longer chain.
Therefore, more attention should be given to the toxicity and
persistence of EO2-4, which might increase exposure risks to
human health and the environment.

Conclusion

In the present study, we developed a highly sensitive
UHPLC-MS method for the simultaneous determination of 66
POE-tallowamine homologs in citrus samples. HILIC achieved
efficient separation of POE-tallowamine by a hydrophilic
moiety. The validation test of the method demonstrated
satisfactory linearity, method detection limit, and precision.
This method was successfully applied to analyze typical citrus
samples and provided a new reference for the rapid separation
and analysis of POE-tallowamine homologs. Based on the
developed method, further studies are needed to explore the
occurrence and environmental fate of POE-tallowamine.
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