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Continuous glucose monitoring
reveals similar glycemic
variability in individuals with
obesity despite increased
HOMA-IR
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Amanda Becker3 and Mitchell Roslin1,2,3

1Department of Surgery, Northwell Health-Lenox Hill Hospital, New York, NY, United States,
2Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, NY,
United States, 3Northern Westchester Hospital, Mount Kisco, NY, United States

Background/aims: Continuous glucose monitoring is a well-tolerated and

versatile tool for management of diabetes and metabolic disease. While its

use appears to be feasible to monitor glycemic profiles in diabetics, there is a

paucity of data in individuals with obesity and normal glucose tolerance. The

aim of this study is to investigate glucose fluctuations and insulin resistance

patterns in normoglycemic participants with obesity vs. without obesity and

contextualize these results against leading models for obesity.

Materials and methods: We designed a prospective, observational pilot study

of two cohorts including 14 normoglycemic participants with obesity and

14 normoglycemic participants without obesity. Participants were monitored

with continuous glucose monitoring (CGM) for five consecutive days. Insulin

resistance levels were measured and glucometric data were extracted from

CGM for all participants.

Results: Fasting serum insulin and homeostasis model assessment of insulin

resistance (HOMA-IR) were significantly higher in the group with obesity

(P < 0.05). While the group with obesity had a higher mean blood glucose

(MBG), mean amplitude of glycemic excursions (MAGE), and continuous

overall glycemic action-1 h (CONGA-1), these differences were not significant.

On univariate linear regression, insulin resistance (HOMA-IR) was associated

with body mass index (BMI), waist circumference (WC), cohort with obesity,

cohort consuming a high glycemic diet, hemoglobin A1c (HbA1c), and fasting

insulin levels. WC and fasting insulin levels remained predictors of HOMA-IR

in our multivariable model.
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Conclusion: While there is much excitement surrounding the use of

commercial CGM products in obesity management, our results suggest

that fasting insulin and HOMA-IR values may be more clinically useful

than CGM data alone.

KEYWORDS

continuous glucose monitoring, glycemic variability, insulin resistance, obesity,
obesity management, HOMA-IR

Introduction

The obesity epidemic is a significant public health challenge
as the proportion of American adults who are overweight
or obese continues to increase (1). The exact etiology of the
obesity epidemic remains a matter of debate. An improved
understanding and identification of key triggers could result in
better prevention and treatment strategies.

Fundamentally, obesity corresponds to excess adiposity. As
lipids are anhydrous, they are an efficient means of storing
excess energy in a relatively small area. At its core, obesity is
the result of excess energy storage and reduced fat oxidation for
cellular energy use. This storage process is tightly monitored by
the central nervous system, regulated by the hypothalamus, the
most important region involved in energy homeostasis (2, 3).
Studies have shown either ablation or stimulation of different
areas within the hypothalamus can result in hyperphagia or
hypophagia due to disruption of the hypothalamic-adipose axis
(4–6).

The idea of caloric intake exceeding energy expenditure
represents the Energy Balance model for obesity, whereby the
brain acts like a thermostat receiving input from numerous
sensory pathways and reflexively up-regulates or down-
regulates energy intake and expenditure to achieve homeostasis
(7, 8).

While weight loss programs have targeted the century-
old concept of reducing total caloric intake and increasing
expenditure, weight management is not as simple as balancing
a checkbook. When intake declines, the body responds by
becoming more efficient and utilizing fewer calories; when
activity is increased, appetite is increased to consume a greater
amount of food (9, 10).

A second model for obesity, the Carbohydrate-Insulin
model, posits that a high-carbohydrate diet drives post-prandial
hyperinsulinemia, leading to increased fat storage. This occurs
instead of oxidation by metabolically active tissues and pre-
disposes to weight gain through increased hunger and a slowed
metabolic rate (7, 8). Stated simply, this model prioritizes
what is eaten, not simply total caloric value, in precipitating
hyperinsulinemia.

Increased consumption of carbohydrates with high glycemic
indices increases insulin secretion. The increased insulin drives
nutrients into fat cells, leaving fewer nutrients for other tissues
and stimulating increased food intake. Rather than a central
model, the development of obesity occurs through peripheral
mechanisms (11).

In line with this theory, modern diets including increased
processed, high glycemic-load foods cause hormonal changes
that lead to insulin production and promote adiposity
(12). Animal studies have shown dietary composition is
demonstrated to affect metabolism independent of caloric
intake. Rodents fed high vs. low glycemic load diets controlled
for macronutrients (carbohydrate, fat, and protein) produce
a sequential series of endocrine dysfunction involving
hyperinsulinemia, increased adipocyte diameter and other
anabolic changes, including greater adiposity, lower energy
expenditure, and increased hunger (7, 13–15).

Continuous Glucose Monitoring (CGM), which measures
users’ glucose concentrations in the interstitial fluid, has made
a profound impact on the management of diabetes (16, 17).
CGM has been shown to improve quality of glycemic control
and quality of life by avoiding multiple finger-sticks, reduce
risk of hypoglycemia, obtain far more accurate readings, and
enable lower target levels for mean glucose and hemoglobin A1c
(HbA1c) for patients with diabetes (18–21).

CGM technology is increasingly cost-effective as factory-
calibrated, disposable monitors are now publicly available (22).
As a result, many have hypothesized that CGM could function
as a dietary FitbitTM and potentially alter behavior and intake of
high glycemic foods.

For advocates of the Carbohydrate Insulin model, the
argument is simple: as glucose spikes drive insulin, reducing
glucose levels will lower insulin secretion and result in better
weight control. Thus preventing glucose spikes and using
real-time glycemic biofeedback may offer a more optimized,
personalized, and effective weight loss program.

While the thought process is compelling, there is currently
little evidence to support CGM usage in individuals with obesity
and normal glucose tolerance. This study was undertaken to
investigate the clinical utility of CGM—using indicators such

Frontiers in Nutrition 02 frontiersin.org

https://doi.org/10.3389/fnut.2022.1070187
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-1070187 December 7, 2022 Time: 11:52 # 3

Cooper et al. 10.3389/fnut.2022.1070187

as mean amplitude of glycemic excursions (MAGE), standard
deviation of blood glucose (SDBG), mean of daily differences
(MODD), and continuous overlapping net glycemic action
over 1 h (CONGA-1) as indices for glycemic variability—in
normoglycemic adults with obesity (BMI > 30) as compared to
a group of normoglycemic adults without obesity (BMI < 30).

Using CGM data from these two groups may offer insight
into the plausibility of the Energy Balance model for obesity
versus the Carbohydrate-Insulin model. If the Carbohydrate-
Insulin model best reflects the etiology of obesity, individuals
with obesity should have increased glucose variability with
higher amplitude glucose spikes and lower nadirs. But if rising
insulin resistance is a consequence of excess adiposity, nutrient
overload, and caloric imbalance, we would expect there to
be a difference in fasting insulin and insulin resistance, but
little difference in glucose variability. Rising insulin would be
a compensatory response to regulate glucose. Further, if there
is no significant difference in glycemic variability between the
two groups, the use of CGM for the treatment of obesity may
be less clinically beneficial in this study population than those
marketing CGM technology have suggested.

We present a pilot study of 28 participants in which we
compare (i) MAGE as a proxy for glycemic variability and
(ii) levels of insulin, insulin resistance, and glucometric data
extracted from CGM in a cohort of adults with obesity vs.
without obesity.

Materials and methods

Study design

We performed a prospective, single institution,
observational study from June 2020 to May 2021 of 14
adults with obesity (BMI > 30) and 14 adults without obesity
(BMI < 30) who were all between 18 and 50 years of age.
Participants were healthy adults, primarily recruited from
family, neighbors, and patients seen in the bariatric surgery
clinic. The inclusion criteria consisted of the following:
(i) participants were clinically stable with no known chronic
illness that might affect glucose metabolism including history of
hypertension, dyslipidemia, coronary artery disease, or cerebral
stroke; (ii) participants had point-of-care HbA1c values <5.7%
(39 mmol/mol). Exclusion criteria included (i) previous history
of bariatric surgery, and use of antihypertensive, anti-diabetic,
thiazide diuretic, or cholesterol-lowering medications; (ii)
female participants pregnant at the time of study enrollment;
(iii) participants with known hepatic or renal dysfunction. The
study was conducted within the Northwell Health Department
of Bariatric Surgery after approval by institutional review board.
Study participants provided written informed consent prior to
study participation.

Anthropometric measurements

Anthropometric measurements, including height, weight,
and waist circumference (WC) were obtained as patients were
enrolled. BMI was calculated by dividing weight (kg) by height
squared (m2). The average BMI in the group with obesity
was 38.4 kg/m2 and the average BMI in the group without
obesity was 23.7 kg/m2.

Laboratory examinations

Prior to implantation, fasting glucose and fasting insulin
were measured to render a HOMA-IR score for each
participant. HOMA-IR scores were calculated by [fasting
glucose (mg/dl) × fasting insulin (µU/ml)]/405. HbA1c values
were also measured.

Continuous glucose monitoring

All participants were equipped with iPro2 continuous
glucose recorder (Medtronic, Northridge, CA, USA). On day 0, a
CGM sensor (Enlite Sensor) was inserted into the subcutaneous
abdominal fat tissue and calibrated according to standard
Medtronic operating guidelines. The iPro2 continuous glucose
recorder measures subcutaneous tissue interstitial glucose levels
continuously, recording values every 5 min, within a range
of 40–400 mg/dl. With the iPro2 CGM inserted, patients
checked their blood glucose levels three times daily with a
OneTouch

R©

VerioTM Flex meter (LifeScan, Malvern, PA, USA)
to calibrate the iPro2 continuous glucose sensor. On day 5,
the participants returned to the research site, and the monitors
were removed. The recorded data, including range, SD, glycemic
variability indexes, and mean blood glucose were downloaded
with Medtronic’s CareLink System and stored in a secure
Northwell REDCap database for further analysis. Figure 1
shows an example of aggregate data from a 24-h period of
CGM.

Diet assessments

Participants were asked to keep detailed food logs by
entering all foods consumed during the study period into the
iPro2 myLog cellphone app, as well as capture corresponding
photos of all foods consumed. Participants followed an
ad libitum diet. Total net carbs were estimated by two Registered
Dietitians for each participant, and diets were then classified as
being high or low in total net carbs. Carbohydrate information
for each meal submission was obtained from the Carb Manager
app (Wombat Apps LLC, Redmond, WA, USA). Diets classified
as “high” contained the highest proportion of carbohydrate
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FIGURE 1

Example of a 24-hour period of continuous glucose monitoring with iPro2 and overlayed weeklong sensor data (mg/dl).

intake from refined sources. Diets classified as “low” included
the highest proportion of fiber from vegetables and whole foods.
Post-prandial peaks for each meal were recorded and average
peaks for each participant with obesity vs. without obesity were
analyzed to determine if meals of certain glycemic load were
associated with blood sugar peaks.

Assessment of glycemic variability

Glycemic variability was calculated using EasyGV version
9.0.R2 (© University of Oxford). The metrics generated from
EasyGV in this analysis are mean of daily differences (MODD),
mean amplitude of glycemic excursion (MAGE), continuous
overlapping net glycemic action over 1 h (CONGA1), and the
standard deviation of the glucose values (SDBG).

Statistical analyses

All analyses were performed using the SPSS 16.0 statistical
software for Windows (SPSS, Chicago, IL, USA). Values are
shown as mean with standard deviation. Fasting glucose,
fasting insulin, HbA1c, and HOMA-IR scores were imported
into the REDCap database. Calculations for range of glucose
values and MAGE from the CGM data were performed
using the nadir-to-peak excursions. The two groups were
compared using the Student t-test. A univariate linear regression
analysis was performed to explore predictors of both glycemic

variability (MAGE) and insulin resistance (HOMA-IR) for
the following set of covariates: age, female gender, member
of adult with obesity cohort, high glycemic load diet during
study, fasting plasma glucose and serum insulin, and specific
CGM metrics. Parameters statistically significant on univariate
analysis were considered for a multivariable linear regression
analysis. P < 0.05 was considered statistically significant.

Results

We enrolled 30 participants for this pilot study: two were
excluded from analysis due to missing CGM values. Data were
analyzed from 28 participants, ranging from 21 to 49 years, 14
of whom were adults with obesity (BMI > 30 kg/m2) and 14
were adults without obesity (BMI < 30 kg/m2). The baseline
characteristics for the two cohorts were similar with respect
to age, gender, and race/ethnicity, as shown in Table 1. BMI,
WC, fasting serum insulin, and HOMA-IR were all significantly
higher in the group with obesity than in the group without
obesity (P < 0.05). No significant differences between the two
groups were observed in HbA1c and fasting plasma glucose
levels, confirming normoglycemia.

All participants included in the study successfully calibrated
their CGM monitors on the day of implantation. Once
calibrated, CGM data were generated for an average of
5.09 days [range 4–6]. Table 2 shows the data extracted
from CGM. While the group with obesity had a higher
mean blood glucose (MBG), mean amplitude of glycemic
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TABLE 1 Baseline demographic and clinical characteristics of the
participants in each group.

Group without
obesity

Group with
obesity

Statistics

Age (years) mean 30.1 ± 7.49 32.4 ± 8.54 t = 0.753, p = 0.458

Gender
Male 4 (28.6%) 5 (35.7%)

χ2 = 0.164, p = 0.686

Race/Ethnicity
Caucasian
Black
Hispanic
Other

5 (35.7%)
2 (14.3%)
3 (21.4%)
4 (28.6%)

6 (42.9%)
3 (21.4%)
2 (14.3%)
3 (21.4%)

χ2 = 0.634, p = 0.889

BMI (kg/m2) mean 23.7 ± 2.2 38.4 ± 5.9 t = 8.73, p = 0.000*

Waist circumference
(cm) mean

Male
Female

87.0 ± 1.27
78.4 ± 5.12

108.4 ± 5.90
95.0 ± 6.50

t = 13.27, p = 0.000*
t = 7.51, p = 0.000*

HbA1c mean 5.27 ± 0.31 5.39 ± 0.22 t = 1.18, p = 0.248

Fasting plasma
glucose (mg/dl)
mean

85.4 ± 6.69 89.1 ± 4.40 t = 1.17, p = 0.096

Fasting serum
insulin (µU/ml)
mean

6.19 ± 2.12 17.32 ± 7.61 t = 5.27, p = 0.000*

HOMA-IR mean 1.30 ± 0.47 3.8 ± 1.64 t = 5.48, p = 0.000*

Statistics are presented using t-test for the continuous variables (all denoted by means
with standard deviations) and a chi-square test for categorical variables.
*Significant difference between the two groups.

TABLE 2 Results extracted from continuous glucose monitoring and
dietary logs in each group.

Group without
obesity

Group with
obesity

Statistics

Mean blood glucose
(mmol/l)

5.50 ± 0.39 5.69 ± 0.35 t = 1.36, p = 0.187

Mean amplitude of
glycemic excursions
(mmol/l)

1.26 ± 0.56 1.46 ± 0.37 t = 1.11, p = 0.275

Standard deviation
of blood glucose
(mmol/l)

0.92 ± 0.32 0.80 ± 0.18 t = 1.22, p = 0.232

Continuous overall
net glycemic
action-1 h (mmol/l)

5.11 ± 0.40 5.34 ± 0.27 t = 1.78, p = 0.090

Mean of daily
differences (mmol/l)

0.91 ± 0.25 0.80 ± 0.13 t = 1.46, p = 0.156

% High glycemic
load diet

18.18% 66.67% χ2 = 4.85, p = 0.028*

Statistics are presented using t-test for the continuous variables (all denoted by means
with standard deviations) and a chi-square test for categorical variables.
*Significant difference between the two groups.

excursions (MAGE), and continuous overall glycemic action-1 h
(CONGA-1) than the group without obesity, these differences
were not found to be significant. The standard deviation
of blood glucose (SDBG) and mean of daily differences
(MODD) were found to be higher, although not significantly,
in the group without obesity than in the group with
obesity.

For the diet assessment, only 20 of the 28 participants
maintained detailed food logs with corresponding photo
submissions. Based on the limited data, two Registered

Dietitians focused the analysis on carbohydrate quality and
quantity—estimating the proportion of refined carbohydrate
versus fiber, as well as the total carbohydrate content of the meal.
Of the 20 diets that could be analyzed, 12 were low glycemic load
and 8 were high glycemic load. Chi-square analysis showed that
of the 20 adults who kept dietary logs, there was a difference in
glycemic load between the two cohorts, as seen in Table 2.

Tables 3 and 4 show the covariates analyzed through linear
regression analysis. When assessing glycemic variability and
insulin resistance (using MAGE and HOMA-IR as proxies
respectively), only HOMA-IR demonstrated significant results.
BMI, WC, adults with obesity, high glycemic diet, HbA1c, and
fasting insulin levels maintained an independent association
with HOMA-IR. The multivariable model was significant
[F(6,19) = 367.80, p< 0.001] accounting for 99% of the variance
(adjusted R2). WC [β = 0.019 (0.005–0.033), p = 0.010] and
fasting insulin levels [β = 0.212 (0.193–0.232), p < 0.001] were
found to be predictors of HOMA-IR.

Discussion

This pilot study, which recruited normoglycemic men and
women of diverse backgrounds, showed that glucometric data
measuring glucose variability was similar in groups with obesity
and without obesity. In contrast, even in this small sample,
fasting insulin and HOMA-IR were significantly higher in
participants with obesity. Surprisingly, while not statistically
significant, the standard deviation of blood glucose was higher
in participants without obesity.

On linear regression analysis, we found associations with
HOMA-IR—and not MAGE—for BMI, WC, HbA1c, and fasting
insulin levels. On multivariable analysis, WC and fasting insulin
levels remained significantly associated with HOMA-IR. Taken
together, these preliminary results suggest that the rise in insulin
may be secondary to the development of insulin resistance and
a compensatory mechanism in the glucose regulation process.

The results of this study lend support to the Energy Balance
model for obesity. If a high glycemic load were the impetus
for development of obesity, then greater glycemic variability
would be seen in our cohort with obesity, which was not
the case. To obtain further insight, we had patients keep
dietary logs that were reviewed by Registered Dietitians, which
showed that although our cohort with obesity on average ate
meals with a higher glycemic load, their glycemic variability
was not different from that of the cohort without obesity.
However, we acknowledge that our small sample size and the
difficulty in obtaining accurate dietary logs limits interpretation
of these results.

Consistent with this are studies that demonstrate that
excess nutrients within the skeletal muscle cells signal the cell
membrane to block insulin-dependent glucose uptake by muscle
cells. Petersen KF et al. demonstrated that insulin-resistant
individuals have marked defects in muscle glycogen synthesis
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TABLE 3 Univariate linear regression analysis of factors associated
with mean amplitude of glycemic excursions (MAGE).

Univariate analysis

Covariate β [95% CI] P-value

Age (years) 0.005 [−0.019–0.029] 0.672

Gender
Male
Female

Ref
0.049 [−0.352–0.450]

0.803

BMI (kg/m2) 0.011 [–0.011–0.032] 0.310

WC (cm) 0.009 [–0.006–0.025] 0.231

Adult with obesity cohort 0.198 [–0.168–0.565] 0.275

High glycemic load diet 0.310 [–0.144–0.765] 0.169

Fasting plasma glucose
(mmol/l)

0.019 [–0.013–0.050] 0.231

HbA1c 0.268 [–0.414–0.950] 0.427

Fasting insulin (µU/ml) 0.010 [–0.014–0.034] 0.863

HOMA-IR 0.046 [–0.061–0.153] 0.880

Standard deviation of
blood glucose (mmol/l)

0.047 [–0.686–0.781] 0.895

Continuous overall net
glycemic action-1 h
(mmol/l)

0.404 [–0.108–0.916] 0.117

Mean of daily differences
(mmol/l)

–0.004 [–0.919–0.910] 0.992

and divert their ingested energy into hepatic de novo lipogenesis.
When insulin-resistant individuals are challenged with a high
glycemic meal challenge, their post-prandial plasma glucose
concentrations were similar to insulin-sensitive individuals (23).

For CGM to be effective, it must be assumed that glucose
values are reflective of insulin secretion. However, this
assumption has not been proven to be true in normoglycemic
populations. Furthermore, excess fructose has been implicated
in the development of obesity, diabetes, cardiovascular
disease, non-alcoholic fatty liver disease, and cancer (24–28).
Fructokinase C, present in the liver, converts fructose into
metabolites such as citrate and uric acid that result in the
net breakdown of ATP and endothelial dysfunction (29).
Interestingly, fructose ingestion does not markedly raise glucose
values as both dextrose or sucrose do and thus its intake would
not be sharply detected by CGM (30, 31).

The data for the use of CGM devices in normoglycemic
individuals with obesity are not robust (32). Salkind et al. (33)
performed an observational study using CGM that compared
contestants on the Biggest Loser reality show who were morbidly
obese and were either normoglycemic or pre-diabetic. While
there was no difference in glycemic variability between the two
groups, Salkind et al. state that both groups had greater glycemic
variability as compared with historical controls. However, one
limitation of this study, and many other CGM studies in the
literature, is that there is no contemporaneously studied normal
weight control group, which our study indeed has (34).

In another study, Ma et al. (35) demonstrate that MBG levels
and glycemic variability were increased in abdominally obese
men with normal glucose tolerance who were of Han ethnicity.

In contrast to our study, there was a difference in baseline mean
blood glucose within their two cohorts, a smaller difference in
BMI, and they only analyzed males with central obesity. Within
Asian populations, the prevalence of diabetes with lower body
mass index levels is well-documented (36), and we speculate that
many of the patients in this cohort may have been pre-diabetic
as baseline HbA1c was not documented.

More consistent with our findings is a recent study using
CGM in adolescents with obesity (37). Investigators used CGM
to compare whether glucose variability is altered during time-
restricted eating (TRE). They found no difference in variability
when TRE was compared to a diet that was not time limited.
Theoretically, time restriction lowers insulin levels. The absence
of any difference could be that TRE as used in this study does
not result in the anticipated reduction in insulin levels, or that
glucose value is not a sensitive method of measuring insulin.

While it is known that dietary interventions for normalizing
glycemic levels are associated with changes in health markers,
including fasting blood glucose level and HbA1c, the role
of CGM in weight management is not established (38,
39). Although the idea of CGM translating to improved
health outcomes is compelling, the commercialization of this
technology has begun without clinical, peer-reviewed evidence
of efficacy for weight loss.

Advocates of CGM have suggested that nutrition can be
personalized by identifying specific foods that cause spikes in
glucose levels. However, the standard American diet involves
consumption of a variety of food groups at the same time
and furthermore, failure to raise blood sugar levels is not
synonymous with healthy eating. When a sugary dessert is eaten
after a heavy meal, it causes less of a rise in blood sugar than
when eaten on an empty stomach (40). The temporal sequence
of carbohydrate ingestion during a meal has a significant impact
on post-prandial glucose excursions.

Thus, there are many factors that contribute to glucose
excursions or the lack thereof; and while CGM can identify
glucose excursions, its role in weight loss for the modern
consumer is not established. Our pilot study does not eliminate
the possibility that if a participant wore a glucose monitor and
tailored one’s diet to lower glucose levels, that there would
be weight loss. However, our results point toward metrics for
insulin resistance, such as HOMA-IR, as potentially stronger
clinical markers for dysglycemia and metabolic syndrome.

Furthermore, there may be harm related to the use of CGM
in its capacity to raise false alarms and lead to unnecessary
healthcare use, including excess clinical visits and inappropriate
medication administration. Users may detect glycemic drops or
spikes—prompting health changes such as increased snacking—
when in reality, these values are biologically insignificant.

One major limitation of our pilot study is that it occurred
during the COVID-19 pandemic, which restricted recruitment.
Our preliminary findings need to be further explored in a larger
cohort, and we cannot eliminate the possibility that with a
greater sample there would not be a subtle difference in glycemic
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TABLE 4 Univariate and multivariable linear regression analysis of factors associated with HOMA-IR.

Covariate Univariate analysis Multivariable analysis

β [95% CI] P-value β [95% CI] P-value

Age (years) −0.019 [−0.108–0.069] 0.660

Gender
Male
Female

Ref
−0.773 [−0.227–0.682]

0.285

BMI (kg/m2) 0.155 [0.103–0.207] 0.000* 0.004 [−0.017–0.025] 0.666

WC (cm) 0.107 [0.065–0.148] 0.000* 0.019 [0.005–0.033] 0.010*

Adult in obesity cohort 2.493 [1.534–3.452] 0.000* −0.276 [−0.616–0.064] 0.103

High glycemic load diet 0.092 [−0.023–0.206] 0.000* 0.026 [−0.199–0.250] 0.808

Fasting plasma glucose
(mmol/l)

−0.083 [−0.180–0.014] 0.112

HbA1c 2.737 [0.427–5.047] 0.022* −0.051 [−0.404–0.301] 0.758

Fasting insulin (µU/ml) 0.222 [0.214–0.230] 0.000* 0.212 [0.193–0.232] 0.000*

MAGE 0.046 [−0.061–0.153] 0.880

Standard deviation of
blood glucose (mmol/l)

−1.542 [−4.188–1.1.05] 0.242

Continuous overall net
glycemic action-1 h
(mmol/l)

1.274 [−0.650–3.198] 0.185

Mean of daily differences
(mmol/l)

−2.222 [−5.492–1.048] 0.174

*Denotes statistical significance.

variability and other measured parameters. However, despite
the small sample size, there remained a difference in fasting
insulin and HOMA-IR between the two groups, suggesting
rising insulin levels being a compensatory process rather than
merely the result of a high glycemic load. This was further
demonstrated through linear regression analysis, which showed
HOMA-IR to be associated with BMI, WC, HbA1c, and fasting
insulin levels, while MAGE was not found to be associated
with these factors.

Additionally, the best measures of glycemic variability and
insulin response remain unknown. MAGE, as extracted from
CGM, is viewed as the most comprehensive index for assessment
of intraday glycemic variability, but it does not account for
insulin responsiveness and other processes of post-prandial
cellular metabolism. Future studies should recruit a larger
cohort of normoglycemic adults to assess the utility of CGM in
predicting dysglycemia and aiding weight loss efforts.

Conclusion

While there is much excitement surrounding the use of
commercial CGM products in management of obesity, our
preliminary results suggest that fasting insulin and HOMA-IR
values may be more clinically useful than CGM data alone.
The absence of increased glycemic variability in normoglycemic
individuals is suggestive that the Energy Balance model
may represent a more accurate conceptual framework for
obesity. Finally, the application of CGM in weight loss should
await further trials.
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