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With age, the physiological responses to occasional or regular stressors
from a broad range of functions tend to change and adjust at a different
pace and restoring these functions in the normal healthy range becomes
increasingly challenging. Even if this natural decline is somehow unavoidable,
opportunities exist to slow down and attenuate the impact of advancing
age on major physiological processes which, when weakened, constitute the
hallmarks of aging. This narrative review revisits the current knowledge related
to the aging process and its impact on key metabolic functions including
immune, digestive, nervous, musculoskeletal, and cardiovascular functions;
and revisits insights into the important biological targets that could inspire
effective strategies to promote healthy aging.

aging, physiological changes, metabolism, nutrition, lifestyle

1. Introduction

The average age of the global population is increasing rapidly, driven by multiple
factors such as longer life expectancy and reduced birth rates in both developed and
developing countries (1). According to the 2019 United Nations report on aging (1),
the number of people 65 years and older will have doubled globally by 2050, and it is
estimated that a quarter of our lifetime will be spent after 65 years. With a longer lifespan
comes increasing chronic disease risk for the individual and burden for the health care
system. Health economic studies show that despite increasing longevity, the number
of years lived in poor health have increased in the last 30 years (2). More specifically,
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non-communicable diseases have become the largest cause
of Disability Adjusted Life Years (DALYs) (3), and are most
prevalent in the population above 40 years with a prevalence
estimate of 65-98% of multimorbidity in individuals over
65 years of age (4). Furthermore, chronic conditions in older
adults are tightly linked to quality of life and social functioning
(5, 6).

A sustained high quality of life should be a priority for aging
societies; however, health and wellness are often compromised
in the reality of older adults, and exacerbated by poor nutrition,
low physical activity and poor sleep quality (7, 8). Therefore, in
designing nutrition and lifestyle solutions that promote health
span and quality of life in aging populations is warranted.

Developing such solutions should start with a good
understanding of the aging process and its impact on the
different aspects of health. In this comprehensive review, we
describe aging as a multisystem process. We also identify
physiological changes in the aging body that should be used
as targets to develop dietary and lifestyle solutions for the
maintenance of good health in older individuals (Figure 1).
In this review, we present a selection of the most promising
nutritional and lifestyle solutions shown to be associated with
the maintenance of good health in aging.

2. What is aging?

Why and how we age have long been the questions driving
numerous scientists to develop multiple theories about aging.
Whether aging is driven more by genetics or the environment,
it is the product of both, accounting for the variability in
biological age amongst individuals of a similar chronological
age. Busse et al. first described aging in 1969 as being two-fold:
the cellular changes in structure and function that affects organs
and systems, termed “primary aging” and the changes caused
by the interaction of primary aging with the environment,
diet, lifestyle, and diseases, termed “secondary aging” (9). More
recently, in their 2019 report on aging, the WHO defines the
“primary” path or trajectory of aging as “intrinsic capacity;,
while “functional ability” represents the aging trajectory aided
by the environment (10).

To answer the question of why we age, the concept of
hallmarks of aging was first put forth by Lopez-Otin in 2013
(11) and later revisited by Andrew Steele in his book “Ageless”
(12), and David Sinclair in his book “Lifespan” (13). Briefly,
these hallmarks are biological changes associated with aging in
a way that their evolution determines the rate of aging. The
nine hallmarks identified by Lopez-Otin et al. are (1) genomic
instability, (2) telomere attrition, (3) epigenetic alterations,
(4) loss of proteostasis, (5) deregulated nutrient-sensing, (6)
mitochondrial dysfunction, (7) cellular senescence, (8) stem
cell exhaustion, and (9) altered intercellular communication;
a list to which Steele adds the tenth hallmark: changes in the

Frontiers in Nutrition

02

10.3389/fnut.2022.1087505

microbiome. Based on recent advances in the field of aging,
modulating these hallmarks through diet and lifestyle is key to
delaying the path of age-related decline.

3. Physiological and functional
changes in the aging adult

The hallmarks of aging are characteristic of every aging
cell in our body, the result being changes at the level of the
different organs and systems. In the section below, we discuss
these changes affecting the main biological systems in the body,
namely the digestive, immune, musculoskeletal, nervous, and
cardiovascular systems, as well as the microbiome.

3.1. The digestive system

The role of the digestive system goes beyond nutrient supply
and includes hormone production, immune regulation and gut-
organ communication, important functions impacting the main
biological systems in the human body (14). The gastrointestinal
(GI) tract is home to billions of important residents, the gut
microbiota, known for their role in gut barrier protection,
nutrient digestion and absorption (15), and communication
with other organs (16). Age-related changes can be observed
along the entire digestive tract, some starting as early as age 40
in a healthy population (17). Changes in food intake control that
impact hunger and satiety, as well as altered oral function (18),
gut integrity (19), motility, digestion, and absorption may be
observed around the 4th decade of life and are highly prevalent
by the age of 75. Gastro-esophageal reflux, a condition associated
with decreased esophageal function, is more prevalent in older
versus younger men and women (20). Similarly, motility at the
level of the colon is compromised with age, as suggested by
studies looking at rates of constipation in young versus older
adults (14). Although these studies are often confounded by
secondary aging factors such as physical activity, dietary habits,
and water intake, reduced colonic motility is an age-related issue
and a common complaint reported to affect quality of life (21,
22). Food intake control is another area that is believed to be
affected by aging. More specifically, lower hunger ratings and
higher level of anorexigenic hormones [namely cholecystokinin
(CCK)] in the elderly have been reported versus their younger
counterparts (14) and further supported reduced energy intakes
in older adults (23). However, significant changes are likely to
occur closer to the age of 70, an age at which the effect of
these alterations leads to anorexia and involuntary weight loss in
the elderly (24). Meanwhile, the absorption of some important
micronutrients such as calcium, vitamin D and vitamin B12
declines with age (25). Vitamin B12 absorption is dependent on
pepsin and acid secretions shown to be lower in older adults
(14). Calcium absorption is mediated by the intestinal response
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FIGURE 1

The aging journey: The changes in health conditions with aging [being optimal (green line) or suboptimal (orange line)] are related to changes in
key physiological functions and can be prevented with diet, sleep and physical activity.
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to the active form of vitamin D which is impaired with age.
This is compounded by the age-related reduction in intestinal
and renal absorption of vitamin D as well as its synthesis in the
skin (26). On the other hand, and although lactose intolerance
is a common complaint of older adults, research to date has
not confirmed a decrease in lactase levels between young and
old age (27). Nevertheless, perceived, or self-diagnosed lactose
intolerance may lead to a limited consumption of dairy products
and therefore lower calcium intake.

Finally, and while the impact of host aging on microbiota
function has not been clearly determined, the shift in
bacterial composition (discussed in the section “3.3. The gut
microbiome”) implies a risk of pro-inflammatory state in the
gut, associated with digestive and absorptive disturbances (28).

3.2. The immune system

The immune system is developed throughout infancy until
adulthood (29). Maintaining a healthy immune system leading
up to the onset of aging and throughout this life stage is
an investment into the prevention of infections and diseases
of old age. To tackle age-related immune decline, nutritional
and lifestyle solutions should be targeting its three main
components: immunosenescence, inflammaging, and dysbiosis.
Immunoscenescence is a reduction in quality and quantity of
immune responses, resulting from an imbalance in the type
of immune cells, their ability to mount an adequate immune
response against pathogens and to build memory of previously
encountered pathogens (30, 31). It is also paradoxically
characterized by an excessive inflammatory response to antigens
and an ineffective resolution of inflammation, favoring a pro-
inflammatory state, which when chronic, is referred to as
inflammaging (31, 32). Although multifactorial, inflammaging
is mainly driven by three aspects: a dysregulation of the innate
monocyte-macrophage network (innate immunity), a gradual
senescence of T and B cells (adaptive immunity), and external
amplifying factors such as the lifelong exposure to antigens and
inflammatory stimuli (31, 33, 34). Consequences of immune
cell senescence, such as the release of mitochondrial DNA
into the plasma, are observed as early as age 50, stimulating
the production of pro-inflammatory mediators typical of
inflammaging (31, 35). Reduced vaccine responsiveness and
increased risk of chronic diseases are examples of age-related
features associated with inflammaging (33-35). Finally, the
immune system is the orchestrator of the collaboration between
gut microbiota and its host, also acting as a surveillance system
to ensure that microbial balance remains in favor of commensal
bacteria over pathogens. Immunosenescence therefore greatly
affects this balance, leading to dysbiosis. In return, dysbiosis
affects the production of anti-inflammatory cytokines, vitamins,
and immune cells, exacerbating low-grade inflammation and
the aging process in the gut. This reduces gut integrity and
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increases susceptibility to pathogenic infections. The main
health consequences of age-related immune decline are a higher
susceptibility to newly encountered pathogenic infections and a
potential reduction in vaccination responses in older adults.

3.3. The gut microbiome

Although not an organ system per se, the gut microbiome
plays a pivotal role in the health of other systems, be it immune,
digestive, cardiovascular, musculoskeletal, or nervous systems
(36). A healthy microbiota, generally characterized by high
counts of bifidobacterium and lactobacillus species, compete
with pathogens for adhesion to the intestinal mucosa and
promote the development of immune cells. In addition, the
production of short chain fatty acids (SCFA), a major asset
of healthy microbiota, reduces the luminal pH making it a
hostile environment for pathogens (37, 38). That said, the
microbiome has a well-recognized impact well beyond the gut,
on overall health. Indeed, it is increasingly clear that an immune
dysfunction at the level of the gut may have consequences on
other organ immunities (30). This is mediated by the crosstalk
between different systems through the so-called gut-organ axes,
such as the gut-liver axis, gut-lung axis and the gut-brain
axis (16).

Just like other systems, the microbiome is prone to aging.
Studies having examined changes in microbiota composition
and diversity across life stages agree that major shifts in
microbiota composition occur with the onset of frailty (39).
While microbiota during adulthood is fairly stable, it is not
clear what age is associated with the decline in microbial
richness and diversity (39). However, studies comparing young
versus old adults generally show that “young microbiota”
profiles tend to be enriched by taxa such as Clostridiales and
Bifidobacterium, while “old microbiota” profiles are generally
enriched in Proteobacteria and pathobionts (31, 40). This
microbial imbalance is associated with a high level of pro-
inflammatory cytokines and low levels of SCFA, disrupting the
stability of intestinal epithelial tight junctions (41). The resulting
increase in gut permeability allows pathogens to translocate into
the systemic circulation.

3.4. The central nervous system

Brain aging is believed to start in the late 20s with brain
shrinkage of about 5% per decade after age 40 (42, 43). Data
from the Centers for Disease Control and Prevention (44)
surveys show that one in nine adults over 45 years of age self
-report subjective cognitive decline (45). Behind this decline
lies a series of structural changes (46) such as brain weight,
neuron numbers and size of dendritic fields (47), as well
as neurophysiological changes such as cerebral blood flow,
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myelination and synapse numbers to name a few (48-51).
These changes can be linear (cerebral blood flow and glucose
metabolism) or follow a bell- shaped curve with a decline
starting as early as 45 years of age (e.g., myelination), yet others
have more complex trajectories across life stages (e.g., synapse
numbers). The latter is considered to be the most strongly
correlated with cognitive impairment (52, 53).

Age-related changes in the brain were traditionally believed
to affect all brain regions equally; however, it is increasingly clear
that these changes are region-specific (54, 55). The most affected
areas are the frontal cortex and parts of the hippocampal system,
regions involved in executive function, learning and memory
(47, 56, 57). Indeed, the age-associated loss of gray matter
(consisting of neuronal cell bodies) with age is especially evident
in the lateral prefrontal cortex, hippocampus, cerebellum, and
caudate nucleus; and the shrinkage of white matter (consisting
of myelinated axons) is seen to be particularly prevalent in the
prefrontal cortex (54).

Changes in neurotransmitter levels have also been observed
with aging, namely dopaminergic and cholinergic declines,
potentially compromising attention and memory (49, 54).
Overall, and from a cognitive function point of view, age-
related deficits have been observed at the level of the three main
cognitive domains: attention, memory, and executive function.
However, within these domains, not all functions are equally
affected. For instance, in the attention domain, processing speed
clearly declines with age (58, 59) while sustained attention was
surprisingly seen to improve in older adults as subjects trade off
reaction time for increased accuracy in response (59). This was
supported by a meta-analysis by Vallesi et al., who reported a
consistently longer reaction time in older adults contrasted with
a higher accuracy of response on sustained attention tasks in
the older versus younger adults (59). Similarly, in the memory
domain, spatial memory which pertains to remembering the
location of objects, and episodic memory used to recall past
events are seen to decline by 20-40% between the ages of 60
and 78 years (60). On the other hand, implicit memory and
semantic memory seem fairly stable in healthy aging (60, 61).
As for the domain of executive functions, its 3 core abilities
are not equally affected by age. Indeed, while working memory
has been reported to decline starting at age 20, inhibition is
not necessarily affected by age and if so, the decline is task
specific. This is particularly observed in cases of task switching,
affected mostly in dual task contexts (62). Along with cognition,
mood and well-being are important players in maintaining
brain health as we age. Interestingly, well-being appears to
generally be stable or even improve with age, when physical
health and cognitive impairment are ruled out as potential
confounders (63-68). Despite the fact that this life stage is
often characterized by the loss of loved ones, retirement and
financial insecurity, older adults choose to focus on positive
thoughts and to disregard negative memories or stimuli, seeking
direct gratification rather than long-term reward and therefore
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maintaining a more positive outlook on life than younger adults
(67). This phenomenon was coined by Reed et al. as “the age-
related positivity effect” (67, 69).

3.5. The musculoskeletal system

Musculoskeletal health is crucial to support a level of
mobility that humans require to be physically independent and
autonomous. It is therefore a very strong predictor of quality
of life (70, 71). Osteoporosis, osteoarthritis, sarcopenia and
cachexia are conditions affecting the aging adult with a heavy
impact on mobility and consequently, quality of life (72).

Osteoporosis is defined as a “skeletal disorder characterized
by compromised bone strength predisposing a person to an
increased risk of fracture” (73). It is estimated that over 200
million individuals globally and 30% of women in Europe and
the US (74) suffer from osteoporosis. Age-related bone mass
loss is estimated to be around 1-2% per year and bone strength
loss around 1.5-3% per year in individuals over 50 (75), an
age beyond which bone mineral density (BMD) is strongly
correlated to the risk of fracture. Although the general trend is
a declining one, there are important gender differences at every
life stage resulting in peak bone mass being lower and its decline
higher in females compared to males, with an accelerated rate
observed in women around menopause (75). In addition, after
age 50, the risk of having an osteoporotic fracture is 53% for
women and 21% for men, agreeing with the trend observed
for BMD (76).

Osteoarthritis (OA) is the most common joint disease
affecting about 37% of adults 60 years and older in the US and
causing a major loss of mobility and independence in older
adults over 65 (77). OA affects the weight-bearing joints and is
characterized by a degradation of the cartilage matrix leading to
symptoms such as chronic pain, joint stiffness, and instability
(77). Numerous cohort studies have investigated the prevalence
of OA using the radiographic presence of OA in the knee, hip
and other joints (78). Data show a prevalence of knee OA close
to 40% in individuals over 60 with a 10% increase between
ages segment of 60-70 and 80 and beyond. Hip OA similarly
increases by 15% between ages 40 and 85 years and over (78).

On a cellular level, the progression of OA occurs through
a vicious circle whereby cartilage degradation stimulates
chondrocyte proliferation and associated catabolic factors,
further degrading the cartilage tissue (77). Normal age-related
wear and tear can lead to a progressive degradation of the
cartilage. Additional factors such as obesity, loss of body balance,
joint injury and instability can accelerate the process of cartilage
loss with its impact on joint flexibility (78).

Sarcopenia, the definition of which was largely debated in
the scientific community, is defined according to the European
Working Group on Sarcopenia and Older People (EWGSOP)
criteria as the presence of low muscle mass, plus low muscle
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strength, or low physical performance (79). The decline in
muscle mass is believed to start between the ages of 30 and
40 with an estimated 10% muscle mass loss by the age of 50
(80). Thereafter, the loss is estimated to be around 1-2% per
year. As for muscle strength, its rate of decline is about 3 times
larger than that of muscle mass after the age of 50 (80). This
age-related decline in skeletal muscle mass is attributed to an
imbalance between muscle protein synthesis and breakdown
rates, resulting in a negative muscle protein balance. Adequate
dietary protein intake promote muscle protein synthesis rates.
However, aging has been associated with a reduced muscle
protein synthetic response to protein intake, termed “anabolic
resistance” (81, 82). Physical activity performed before protein
intake increases the use of protein-derived amino acids for
postprandial muscle protein accretion in senescent muscles (83).
Thus, the level of habitual physical activity is fundamental to
maintain the anabolic responsiveness to protein intake with
aging (84) and, ultimately, support healthy aging. There are
other age-related confounding factors accelerating muscle aging,
such as illness and accidents. The impact of these factors is
well represented in the catabolic crisis model proposed by
English et al. (85) which captures the deleterious effect of
punctual episodes of illness or inactivity on the traditional
sarcopenic model.

3.6. The cardiovascular system

Cardiovascular health is determined by the health state of
the heart and the vasculature which regulate blood flow and
blood pressure, ensuring adequate nutrition and oxygenation to
all organ systems (86).

Vascular aging is a natural progressive change in the
structure and function of the vasculature leading to a decline
in arterial compliance and increased arterial stiffness or
“hardening” and “thickening” of the arteries (87). Age is
one of the greatest risk factors for cardiovascular disease
which remains the leading cause of death in most countries;
but environmental components (unhealthy diets, sedentary
lifestyles, smoking, pollution, stress) may lead to premature
deterioration of cardiovascular homeostasis and metabolic
disturbances, ultimately leading to the early onset of disease in
the vasculature and the myocardium (heart muscle).

The effect of aging on arterial stiffness and associated
factors has been investigated in animal and human studies
showing that, regardless of other cardiovascular risk factors,
primary aging is an independent promotor of vascular aging
(88). For instance, between ages of 20 and 90, arterial wall
thickness increases two to three-fold (17, 89). Associated with
these structural and functional changes in the vasculature
is a significant age-related decline in endothelial function.
Studies on healthy adults of different ages show a significant
negative effect of aging on endothelium-dependent vasodilation,
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indicating endothelial dysfunction (90). The Framingham Heart
study (91) demonstrates that aging is the strongest independent
correlate of endothelium-dependent vasodilation. Other studies
suggest that age-related endothelial changes throw the vascular
system into a vicious circle where its effect is compounded
by hypertension, inflammation, and lipid build-up, further
increasing the risk of cardiovascular events (90). The direct
result of impaired endothelial function is a decreased blood flow,
also shown to decline with age. The rate of the decline is gender-
specific. Males reach the onset faster than females, and after
onset, loss of function is accelerated for females (92).

Another factor which compromises blood flow and
circulation is the age-related reduction in cardiac output,
mainly due to the effect of age on the number, function, and
regeneration of cardiac cells. Indeed, the regenerative capacity
of cardiac cells decreases from 1 to 0.4% between ages 20
and 75 (93). The loss of cardiac myocytes and an increase
in fibrosis of the myocardium lead to a reduction in cardiac
output and performance (93). This loss in cardiac output may
stimulate the heart to produce muscle mass. Although this
mechanism may provide an effective short-term solution, it is
detrimental on the longer term and contributes to slow the
propagation of the electric impulse. Like for vascular aging,
gender-specific differences have been observed in the patterns
of cardiac aging, which could be related to both hormone-
dependent or -independent mechanisms (94).

Lipid build-up, mentioned above as a factor affecting
vascular health, plays a role in plaque initiation and progression.
The evolution of atherosclerosis starts with fatty streaks which
form plaque along with fibrous elements, smooth muscle cells,
and inflammatory cells such as T-lymphocytes (95). Aging was
shown to affect these components putting older adults at an
increased risk of developing severe atherosclerotic plaques (96).
First, lipid levels, especially LDL-cholesterol (LDL-C), rise with
age by up to 60% between ages 15-19 and 75-79, as reported
in the Framingham Study (97). Second, arterial smooth muscle
cells become increasingly disarrayed as do elastic fibers. Third,
inflammation and oxidative stress, known to play an enhancing
role in atherosclerosis, progressively escalate with age (87).
Finally, the degree of plaque calcification was reported to be
significantly higher in older versus younger adults (98), and the
burden of calcified plaques (>50% of plaque tissue calcified)
16-fold higher in older than in younger adults (99).

As mentioned earlier, there is a closely related interplay
between  cardiovascular  homeostasis and  metabolic
disturbances. Results from the Baltimore Study of aging
highlight that there is an obvious age-dependent increase in
glucose response and fasting blood glucose between ages 30
and 70. However, this increase is less striking after age 70.
The authors argue that, in accordance with other studies, this
worsening trend in glucose control is related to an increase
in fat mass and a reduction in physical fitness, mainly due to
unhealthy dietary patterns, sarcopenia, menopause, among
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other conditions typical of aging (100). Therefore, once again,
the compounded effect of lifestyle-associated secondary aging,
and primary aging, worsens insulin resistance and glucose
control in the older adult.

4. Key strategies to promote
healthy aging

Modifying the aging trajectory may be achieved by
identifying a series of important players in the aging process and
targeting them through interventions such as diet and lifestyle
modifications which would help curb the functional decline in
different biological systems. Drawing from the growing research
on physiological changes associated with aging, we highlight
selected targets and strategies for the maintenance of good
health during aging.

4.1. Improving nutrient intake and
metabolism

4.1.1. Addressing inadequate intake

Older adults are prone to insufficient energy, macronutrient
(namely protein), and micronutrient intakes, more significantly
after the age of 65 years, often leading to nutrient deficiencies.
The most common ones are deficiencies in vitamin B12, Iron,
vitamin D and Calcium (14). Driven by intrinsic factors such
as dental health, mental health, and digestive discomfort, or
extrinsic factors such as social isolation and financial instability,
diet quality is generally reduced with aging and so is the
nutritional status of older individuals (14, 101). From a food
intake point of view, it has been shown that feelings of
hunger are reduced with aging (23, 24). Although confirmatory
research is needed, the decrease in hunger is likely a result
of an imbalance in gut peptide levels, more specifically an
increase in plasma cholecystokinin concentrations, consistently
shown to be higher in older versus younger adults (102-105).
If food intake is reduced due to blunted hunger signals, it
could further be decreased by the post-prandial gut discomfort
experienced by older adults. Indeed, gastroesophageal reflux,
bloating and constipation are quite prevalent amongst adults
60 years and older (106-108), with esophageal motility shown
to start declining as early as age 40 (17, 109). Interventions to
improve hunger in the elderly have shown to increase energy
and nutrient intake and reduce age-associated weight loss.
These interventions include serving smaller energy-enriched
portions, favoring liquid versus solid textures (e.g., smoothies),
or even improving the meal environment (110). Micronutrient
supplementation as well have shown benefits in improving
micronutrient status in older adults (111, 112). Therefore,
improving/supporting digestive comfort, ensuring adequate
nutrient intake at all stages of aging, and increasing hunger in
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the elderly are relevant strategies to target a healthy nutrient
intake in order to avoid age-associated nutrient deficiencies.

4.1.2. Supporting digestion and nutrient
absorption

All systems rely on the gastrointestinal tract for their supply
of nutrients which cannot be ensured if ingested nutrients are
not adequately digested and absorbed. The declining absorption
of calcium, vitamin D, and vitamin B12, compounded with
their reduced intake described earlier makes them nutrients
of concern for the older adult population typically at risk
of osteoporotic fractures and cognitive decline. In fact adults
50 years and older were shown to have suboptimal intakes
of vitamin D and calcium in epidemiological studies (113,
114) comparing intakes with international recommendations of
calcium (950 mg/day) (115) and vitamin D (20pg/day) (116).
Meanwhile, Vitamin B12 inadequacy (recommended intake: 2.4
ng/day) seems to be driven primarily by a declining digestion
and absorption of the nutrient rather than its insufficient intake
(117). Therefore, proposing strategies to improve digestion
and absorption of these nutrients could prevent specific
nutrient deficiencies with deleterious health impacts on aging
individuals. For instance, maintaining a healthy gut microbial
environment known to promote an anti-inflammatory state and
consequently promote digestion and absorption of nutrients
constitutes a relevant target to increase nutrient availability
from the gut. Indeed, intestinal microbiota were reported to
play a key role in macronutrient digestion and absorption
(118, 119). Similarly, ensuring optimal gastric acidity and
pepsin levels to enable efficient digestion and absorption of
nutrients such as vitamin B12 (120) is another avenue to support
digestion and absorption of this important micronutrient which
declines with age.

4.1.3. Optimizing energy metabolism

Energy substrate utilization is altered with age as insulin
sensitivity decreases (100) and anabolic resistance increases
(81). The implications on glucose metabolism are an impaired
glucose response to a meal and compromised glucose utilization
in multiple organs including the brain (60). Fat metabolism is
equally affected by aging as fat deposition is redistributed from
subcutaneous to visceral fat. This is partly due to declining levels
of sex hormones and the decreased ability of adipocytes to buffer
dietary lipids, channeling fat deposition to the muscle and liver
(121). Visceral fat is subject to oxidation, promoting a state of
low-grade inflammation, further impairing insulin sensitivity
and increasing the risk of chronic diseases (121). Finally, age-
related anabolic resistance, especially in the postprandial state
leads to blunted postprandial muscle protein synthesis, which
if sustained, results in lower muscle mass and strength (84,
122). Although age-related reductions in protein digestion and
absorption were not consistently shown (14, 123, 124), the
reduction in intake and anabolic resistance to dietary protein

frontiersin.org


https://doi.org/10.3389/fnut.2022.1087505
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/

Kassis et al.

associated with aging make protein metabolism an area of
concern for older adults.

On a cellular level, mitochondrial energy metabolism is
typically less efficient in senescent cells (125). Maintaining
mitochondrial health and delaying dysfunction has been shown
to promote energy homeostasis and may therefore prevent tissue
damage and delay cellular aging.

In summary, energy metabolism occupies a prime position
in the strategies designed to curb the aging trajectory and
improve lifespan and health span.

4.2. Limiting inflammation

Low-grade inflammation is a ubiquitous condition in
older adults related to multiple age-associated factors, namely
oxidative stress, DNA damage, infection history and dysbiosis
(35). Inflammaging is a main contributing factor to tissue
damage and the decline in immunity, mobility, brain, heart,
and gut health. Indeed, a pro-inflammatory state heightens
the body’s vulnerability to pathogenic invasion, exposing it to
the risk of disease. Higher blood levels of pro-inflammatory
cytokines have also been linked to an increased loss of muscle
strength, potentially through the degradation of myofibrillar
proteins (75). Similarly, systemic inflammation is believed
to activate innate immunity in the central nervous system
(CNS) which may lead to neuroinflammation, a known factor
in neurodegenerative disease (126). From a cardiovascular
point of view, inflammation is involved in various stages of
atherosclerosis and research shows that inflammatory markers
such as CRP are good predictors of cardiovascular events
regardless of blood LDL-cholesterol levels (127, 128) Finally,
inflammation at the level of the gut promotes intestinal barrier
permeability, weakening barrier function and consequently gut
health. As such, inflammaging is a warranted target for the
maintenance of good health and the delay of age-associated
functional decline.

4.3. Mitigating oxidative stress

One of the most popular theories of aging is the free radical
theory which stipulates that aging occurs as a result of the
accumulation of reactive oxygen species (ROS) damage, leading
to cellular dysfunction. Indeed, an elevation in cellular ROS
levels coupled with a reduction in antioxidant capacity has
been associated with aging (129). A physiological production of
ROS is a core part of natural defenses, be it against invading
pathogens (130), or as a protective mechanism through which
antioxidant capacity is upregulated, for instance in the brain
(126). However, an imbalanced redox status characterized by
excessive ROS production and an accumulation of oxidative
products leads to tissue damage and functional decline. In
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fact, high ROS production in the gut is associated with
increased inflammation, low SCFA production, and dysbiosis,
all deleterious to gut and systemic immunity (35). Oxidative
stress is also a major contributor to the loss of bone mass
and strength (14). In a review by Domazetovic et al., the
authors explain that an overproduction of ROS, with increased
oxidative stress as a result, induces osteoblast apoptosis which
in turn activates osteoclast generation. This tendency toward
bone catabolism is manifested as decreased bone strength
(131), thus weakening the skeletal system. In the joint, an
increase in ROS due to mitochondrial dysfunction leads to
chondrocyte inflammation, apoptosis, matrix catabolism and
calcification (132), affecting joint flexibility. In the brain,
a high ROS producer, a decrease in antioxidant capacity
means a loss of protection against high oxidative stress,
exposing neurons to tissue damage and inflammation and
leading to cognitive decline (126). Finally, oxidative stress
plays an important role in the process of atherosclerosis, as
oxidized lipids in the endothelium lead to the generation of
ROS which contribute to atherosclerotic plaque and nitric
oxide inactivation, hence reducing its bioavailability and
beneficial effect on the endothelium. Equally to inflammation,
management of oxidative stress is a relevant target to the
different systems of the aging human body and therefore should
be the focus of interventions.

4.4. Promoting gut microbiota balance

Gut microbial health is determined by its billions of
residents acting locally as the first line of defense against
invading pathogens and influencing the health of other
biological systems through the gut-organ axes (16, 30, 37,
38). A healthy microbiota, generally characterized by high
counts of Bifidobacterium and Lactobacillus species, compete
with pathogens for adhesion to the mucosa and promote the
development of immune cells. On the other hand, pathogens
and pro-inflammatory cytokines can disrupt the stability of
tight junctions and lead to increased gut permeability. It is
this interplay between commensals and pathogens that limits
infection and disease (38). With recent research shedding
light on the communication between different organs and
host immunity (16, 30), it is increasingly clear that immune
dysfunction at the level of the gut may have consequences on
the immune health of other organs (e.g., lung). This is mediated
by the crosstalk between different systems through the so-called
gut-organ axes, such as the gut-liver axis, gut-lung axis and the
gut-brain axis. More specifically, immune systems in the gut
and other organs communicate via the gut microbiota and its
metabolites such as SCFA acting as signaling molecules (41, 133
135). Improving microbiota composition or the balance between
beneficial microbiota and pathobionts thus represents a central
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target for the maintenance of gut barrier integrity, immunity,
and subsequently, general health and wellbeing.

5. Factors modulating the path of
aging

The debate around whether humans are programmed to
live a certain number of years is an ongoing one with data
from human studies proposing genetic makeup as a main
player in aging and longevity (136). Studies in monozygotic and
dizygotic twins have led to the hypothesis that genetic factors
can explain about 25% of the variation in human longevity
(137-139). This was supported by sibling and extended family
studies which concluded that genetic factors were directly
linked to lifespan, after adjusting for family environment (140,
141). Moreover, specific mutations in genes associated with
DNA repair, telomere conservation and free radical control
were found to have a modulatory effect on longevity (136).
Fewer studies exist on the relationship between lifestyle and
longevity per se. Findings reveal negative correlations between
a healthy lifestyle (combined diet and physical activity) and
age-associated decline or all-cause mortality (142-145), as well
as a positive correlation with longevity itself (143, 146). In
that regard, the Healthy Aging Longitudinal study of Europe
cohort (142), aiming to identify lifestyle patterns which could
influence longevity, followed 70- to 90-year-old individuals for
10 years and collected data pertaining to diet and lifestyle, as
well as disease, disability, and mortality. The authors reported
a strong inverse relationship between a healthy lifestyle pattern
and all-cause mortality, that pattern being a combination of
adhering to the Mediterranean diet, being physically active,
consuming alcohol in moderation and not smoking (142).
Another observational study investigating longevity of the
US population as a function of behavioral factors reported a
significantly higher life expectancy in individuals with healthy
behavioral profiles versus the total population (143). Briefly,
a healthy behavioral profile characterized by the absence of
obesity, smoking and heavy drinking increased life expectancy
by 7 years and delayed the onset of disability by 6 years as
compared to the general US population.

While research on promotors of longevity is rather limited,
there is a larger body of evidence on factors enhancing different
aspects of health in aging. These factors can be categorized
into unmodifiable or fixed such as gender and genetics, and
modifiable such as diet and physical activity.

5.1. Unmodifiable factors
5.1.1. Gender

Gender differences in aging are particularly observed in
the area of mobility whereby peak bone mass is lower and
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the decline in bone density steeper in women than in men.
However, gender becomes a differentiating factor in multiple
biological systems after menopause. First, hormonal shifts
affect nutrient utilization, altering fat metabolism predisposing
women to abdominal obesity and increasing their risk for
cardiovascular disease (147). Some micronutrients such as
vitamin C and calcium are also affected by the loss of the
protective effect of estrogen during menopause. The utilization
of vitamin C increases to counterbalance the increase in
oxidative stress typical of menopause (148). Similarly, as
bone resorption increases, calcium needs are increased to
prevent osteoporotic fractures. Second, from a digestive health
perspective, menopausal changes have been shown to alter gut
microbiota, causing dysbiosis with an increase in the Firmicutes
to Bacteroidetes ratio (149). Finally, the menopausal transition
puts women at a higher risk of depression, the effect on
mood being partly explained by the loss of the beneficial
effect of estrogen on serotonin and other mood regulating
hormones (150).

Therefore, around age 50, gender differences become
increasingly striking and must be taken into consideration when
designing interventions for healthy aging.

5.1.2. Genes

Genome-wide association studies have greatly increased
knowledge around genetic variations and their modulation
of chronic disease risk. Genes associated with physiological
and metabolic pathways may therefore predict the path to
age-related disorders (136). For instance, numerous gene
variants were identified to be associated with a higher risk
of cardiovascular disease (151), and its five main risk factors,
diabetes, obesity, dyslipidemia, smoking (nicotine dependence),
and hypertension (152). Equally, numerous single nucleotide
polymorphisms were associated with bone mineral density,
osteoporosis and osteoporotic fractures (153). Finally, cognitive
decline has been the focus of recent investigations identifying
genetic variations associated with Alzheimer’s disease (154, 155).
Considering the role that genes play in determining longevity
and their association with the risk of age-related disease, it is
safe to say that genetics contribute significantly to determining
both lifespan and health span.

5.2. Modifiable factors

In their review on human longevity, Passarino et al. argue
that “it takes two to tango,” genetics and lifestyle going hand in
hand to improve or worsen the trajectory and outcomes of aging
(136). Studies have shown that genetics can account for 20-30%
(136, 139, 156) of longevity, leaving 70-80% to be modulated
by the environment. Indeed, diet, lifestyle, and the environment
appear to be driving longevity in regions of Japan (Okinawa)
(157), Greece (Icaria), Italy (Ogliastra) and Costa Rica (Nicoya
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Peninsula) (158), identified as “blue zones,” the world’s longest-
lived cultures (159). Therefore, regardless of the competitive
advantage hidden in our genes, lifestyle is most definitely linked
to the way we age.

5.2.1. Nutrition

Nutritional modifications have repeatedly shown to
significantly impact the risk of various age-related diseases, and
nutritional solutions may be designed to target the hallmarks
of aging. Although personalized nutrition is increasingly
considered as the optimal means to promote healthy aging,
research on its long-term impact on disease prevention remains
limited (160). On the other hand, some dietary solutions
discussed below are well-supported in terms of their role in the
prevention of age-related diseases and the promotion of healthy
aging in the adult population.

5.2.1.1. Dietary patterns

Aging is characterized by a declining nutritional status due
to reduced intakes of nutrient-dense foods, lower intestinal
absorption, and impaired nutrient metabolism. Nutrient
requirements of older adults (60 years and over) and dietary
guidelines have therefore been adapted to accommodate for
these differences with young individuals (161). That said, dietary
changes should start prior to the first signs of aging since
the onset of decline in different systems can start as early
as age 40. More importantly, these requirements are often
unmet due to the physical, social, and environmental difficulties
that older adults face, more particularly the late elderly (over
75 years). Promoting a balanced diet and nutritional solutions
to meet requirements is therefore important. For instance,
meeting protein needs could be facilitated by offering solutions
that provide high-quality protein and protein dense products
adapted to age-related conditions (e.g., blunted feelings
of hunger). Similarly, micronutrient supplementation and
fortification could be considered to counterbalance inadequate
intake linked to an unbalanced diet.

Unbalanced or unhealthy diets such as the western diet
typically contain high levels of salt, saturated fats, refined
sugars and are generally poor sources of dietary fiber and
micronutrients. Globally and over the past decades, diets have
evolved from traditional healthy diets to westernized diets which
have shown deleterious effects on health (162). More specifically,
westernized diets negatively impact the composition of gut
microbiota, powerful metabolic regulators, whose functions
have repercussions on all body systems, and general health
(162, 163). As mentioned earlier, gut microbiota composition
and function are altered with age which further emphasizes
the importance of a healthy, microbiome-promoting diet in
this population.

Healthy dietary patterns, which can be defined by a variety
of healthy eating indices, are generally rich sources of fruits,
vegetables, legumes, whole grains, nuts, low-fat dairy and fish,
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and provide a healthy fat profile characterized by low saturated
and high unsaturated fats, including polyunsaturated omega-
3 fatty acids (n-3 PUFAs) omega-3s. One such pattern is
the Mediterranean diet which has particularly been explored
in studies investigating the impact of nutrition on health
markers in older adults. Findings from these studies associate
the Mediterranean diet with a favorable inflammatory profile
(164), lower risk of osteoporotic fractures (165), higher
muscle mass (166) and better mobility performance (167).
The Mediterranean diet was also linked to a lower prevalence
of cognitive decline, dementia and Alzheimer’s disease (168).
Importantly, a cause-and-effect relationship between the
Mediterranean diet and cardiovascular health was established
in a randomized clinical trial demonstrating a lower rate of
cardiovascular events following a plant-based Mediterranean-
type intervention diet versus a western diet (169). Other dietary
patterns having shown beneficial effects on cardiovascular
health are the DASH (Dietary Approach to Stop Hypertension)
diet, and the Portfolio diet. The DASH diet emphasizes fruits,
vegetables, whole grains, and low-fat dairy products. It also
limits the intake of sugar-sweetened foods and beverages,
red meat and added fats. Its demonstrated efficacy on blood
pressure has been reported in numerous clinical trials (170).
The portfolio diet is a plant-based dietary pattern promoting
the intake of nuts, viscous fiber and vegetable protein and
supplemented with plant sterols. The portfolio diet is known
for its reducing effect on LDL-cholesterol and was ranked first
amongst efficacious dietary patterns for secondary prevention
of cardiovascular disease (subjects with pre-existing CVD) in
a report of the National Heart foundation of Australia in 2017
(171). Finally, the MIND diet, a pattern that is increasingly
popular amongst scientists and practitioners, is a combination
of the Mediterranean and the DASH diets targeting the driving
processes behind cognitive decline (172). Although dietary
patterns mentioned here are supported by variable levels of
scientific data, they share common characteristics combining
healthy energy substrates (whole grain carbohydrates, n-3
PUFAs, plant-based protein), reducing trans-fats, saturated fats,
refined grains and added sugars, while providing good sources of
antioxidants. Components of these diets are natural bioactives
with proven beneficial effects on the age-associated decline of
different systems. Here, we highlight a few of these components.

5.2.1.2. Micronutrient supplementation

Meeting micronutrient needs through a healthy diet ensures
a good functioning of all body systems. Vitamins A, C, D as well
as copper, iron, selenium and zinc are supported by sufficient
evidence regarding their role in maintaining immune function
(173). In addition, clinical trials on the supplementation of
zing, vitamin C, vitamin E as well as multiple micronutrients
in the aging population improve immune activity, reduce the
incidence and morbidity of respiratory tract infections, and
may improve the response to vaccination (29). In addition
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to their role in immunity, B vitamins, specifically B6, B9
(folate) and B12 are central to maintaining cognitive function as
deficiencies are linked to cognitive impairments (174, 175) and
supplementation studies have shown improvements in global
cognition (176). Other micronutrients such as calcium and
vitamin D, magnesium, and potassium, highly available in the
Mediterranean and the DASH diet, are efficacious for bone
strength, colonic motility, and blood pressure, respectively.
Therefore, filling the micronutrient gap is essential for
the maintenance of immune and brain health, especially
in the context of deficiencies associated with older age.
However, proper individual assessment should be made before
supplementation as some elderly people may already consume

in excess micronutrients such as vitamin A or folate (45).

5.2.1.3. n-3-PUFAs

The evolution of heart healthy diets was such that dietary
fats were first demonized before regaining their place in
primary prevention, with great emphasis on quality rather
than quantity. Polyunsaturated fatty acids, and especially n-
3 PUFAS have since then been extensively researched and
shown beneficial across different aspects of health. Marine
n-3 PUFAs eicosapentanoic acid (EPA) and docosahexanoic
acid (DHA) (177, 178), found in the Mediterranean diet
through an adequate intake of fish, have consistently shown
an inverse relationship with plasma pro-inflammatory markers
such as IL-6, CRP, and TNF-a and a positive association
with anti-inflammatory markers such as IL-10 and TGF-b in
young and older adults. Their mechanism of action is mainly
through displacing arachidonic acid, the main substrate for
the production of eicosanoids, thus reducing the production
of pro-inflammatory cytokines (179). In light of the recent
COVID-19 pandemic affecting older adults in particular, Calder
et al. suggest the inclusion of EPA and DHA in the treatment
of affected patients to avoid the cytokine storm (30). In fact,
pre-clinical models of lung injury support the role of EPA and
DHA in resolving inflammation and a recent meta-analysis of
clinical trials concluded that n-3 PUFAs lead to the reduction of
mechanical ventilation and ICU stay (180, 181).

The targeted effect of n-3 PUFAs on inflammatory pathways
emphasizes the relevance of these fatty acids in the prevention
of low-grade inflammation and its deleterious effect on immune,
brain, musculoskeletal, digestive and heart health.

5.2.14. Polyphenols

Polyphenols are phenolic compounds which are ubiquitous
in the plant kingdom. Polyphenols from commonly consumed
foods in healthy diets (e.g., in olive oil, berries, red wine)
may contribute to reduce the oxidative burden of aging cells,
promoting autophagy (182) and thus delaying cell senescence.
Autophagy is a cellular housekeeping process that rids the cell of
old and damaged organelles, improving cellular functioning and
mitigating cellular oxidative stress. Cocoa and olive polyphenols
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are effective at reducing oxidative stress and inflammatory
markers in young and older adults (35), resulting in significant
improvement in blood lipids (olive oil polyphenols) and
blood flow (cocoa polyphenols). Meanwhile, curcumin (from
the turmeric root) (183) demonstrated a protective effect
on the cartilage manifested through reduced joint pain and
increased functionality in older adults, explained by reduced
levels of inflammation and oxidative stress. Given the pivotal
role of oxidative status and autophagy in cellular aging
(129), polyphenols should be part of the prevention strategy
for healthy aging.

5.2.1.5. Probiotics and prebiotics

Microbiota-targeting solutions have been extensively
investigated in recent years for their local (digestive) and
systemic effects. The latter include improvements in immune,
cardiovascular, skeletal, and cognitive health.

Probiotics are defined as live microorganisms that, when
administered in adequate amounts, confer a health benefit on
the host (184). Prebiotics are substrates that are selectively
utilized by host microorganisms conferring a health benefit
through altering their composition or function specifically
(185). Probiotics are established key players of immune health
as discussed in the recent review by Bosco and Noti (31).
The authors evaluated findings from 31 studies on probiotic
interventions in elderly subjects reporting that two thirds
show a positive, albeit strain-specific effect on the immune
system. Benefits included improving response to vaccination
and protecting against bacterial infections (31). Probiotics
are first and foremost the guardians of the intestinal barrier,
protecting its integrity and forming a first line of defense against
invading pathogens. However, they also have an important role
to play locally on digestion and absorption. For example, L.
delbrueckii subsp. bulgaricus and S. thermophilus in fermented
milk were shown to improve lactose digestion, a claim that
was accepted by the EFSA in 2010 (186). Probiotics have been
repeatedly suggested to impart cardiometabolic benefits such
as lipid and glucose-lowering (187, 188) by modulating gut
microbiota and SCFA production, with a purported effect on
oxidative stress and low-grade inflammation (189). From a bone
health perspective, a daily ingestion of L. reuteri attenuated
bone loss in older women with low bone mineral density
(190). Finally, psychobiotics, a relatively new class of probiotics
that confer a mental health benefit to the host (191), have
already shown promising effects on cognition and mental state,
acting via the gut-brain axis by modulating neurotransmission,
neurogenesis, and neuroinflammation (192). Probiotics were
shown to decrease depressive symptoms in individuals with
depression (193), increase neurocognitive performance in
healthy adults age 18 to 40 (B. longum) (194), reduce anxiety
symptoms in adults age 18 to 65 (L. casei Shirota) (195), and
improve cognitive performance in older adults (L. Helveticus)
(195), agreeing with findings from younger populations.
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Notwithstanding the large body of evidence supporting the
efficacy of probiotics on immune, digestive, cardiovascular and
brain health, there is a need for additional targeted clinical trials
to establish strain-specific effects on each of these benefits.

Just like probiotics, prebiotics are microbiota-related
solutions having demonstrated multiple benefits for human
health. Complementing their well-established role in balancing
the intestinal microbial ecosystem and consequently general
health, specific effects of inulin-type of fructans and galacto-
oligosaccharides (GOS) were reported on decreasing serum
pro-inflammatory markers (196) and increasing immune cell
activity (197). Prebiotics have also been investigated in
mobility showing promising avenues for bone health. Briefly,
fructooligosaccharides (FOS), inulin, and GOS increase calcium
absorption in postmenopausal women (198-201) while FOS
and inulin further reduce bone resorption markers (202) and
soluble corn fiber increase bone formation markers (203) in the
same population. However, there is no evidence to date that
this translates into increasing bone mineral density (BMD) or
decreasing the risk of fracture. This is possibly due to the short-
term nature of before mentioned studies which raises the need
for longer-term research investigating the impact of prebiotics
on bone strength and mobility.

5.2.2. Physical activity

Physical activity which includes exercise, in general terms,
is commonly known for its health benefits and is an obvious
component of strategies aiming to improve the general health of
aging adults. In fact, according to the WHO, older adults should
perform 150 min of moderate-intensity exercise or at least
75 min of vigorous exercise per week (204). The most obvious
impact of exercise is on mobility where regular training can
improve muscle structure and function in older adults to match
that of men four decades younger (205). In addition, exercise
increases the number of muscle satellite cells (206), attenuates
insulin resistance (207), improves mitochondrial capacity (208),
and allows for greater use of dietary protein-derived amino
acids for de novo muscle protein accretion in senescent muscle
(83). In bones, it increases mechanical stress and physical
loading which in turn increases bone mass and density through
activating bone formation and reducing resorption (209). With
regards to immunity, moderate to vigorous activity enhances
by
immune cells, and anti-inflammatory cytokines (210, 211). On

immunosurveillance recirculating  immunoglobulins,
the other hand, exercise immunology studies show that the
impact of exercise on immune function follows a J-shaped curve
where repeated moderate exercise enhances immune health,
decreasing incidence of illness and dampening inflammation,
while prolonged heavy exertion leads to an increased risk of
illness. This is due to a transient state of immune dysfunction,
inflammation, and oxidative stress which can last up to several
days during recovery (210). The same pattern is observed in
digestive health whereby regular moderate exercise has positive
effects on gut motility and microbiota composition whereas
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exertive exercise can have deleterious effects on gut health (212).
In terms of the decline in cognitive and cardiovascular function,
preventive effects of regular moderate exercise share common
pathways, namely an increase in blood flow and a decrease
in inflammation and oxidative stress. In fact, cardiovascular
training is considered as one of the most effective strategies to
prevent cognitive decline (54). In a meta-analysis of exercise
interventions in adults 18 to 90 years of age, Lin et al. report a
beneficial effect of exercise on cardiorespiratory fitness (CRF)
and markers of cardiovascular disease (213). The latter included
blood lipids, inflammatory markers, insulin resistance and
hemostatic factors involved in endothelial function and blood
pressure. On the brain health front, studies have demonstrated
that physical activity increases cognitive performance, more
specifically in verbal memory and attention. Moreover, amongst
aerobic exercises recommended for older adults, dancing
has shown a superior effect, possibly differentiating itself by
the additional positive emotional impact of music and the
continuous engagement in cognitive and motor learning (214).

5.2.3. Sleep quality

Aging is accompanied by disturbances in the circadian
rhythm which lead to sleep disturbances (215). Nocturnal sleep
is a necessary physiological process which plays an important
role in physical and mental recovery (215). From a brain
perspective, the restorative role of sleep involves brain tissue
restoration, metabolite clearance, and memory consolidation
(216). Sleep disturbances are common in older adults (40—
50% of adults over 60) and seem to go hand in hand with
cognitive and mood disorders (216, 217). In fact, sleep loss has
consistently shown to impair cognitive performance, namely
attention and executive control while sleep has proven to be
a process that promotes memory stabilization and integration
(216) in the general population. How these functions are affected
in the context of the aging brain was addressed in the review
by Scullin et al. suggesting that good sleep quality can promote
cognitive function in young and middle-aged adults and protect
against age-related cognitive declines (216).

The relevance of sleep and processes that occur during
the sleeping state is often seen as exclusive to brain health.
However, the impact of sleep quality is ubiquitous to all systems
of the human body although significant gaps in knowledge
remain as to the clear impact of sleep quality on different
aspects of health, namely immune, digestive, musculoskeletal,
and cardiovascular health. The relationship between sleep and
immunity appears to be bidirectional whereby sleep restriction
increases markers of inflammation such as IL-6, IL-1b, and TNE-
o, while at the same time, increased levels of inflammatory
markers result in disturbed sleep (218, 219). Although not
consistent in the literature, the causal relationship between
sleep quality and immune function is supported by pre-
clinical studies showing deleterious effects of sleep loss on
inflammation, and clinical studies revealing an impact of sleep
quality on adaptive immune responses, more specifically in
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the context of vaccination, whereby sleep deprivation was seen
to attenuate antibody responses (220). Equally bidirectional
is the relationship between sleep and digestive health. It is
now well-recognized that digestive perturbances and diseases
such as inflammatory bowel disease and Crohn’s disease
are associated with fatigue (221, 222). Furthermore, recent
work has shown that sleep quality is associated with gut
dysbiosis, and that sleep efficiency is positively associated with
microbiota diversity (223). This association is suggested to
be mediated by the HPA (hypothalamus pituitary adrenal)-
axis (224).

Finally, circadian dysregulations caused by sleep deficit
modulate circadian hormones involved in nutrient metabolism
and consequently, cardiometabolic health (225, 226). St-Onge
et al. examined the strength of the evidence behind the role
of sleep in cardiometabolic health in a review demonstrating
that epidemiological and clinical trials support a deleterious
effect of sleep restriction on insulin resistance, blood pressure,
inflammatory markers, and cardiovascular risk in general (227).
Overall, the available clinical trials suggest that sleep deprivation
can be deleterious to cardiovascular risk factors such as blood
pressure (228) and endothelial function (229).

5.2.4. Physical and mental stress

Stress can be defined as the way the body responds to a
challenge, be it physical or mental. It is also defined as a state
of disharmony caused by these challenges, defined as “stressors”
(230). Whether it is performance at work or in athletic
competitions, a significant life change or a traumatic event, the
body’s response to stress includes an increase in heart rate and
blood pressure, stimulation of stress hormones and other stress-
related pathways (230). Although stress represents an asset from
an evolution point of view, rooted in the fight or flight response,
chronic stress over the lifespan has proven to be deleterious to
health. Indeed, epidemiological data shows that individuals with
chronic stress have signs of decreased immune performance
manifested in poorer vaccination responses, impaired wound
healing and weaker control of latent viruses (231). This
relationship was also observed in the experimental setting
where a higher risk of developing a cold was associated with
the occurrence of a recent life stressor in men and women
exposed to the rhinovirus (232). In the context of aging, the
accumulation of stressors throughout life and the resulting
chronic stress observed in aging adults is believed to greatly
contribute to the weakening of the immune system and the
development of chronic diseases (233). To test the impact of
life stressors on immunosenescence, Puterman et al. followed
healthy women aged 50-65 years over one year and measured
leukocyte telomere length as a marker of aging immune cells.
The authors report that for every life stressor in that year
there was an incremental decrease in telomere length, and that
this decrease was moderated by other modifiable risk factors
such as diet, physical activity and sleep (234). Other aspects of
health such as digestive and brain health are equally affected
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by chronic stress. Stress can impact the colonic motility and
gut microbiota composition, reducing Lactobacilli counts and
increasing adhesion of pathogenic bacteria (235). In chronic
gastrointestinal conditions such as inflammatory bowel disease
(IBD), evidence shows that stress alters intestinal mucosa
permeability and increases inflammation, worsening outcomes
of the disease (236). Chronic stress has been strongly correlated
with cardiovascular disease. The INTERHEART study has
shown that psychosocial factors were significantly related to
acute myocardial infarction to the same extent as the more
traditional risk factors (237). Finally, an obvious effect of
stress is on affect and mood and using cognitive-behavioral
stress management has shown the best evidence in reducing
physiological stress, as measured by plasma cortisol levels
(238). Overall, research to date emphasizes the importance
of managing physical and psychological stress to alleviate the
burden on immune, digestive, and mental health. Aging adults
have higher exposure to the deleterious effects of stress due
to the accumulation of lifelong stressors and therefore stress
management is particularly important in this population.

6. Summary and conclusion

There is a general awareness of the rapidly aging global
population and its impact on health, social and environmental
systems. Advances in medicine and science have enabled us to
increase the average human lifespan by providing treatments
for the most fatal diseases of old age such as cancer and
heart disease. Nevertheless, living long is not always equal
to living well. Hence, to reduce the burden of old age, the
focus should be placed on the health span rather than the
lifespan. This is only attainable through optimal development
and early prevention before the surge of “calls to action” or
visible signs of impairment. The World Health Organization
defines healthy aging as the “process of developing and
maintaining the functional ability that enables wellbeing in old
age.” Understanding the decline in functional ability of each
biological system and identifying common biological targets and
strategies based on the hallmarks of aging are key to delaying
age-associated decline. These targets have been shown to be
involved in the aging process and to be modulated by dietary
and lifestyle changes. Therefore, improving dietary patterns,
promoting regular moderate physical activity, improving sleep
quality, and reducing life stressors are likely to modulate the
path of aging through their action on aging targets, namely
energy metabolism, microbiota function, inflammation, and
oxidative stress. Finally, a holistic approach combining nutrition
and lifestyle modifications is the optimal way to make an impact
on the health span of older adults and thus improve their quality
of life. The holistic approach should take into consideration
the interplay between different factors such as socio-economic
status, health and social service systems, physical and social
environment, cultural, personal and behavioral determinants.
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