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Machine learning (ML) algorithms may help better understand the complex interactions

among factors that influence dietary choices and behaviors. The aim of this study was

to explore whether ML algorithms are more accurate than traditional statistical models

in predicting vegetable and fruit (VF) consumption. A large array of features (2,452

features from 525 variables) encompassing individual and environmental information

related to dietary habits and food choices in a sample of 1,147 French-speaking

adult men and women was used for the purpose of this study. Adequate VF

consumption, which was defined as 5 servings/d or more, was measured by averaging

data from three web-based 24 h recalls and used as the outcome to predict. Nine

classification ML algorithms were compared to two traditional statistical predictive

models, logistic regression and penalized regression (Lasso). The performance of the

predictive ML algorithms was tested after the implementation of adjustments, including

normalizing the data, as well as in a series of sensitivity analyses such as using VF

consumption obtained from a web-based food frequency questionnaire (wFFQ) and

applying a feature selection algorithm in an attempt to reduce overfitting. Logistic

regression and Lasso predicted adequate VF consumption with an accuracy of 0.64

(95% confidence interval [CI]: 0.58–0.70) and 0.64 (95%CI: 0.60–0.68) respectively.

Among the ML algorithms tested, the most accurate algorithms to predict adequate

VF consumption were the support vector machine (SVM) with either a radial basis

kernel or a sigmoid kernel, both with an accuracy of 0.65 (95%CI: 0.59–0.71). The

least accurate ML algorithm was the SVM with a linear kernel with an accuracy

of 0.55 (95%CI: 0.49–0.61). Using dietary intake data from the wFFQ and applying

a feature selection algorithm had little to no impact on the performance of the

algorithms. In summary, ML algorithms and traditional statistical models predicted

adequate VF consumption with similar accuracies among adults. These results suggest
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that additional research is needed to explore further the true potential of ML in predicting

dietary behaviours that are determined by complex interactions among several individual,

social and environmental factors.

Keywords: artificial intelligence, machine learning, statistical models, nutrition, prediction, dietary behaviour

INTRODUCTION

Artificial intelligence (AI) has become prominent in healthcare
research, particularly in precision medicine, for assessing disease
risk, identifying potential complications or selection of treatment
(1–3). For instance, machine learning (ML) algorithms have been
used to predict risk of different chronic diseases and often, ML
algorithms have outperformed traditional statistical models (4–
8). Among others, ML algorithms can account for non-linear
and high dimensional relationships, which may lead to better
predictive performances. The availability of voluminous and rich
datasets, such as Electronic Health Records, longitudinal data and
omics data, has also accelerated the use of ML algorithms and
other AI methods in health research (9–12).

The rapid and successful progress in precision medicine
based on ML suggests promising applications in other fields
including public health nutrition, where important amounts
of data are already available (13), yet largely unexploited.
Indeed, healthy eating is the sum of interactions among several
complex behaviours and individual, social and environmental
factors. To that extent, ML algorithms may help achieve a more
comprehensive understanding of factors that are associated with,
influence or determine the quality of the diet at the individual
or population level. This is an important area to explore because
low quality diets are responsible for half of the deaths associated
with chronic diseases globally, which is more than any other
risk factors, including smoking (14). Yet, despite several public
health efforts and policies, adhering to healthy eating remains
a challenge.

It needs to be stressed that the advantage of using ML
algorithms over traditional statistical models to predict a
health outcome has not always been observed (15–19). For
instance, a systematic review found no evidence that ML
algorithms had better accuracy than logistic regression for clinical
prediction modeling (15). Another study also found no clear
difference in performance between regression models, including
logistic regression and lasso regression, and ML algorithms for
prognostication of traumatic brain injury (16). Similarly, a study
demonstrated that logistic regression performed equally to ML
algorithms in predicting the risk of multiple chronic diseases
(18). Exploring potential applications of ML algorithms to the
broad field of nutrition is therefore timely as we know little about
their advantage over traditional statistical models (9).

To the best of our knowledge, the present study is one of
the first to compare ML algorithms to traditional statistical

Abbreviations: AI, Artificial intelligence; DT, Decision tree; wFFQ, web-based
food frequency questionnaire; KNN, K-nearest neighbour; LR, Logistic regression;
ML, Machine learning; RF, Random forest; SCM, Set-covering machine; SVM,
Support vector machine; VF, Vegetable and fruit.

models to predict a dietary behavior. Specifically, the aim of
this study was to explore and compare the performance metrics
of ML algorithms and traditional statistical models to predict a
simple healthy dietary behavior, i.e., adequate vegetable and fruit
(VF) consumption, using a large array of individual, social and
environmental features.We hypothesized thatML algorithms are
more accurate than traditional statistical models in predicting
adequate VF consumption. We stress that this analysis was not
intended to provide a definitive predictive model of adequate
VF consumption.

MATERIALS AND METHODS

Study Population
Data used for these analyses are from the PREDISE (PRÉDicteurs
Individuels, Sociaux et Environnementaux) study, a web-based
study which purpose is to investigate how individual, social and
environmental factors are associated to adherence to healthy
eating recommendations among French-speaking adults from
the province of Québec, Canada. The PREDISE study design
and methodology have been previously detailed elsewhere (20).
Briefly, participants aged between 18 and 65 years of age
were recruited between August 2015 and April 2017 using
random digit dialing in five different administrative regions
in the province of Québec. Participants completed online
questionnaires regarding individual, social and environmental
factors, three web-based 24 h dietary recalls and a web-
based food frequency questionnaire (wFFQ). The complete list
of questionnaires is provided in the Supplementary Table 1.
Once all questionnaires had been completed, participants
were invited to their regional’s research center for clinical
assessment (anthropometricmeasurements and blood sampling).
The project was conducted in accordance with the Declaration of
Helsinki and was approved by the Research Ethics Committees
of Université Laval (ethics number: 2014-271), Centre hospitalier
universitaire de Sherbrooke (ethics number: MP-31-2015-997),
Montreal Clinical Research Institute (ethics number: 2015-02),
and Université du Québec à Trois-Rivières (ethics number: 15-
2009-07.13).

Assessment of Vegetable and Fruit Intake
Participants from the PREDISE study were invited by email on
three randomly selected separate unannounced days to complete
a self-administered 24-h web recall, the R24W. The development
and validation of the R24W has been detailed elsewhere (21–24).
Of the 1147 participants, 1083 participants (94.4%) completed
all three recalls, 34 participants (3%) completed two recalls and
30 participants (2.6%) completed only one recall. VF intake (in
servings/day), as defined in Canada’s Food Guide 2007 (25),
was calculated by averaging intakes from all recalls available.
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TABLE 1 | Model and algorithm description.

Classification models

and algorithms

Machine learning

algorithm

Description

Logistic regression (28) Not typically Model that calculates the probability of belonging to one of two classes (if outcome is binary) by

computing the logit function of the combination of weighted input features. The weights are estimated

using maximum-likelihood estimation.

Lasso (Least absolute

shrinkage and selection

operator) (29)

Not typically Model that uses feature selection and shrinkage to reduce the number of features for classification

purposes. The coefficients of features that are useless to the model are shrunk to zero.

Decision tree (30) Yes Algorithm with a flowchart-like structure that makes predictions by learning decision rules. Each node

represents an input feature, each branch represents a decision rule and each leaf represents a

prediction. The top of the tree represents the best predictor and input features are compared until a leaf

node is reached.

Random forest (31) Yes Algorithm that generates a large ensemble of decision trees with bootstrapped samples of the data. The

predicted class is then determined by averaging the estimated outcome variable of each decision tree.

Set-covering machine (32) Yes Algorithm that learns a conjunction or disjunction of rules to find a decision function with the smallest

number of rules.

Support vector machine (33) Yes Algorithm that attempts sorting the data between two classes with a hyperplane. The hyperplane can

either be a linear, a polynomial, a radial basis or a sigmoid function and is determined using only the

points closest to the hyperplane.

K-nearest neighbor (34) Yes Algorithm that assumes that close data points are similar. The class in which a new data point belongs is

determined according to the shared characteristics of a pre-determined number of closest points.

Adaboost (35) Yes Algorithm that fits a classifier (ex: decision tree) to the dataset and then adjusts the weights of the

incorrectly classified data points, forcing the algorithm to focus on the data that is more difficult to classify.

Participants of the PREDISE study were also invited to complete
a self-administered wFFQ composed of 136 questions to reflect
dietary intake over the past 30 days. The wFFQ has been
previously validated for the studied population (26).

Predictors and Outcome Variable
The set of predictor variables and their corresponding
features were derived from all questions and scores from
all questionnaires listed in Supplementary Table 1. A variable
represented a question in a given questionnaire, while its
corresponding features reflected the transformed variable, for
example, dummy variables for each response to that question.
Data from the clinical assessment, which includes serum
cholesterol, triglycerides, HDL-cholesterol, fasting blood glucose
and insulin concentrations, systolic and diastolic blood pressures
were also considered as features in each model and algorithm.
Age, sex, measured height, measured weight, body mass index,
body fat percentage and waist circumference were considered
as features in all models and algorithms. Questions that had
been completed by <70% of the participants were excluded,
resulting in 525 predictor variables. Missing data for continuous
features were imputed using the study population averages for
each feature. The categorical variables were dummy coded with a
specific binary code for missing data. Once categorical variables
were dummy coded, total number of predictor features included
on all models and algorithms was 2,452.

The outcome predicted (classes) was VF intake dichotomized
as adequate/inadequate, based on the population target in
Québec of 5 or more servings/d (27). Specifically, the two classes
were 1- adequate VF consumption, corresponding to 5 or more

TABLE 2 | Predictive metrics and corresponding equations.

Metric Equation

Accuracy (True positives + True negatives)/Total Sample

Precision (positive predictive

value)

True positives/(False positives+ True positives)

Recall (sensitivity) True positives/(True positives + False negatives)

F1 score 2 × (Precision * Recall)/(Precision + Recall)

servings/d and 2- inadequate VF consumption, corresponding to
less than 5 servings/d.

Data Modelling
Logistic regression (LR) (28) and penalized regression (Lasso)
(29) were considered the reference classification/predictive
models while nine commonly known supervised ML
classification algorithms were applied: decision tree (DT)
(30), random forest (RF) (31), set-covering machine (SCM)
(32), support vector machines (SVM) (33) with different kernels
(linear, polynomial, radial basis, sigmoid), k-nearest neighbour
(KNN) (34) and Adaboost (35). Table 1 provides a short
description of each classification model and algorithm. ML
algorithms have different hyperparameters to be optimized to
achieve the best predictive models possible. The hyperparameters
were selected using five-fold cross-validation (Supplementary

Table 2). Data was split in two non-overlapping sets, the train
set containing 80% of the sample to develop the models and
algorithms and the test set using 20% of the sample to evaluate
model and algorithm performances. As part of the iterative
process needed to maximize the performance of the classification
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TABLE 3 | Sociodemographic characteristics of the French-speaking adults from

Quebec, Canada (N =1,147).

Characteristics n (%)

Age group, y

18–34 432 (37.7)

35–49 330 (28.8)

50–65 385 (33.5)

Sex

Female 572 (50)

Male 575 (50)

Education

High school or less 270 (23.5)

CEGEP* 332 (29.0)

University 485 (42.3)

Missing information 60 (5.2)

Household income, CAD $

< 30, 000 163 (14.2)

30, 000 to < 60, 000 281 (24.5)

60, 000 to < 90, 000 196 (17.1)

≥ 90, 000 348 (30.3)

Missing information 159 (13.9)

Ethnicity

Caucasian 997 (86.9)

Arabic 25 (2.2)

Hispanic 19 (1.7)

Other 32 (2.8)

Missing information 74 (6.4)

Administrative region

Capitale-Nationale/Chaudière-Appalaches 416 (36.3)

Estrie 121 (10.5)

Mauricie 98 (8.5)

Montreal 410 (35.8)

Saguenay-Lac-St-Jean 102 (8.9)

*CEGEP is a preuniversity and technical college institution specific to the Quebec
educational system.

algorithms, the distribution of continuous data was rescaled
between 0 and 1 to normalize the data across all features. As
shown in Supplementary Figure 1, the accuracy of the LR,
KNN, SVM with linear kernel, radial basis kernel and sigmoid
kernel algorithms to predict adequate VF consumption was
improved when using normalized compared to non-normalized
data. Normalizing the data had little impact on the accuracy of
the Lasso, DT, RF, SCM, and Adaboost algorithms. The SVM
with polynomial kernel algorithm was the only ML algorithm
for which data normalization decreased accuracy. Subsequent
analyses were therefore undertaken using normalized data for
continuous features. All analytical steps of model development
(normalizing the data, developing/training and testing) were
bootstrapped 15 times to generate measurement errors and hence
95% confidence intervals (95%CI) for each performance metric.
The models and algorithms were compared using common
metrics in a ML classification framework problem: accuracy,

area under the receiver operating characteristic curve (AUROC),
precision (positive predictive value), recall (sensitivity), and F1
score (Table 2). Finally, the list of discriminant features retained
in the LR, Lasso, DT, RF, SCM, SVM linear and Adaboost
models and algorithms were compared to verify any similarities
or differences. The discriminant analysis was conducted by
identifying the 10 features with the highest coefficients for LR,
Lasso and SVM linear. Gini feature importance was used for
the discriminant analysis of the RF and Adaboost algorithms,
and Entropy importance was used for the DT algorithm. All
features retained by the SCM corresponded to the discriminant
features for this algorithm. KNN does not rank features based
on importance and SVM (polynomial, radial basis and sigmoid)
are uninterpretable. Thus, data from these algorithms were not
included in the discriminant analysis.

A series of sensitivity analyses were performed to examine if
and how particular aspects of the data differentially influenced
the performance of traditional statistical models and ML-based
classification algorithms. First, the models and algorithms were
tested using VF intake data from the wFFQ. Unlike 24-hr
recalls, which measure short term consumption, food frequency
questionnaires measure longer term consumption of foods,
yielding data that are less influenced by within-person (random)
errors (i.e., day-to-day variability in intakes) than data derived
from the R24W. For that purpose, VF consumption from the
wFFQ was also dichotomized using the 5 servings/d cut-off.
Second, other diet-related features obtained from the R24W
were included in the analyses, including Canada’s Food Guide
2007 servings of grain products, milk and alternatives, meat and
alternatives, as well as components of the Canadian Healthy
Eating Index (C-HEI) (36) other than the VF component and
the C-HEI score itself. This was undertaken to validate the
increase in accuracy when such features are considered because
they correlate closely with VF consumption. Third, to attempt to
overcome overfitting, a feature selection algorithm was applied
to reduce the number of features to 5, 10, and 50 features. The
feature selection algorithm selects a pre-determined number of
best features based on univariate statistical tests. All analyses
apart from the bootstrapped results were conducted with the
same random state, ensuring that the train and test datasets
were identical from one model and algorithm to the other.
All analyses were carried out in Python 3.7. Preprocessing,
statistical models and ML algorithms, feature selection (Select
K best) and metrics were computed using scikit-learn packages.
Execution time of algorithms varied between 5 secs and 7 mins
(Supplementary Table 3).

RESULTS

Table 3 shows characteristics of the 1,147 participants (572
women, 575 men) included in the present study. The majority
of participants had a university degree and were Caucasian. The
mean (±standard deviation) VF consumption evaluated by the
R24W in the sample was 5.5 ± 3.1 servings/d (interquartile
range = 4.0), with 52.3% of participants consuming 5 or more
servings/d. The mean VF consumption evaluated by the wFFQ
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TABLE 4 | Performance metrics of two traditional statistical models and nine machine learning algorithms to predict adequate vegetable and fruit (VF) consumption based on dietary intake data obtained from

web-based 24-hr recalls (R24W) among1147 French-speaking adults from Québec, Canada.

Algorithms*

Performance

metric

Traditional statistical

models (reference)

DT RF SCM SVM KNN Adaboost

LR Lasso Linear Polynomial Radial

basis

Sigmoid

Accuracy

TRAIN

(95%CI)

0.75

(0.73–0.77)

0.76

(0.74–0.78)

0.66

(0.58–0.74)

0.94

(0.82–1.06)

0.64

(0.60–0.68)

1.00

(1.00–1.00)

0.80

(0.64–0.96)

0.86

(0.72–1.00)

0.75

(0.73–0.77)

0.73

(0.48–0.98)

0.80

(0.68–0.92)

Accuracy

TEST

(95%CI)

0.64

(0.58–0.70)

0.64

(0.60–0.68)

0.62

(0.58–0.74)

0.64

(0.56–0.72)

0.62

(0.54–0.70)

0.55

(0.49–0.61)

0.64

(0.58–0.70)

0.65

(0.59–0.71)

0.65

(0.59–0.71)

0.58

(0.50–0.66)

0.60

(0.56–0.64)

Predicting

adequate VF

consumption (≥5

servings/d)

AUROC

(95%CI)

0.64

(0.58–0.70)

0.68

(0.62–0.74)

0.62

(0.54–0.70)

0.63

(0.57–0.69)

0.62

(0.56–0.68)

0.55

(0.49–0.61)

0.64

(0.58–0.70)

0.65

(0.59–0.71)

0.64

(0.58–0.70)

0.57

(0.51–0.63)

0.60

(0.56–0.64)

Positive

predictive

valuea

(95%CI)

0.65

(0.57–0.73)

0.65

(0.57–0.73)

0.63

(0.53–0.73)

0.63

(0.53–0.73)

0.63

(0.53–0.73)

0.57

(0.49–0.65)

0.64

(0.56–0.72)

0.65

(0.57–0.73)

0.64

(0.56–0.72)

0.58

(0.50–0.66)

0.61

(0.55–0.67)

Sensitivityb

(95%CI)

0.68

(0.58–0.78)

0.68

(0.60–0.76)

0.66

(0.52–0.80)

0.73

(0.65–0.81)

0.67

(0.53–0.81)

0.58

(0.50–0.66)

0.72

(0.62–0.82)

0.72

(0.64–0.80)

0.74

(0.68–0.80)

0.69

(0.57–0.81)

0.61

(0.51–0.71)

F1 Score

(95%CI)

0.66

(0.60–0.72)

0.66

(0.60–0.72)

0.64

(0.56–0.72)

0.68

(0.62–0.74)

0.65

(0.57–0.73)

0.58

(0.52–0.64)

0.67

(0.59–0.75)

0.68

(0.62–0.74)

0.69

(0.63–0.75)

0.63

(0.55–0.71)

0.61

(0.55–0.67)

*15 bootstrap resamples were used to estimate 95%CI.
LR, logistic regression; DT, decision tree; RF, random forest; SCM, set-covering machine; SVM, support vector machine; KNN, k-nearest neighbors.
aPositive predictive value, also referred to as precision.
bSensitivity, also referred to as recall.
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FIGURE 1 | Discriminant features retained in the logistic regression (LR) and Lasso models and in the decision tree (DT), random forest (RF), set-covering machine

(SCM), support vector machine (SVM) with a linear kernel and Adaboost machine learning algorithms to predict adequate vegetable and fruit consumption. Features

are colour-coded according to the questionnaire to which they belong; different shades within a given color indicate that more than one feature of a questionnaire was

retained; numbers indicate the rank of a given question from a given questionnaire retained in the model or algorithm. REBS, Regulation of Eating Behaviour Scale;

SDL, Socioeconomic and demographic factors, eating and lifestyle habits; SSHEQ, Social support for healthy eating questionnaire; BIDR, Balanced inventory of

desirable responding; FLQ, Food liking questionnaire; MED, Medical questionnaire; NKQ, Nutrition knowledge questionnaire; IES, Intuitive eating scale; SPSRQ,

Sensitivity to punishment and sensitivity to reward questionnaire.

was 7.6 ± 5.0 (interquartile range = 4.8) with 67.6% consuming
5 or more servings/d.

Table 4 presents the metrics of all models and algorithms
predicting adequate VF consumption (≥5 servings/d) based on
normalized data among all participants. There are no significant
differences in accuracy between models and algorithms and no
important differences for other performance metrics, including
AUROC. When predicting inadequate VF consumption (<5
servings/d) instead of adequate VF consumption, results were
essentially similar i.e., there were no differences in performance
between traditional statistical models and ML algorithms (not
shown).

Figure 1 presents the top discriminant features included in
seven of the classification models and algorithms. Discriminant
features are colour-coded for illustrative purposes to allow
rapid visual comparison. Figure 1 shows that the discriminant

features predicting adequate VF consumption are inconsistent
across models and algorithms.While the traditional classification
models LR and Lasso shared eight top discriminant features,
there is little coherence between the discriminant features of
the five ML algorithms. No single feature was included as a top
discriminant feature in all seven models and algorithms.

As shown in Table 5, traditional statistical models and ML
classification algorithms also showed comparable performance
metrics using VF consumption data obtained from the wFFQ,
which is less prone to within-individual variability than data
from a 24-h recall such as the R24W. Of note, the majority
of ML algorithms in this sensitivity analysis predicted adequate
VF consumption with a slightly higher accuracy when using
data from the wFFQ (accuracy values ranging between 0.63 to
0.70) than when using data from the R24W (accuracy values
ranging between 0.55 to 0.65, Table 4). Positive predictive values,
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sensitivity and F1 scores were also higher when using intake
data from the wFFQ compared to data from the R24W. AUROC
values for all models and algorithms were lower when using data
from the wFFQ compared to data from the R24W, except for the
Lasso model for which the AUROC value slightly increased.

The accuracy of traditional statistical models and of
ML classification algorithms increased when dietary features
known to be correlated with VF consumption were included
in the analyses (Figure 2). Other performance metrics are
reported in Supplementary Table 4. Accuracy of the various ML
classification algorithms in predicting adequate VF consumption
was once again not superior to accuracy seen with traditional
statistical models.

Finally, reducing the number of features to 5, 10, and
50 features with a feature selection algorithm attenuated
overfitting for most models and algorithms, but had trivial
and inconsistent impacts on accuracy values and other metrics
(Supplementary Figure 2; Supplementary Table 5). Specifically,
the accuracy of all models and algorithms remained low, and no
differences were observed between traditional statistical models
and ML algorithms when fewer features were used to predict an
adequate VF consumption.

DISCUSSION

The successful use of ML in several healthcare fields suggests
promising applications in the field of nutrition epidemiology and
public health nutrition. However, the superiority and advantages
of ML-based classification approaches compared with more
traditional statistical approaches need to be evaluated, validated,
and confirmed in all fields of application (3, 12, 37). The
objective of this study was to compare the performance metrics
of ML algorithms to those of more traditional statistical models
in predicting a tangible and simple dietary behavior, i.e., VF
consumption. The hypothesis that ML classification algorithms
outperform traditional statistical classification models when
predicting adequate VF consumption based on a wide spectrum
of individual, social and environmental data was not supported
by our experimental data.

This observation is not entirely inconsistent with data
from previous studies in other fields of research, where
ML classification algorithms and traditional statistical models
performed equally. For example, ML classification algorithms
such as SVM, neural network, RF, KNN and gradient boosting
machine did not outperform traditional statistical models such as
LR and penalized regression to predict the risk of type 1 and type
2 diabetes, traumatic brain injury, and fetal growth abnormalities
(16, 17, 19). A study also demonstrated that LR outperformedML
classification algorithms when predicting chronic kidney diseases
and diabetes in a prospective cohort study, LR being ranked
among the best models when predicting the risk of cardiovascular
disease and hypertension (18). In a systematic review, LR was
shown to be equally accurate, if not better than ML classification
algorithms (15).

This is somewhat incoherent with the paradigm that ML-
based algorithms may be better suited for the exploitation

of large and complex datasets than LR, which is considered
more effective in situations where only a smaller number
of features are available (9, 11, 18). In the present study,
a rather large number of features were used. One possible
reason explaining why ML classification algorithms did not
outperform traditional statistical models in our study may
be because VF consumption is a behavior that cannot be
predicted with certainty. Consumption of VF was measured
by averaging data from three 24-h recalls, which are known
to be associated with random errors. Therefore, dichotomizing
VF consumption is inevitably and intrinsically characterized by
misclassification. Misclassification generated by random error
in the measurement of VF consumption obviously limits one’s
ability to accurately predict adequate VF consumption. Studies
in which ML classification algorithms performed better than
traditional statistical models often predicted an outcome that
was defined with a relatively high degree of certainty. For
instance, the SVM and RF algorithms predicted survival rate
after traumatic brain injuries as well as readmission after
hospitalization for heart failure with greater accuracy than
LR (7, 8). In the present study, accuracy of all models and
algorithms increased when dietary intake data from the wFFQ
were used in place of data from 24-h recalls. VF consumption
measured over longer periods of time, such as with wFFQs,
may be closer to the true usual intake, i.e., long-term average,
and may therefore be more stable than when measured using
average data from three 24-h recalls. However, this did not
materialize into better performance metrics of ML classification
algorithms compared to traditional statistical models. The fact
that food frequency questionnaires are more prone to systematic
error than 24-h recalls apparently did not negatively influence
performance metrics of traditional statistical models and of ML
classification algorithms.

Overall performances remained low for all classification
models and algorithms tested in the present study. It is possible
that the set of features did not contain domains of variables
that may improve the prediction of adequate VF consumption.
Indeed, the added value of large sets of data can be marginal
if the relevant features are not included (3). This impacted the
performance of ML classification algorithms as much as the
traditional statistical models. The low accuracy may also be partly
explained by the overfitting of certain models and algorithms.
Overfitting occurs when the classification algorithms memorize
observed patterns rather than learning relevant patterns (38).
All models and algorithms, except DT and SCM, tended to
slightly or substantially overfit despite normalizing the data
from continuous features and adjusting hyperparameters to
minimize overfitting and to optimize performances. Applying
a feature selection algorithm to reduce the number of features
included in the analyses lowered overfitting for all models
and algorithms, but had little to no impact on accuracy. On
the other hand, accuracy improved for the majority of the
models and algorithms when dietary features closely associated
with VF intake were included, but overall performance of
ML classification algorithms and traditional statistical models
remained comparable. The compelling observation is that the
ML classification algorithms tested in the present study do
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TABLE 5 | Performance metrics of two traditional models and nine machine learning algorithms to predict adequate vegetable and fruit (VF) consumption based on dietary intake data obtained from a web-based food

frequency questionnaire (wFFQ) among1147 French-speaking adults from Québec, Canada.

Algorithms*

Performance

metric

Traditional statistical

models (reference)

DT RF SCM SVM KNN Adaboost

LR Lasso Linear Polynomial Radial

basis

Sigmoid

Accuracy

TRAIN

(95%CI)

0.76

(0.74–0.78)

0.78

(0.76–0.80)

0.69

(0.63–0.75)

0.91

(0.85–0.97)

0.69

(0.67–0.71)

1.00

(1.00–1.00)

0.96

(0.78–1.00)

0.90

(0.82–0.98)

0.76

(0.52–1.00)

0.92

(0.67–1.00)

0.82

(0.72–0.92)

Accuracy

TEST

(95%CI)

0.70

(0.62–0.78)

0.70

(0.62–0.78)

0.67

(0.61–0.73)

0.68

(0.62–0.74)

0.66

(0.60–0.72)

0.63

(0.59–0.67)

0.67

(0.61–0.73)

0.69

(0.65–0.73)

0.66

(0.60–0.72)

0.67

(0.61–0.73)

0.67

(0.61–0.73)

Predicting

adequate VF

consumption (≥5

servings/d)

AUROC

(95%CI)

0.59

(0.53–0.65)

0.72

(0.64–0.80)

0.52

(0.44–0.60)

0.52

(0.50–0.54)

0.51

(0.47–0.55)

0.58

(0.54–0.62)

0.57

(0.49–0.65)

0.57

(0.51–0.63)

0.52

(0.44–0.60)

0.55

(0.49–0.61)

0.61

(0.55–0.67)

Positive

predictive

valuea

(95%CI)

0.72

(0.64–0.80)

0.72

(0.64–0.80)

0.68

(0.60–0.76)

0.68

(0.62–0.74)

0.68

(0.60–0.76)

0.72

(0.66–0.78)

0.71

(0.65–0.77)

0.71

(0.63–0.79)

0.69

(0.61–0.77)

0.70

(0.64–0.76)

0.74

(0.68–0.80)

Sensitivityb

(95%CI)

0.91

(0.87–0.95)

0.90

(0.84–0.96)

0.95

(0.75–1.00)

0.99

(0.97–1.00)

0.96

(0.84–1.00)

0.74

(0.66–0.82)

0.86

(0.74–0.98)

0.90

(0.80–1.00)

0.93

(0.71–1.00)

0.90

(0.82–0.98)

0.80

(0.74–0.86)

F1 Score

(95%CI)

0.80

(0.74–0.86)

0.80

(0.74–0.86)

0.79

(0.73–0.85)

0.81

(0.77–0.85)

0.79

(0.75–0.83)

0.73

(0.69–0.77)

0.78

(0.72–0.84)

0.79

(0.75–0.83)

0.78

(0.72–0.84)

0.78

(0.74–0.82)

0.77

(0.73–0.81)

*15 bootstrap resamples were used to estimate 95%CI.
LR, logistic regression; DT, decision tree; RF, random forest; SCM, set-covering machine; SVM, support vector machine; KNN, k-nearest neighbors.
aPositive predictive value, also referred to as precision.
bSensitivity, also referred to as recall.
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FIGURE 2 | Comparing the accuracy of traditional statistical models and machine learning algorithms to predict adequate vegetable and fruit (VF) consumption when

other dietary intake features are included in addition to the 2452 features originally included. These are servings of grain products, milk and alternatives, meat and

alternatives, as well as components of the Canadian Healthy Eating Index (C-HEI) other than the VF component and the C-HEI score itself. LR, logistic regression; DT,

decision tree; RF, random forest; SCM, set-covering machine; SVM, support vector machine; KNN, k-nearest neighbor.

not predict adequate VF consumption with more accuracy
than traditional statistical models when using a large set
of features.

Finally, features retained within the various classification
models and algorithms to predict adequate VF consumption
were inconsistent. Indeed, while LR and Lasso models included
a relatively similar set of features, including for example factors
from the Regulation of Eating Behaviour Scale questionnaire,
ML algorithms were based on a completely different set of
discriminant features such as, for example factors from the
Intuitive Eating Scale,Medical or Socioeconomic and demographic
factors, eating and lifestyle habits questionnaires. This suggests
that different modelling approaches must always be tested in
order to identify the most appropriate predictors for a given
application. This also implies that multiple ML classification
algorithms should always be compared because some may be
better suited for use with nutrition-related data. Multicollinearity
among a large set of related features can negatively affect
the predictor selection, potentially reducing the face-validity
and explainability of predictors included in the most models
and algorithms (39, 40). Had our intent been to identify

the predictors of adequate VF consumption, multicollinearity
among features should have been considered. On the other
hand, simulation studies have shown that multicollinearity
has little to no impact on predictive performances (39,
40). Since the primary aim of this exploratory analysis
was to compare predictive accuracy of different models and
algorithms, multicollinearity did not have to be addressed.
Future studies designed to identify discriminant features of
adequate VF consumption or any other dietary behavior with
traditional statistical models or with ML algorithms will need to
consider multicollinearity.

Strengths and Limitations
Our study lacked an external validation set. However, because
our objective was to compare different classification approaches,
and not to formally identify the features best predicting VF
intake, this limitation is of less importance. Also, only one dietary
behaviour was studied. Other dietary outcomes related to healthy
diet recommendations, such as overall diet quality or eating
with family members, may have yielded different results. Further
research is therefore needed to evaluate the relevance and added
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value of using ML classification algorithms instead of traditional
statistical models to predict other diet-related behaviours. Finally,
our sample size remains small, which can affect the performance
ofML algorithms (11). Our study also has the following strengths.
To our knowledge, this is the first study to compare ML
algorithms with traditional statistical models to predict a dietary
behaviour. We also used nine wellknown ML classification
algorithms to conduct analyses. Algorithms showing strong
predictive performances will have limited application if execution
time is long. In the present case, all algorithms used in this
study had relatively short execution time. Despite the relatively
small sample size, we included a rather large number of features,
which could have allowed ML algorithms to capture non-linear
and complex interactions. However, the number of features used
may still be considered small according to some standards in
the ML field. The extent to which ML classification algorithms
outperform traditional statistical models when much larger and
complex datasets are used to predict a dietary behavior outcome
remains to be investigated.

CONCLUSION

ML presents important opportunities for advancing the field of
nutritional epidemiology and public health nutrition. However,
our results suggest caution regarding the use and added-value
of ML classification algorithms to predict diet-related variables
and outcomes. Indeed, in the context of predicting adequate
VF consumption, ML classification algorithms did not perform
better than traditional statistical models. Further research is
needed to identify contexts for which ML algorithms are
best suited.
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