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Prebiotics are functional food ingredients that assist probiotic growth and render many

other health benefits. Mango peel is the biomass of the processing industry and has

recently been value-added as a dietary fiber pectin. Besides its general use as a food

additive, mango peel pectin (MPP) is partially hydrolyzed by pectinase to obtain pectic

oligosaccharides (POSs) that have recently gained attention as novel prebiotic products

and in medical research. This review describes probiotic candidates responsible for the

digestion of pectin derivatives and the advantages of POSs as functional additives and

their current best retrieval options. Mango pectic oligosaccharide (MPOS) recovery from

low methoxyl MPP from mango with prebiotic performance both in vivo and in vitro

environments is discussed. Current research gaps and potential developments in the

field are also explored. The overall worthiness of this article is the potential use of the

cheap-green food processing bioresource for high-value components.

Keywords: fruit biomass, intestinal microflora, lactic acid bacteria, short-chain fatty acids, probiotic

INTRODUCTION

Functional food is a type of food that is supplemented with bioactive ingredients (e.g., dietary
fiber, probiotics, and antioxidants) and derived food ingredients. It can be consumed as part of
a normal daily diet that provides health benefits and reduced the risk of chronic diseases beyond
those provided by adequate nutrition. The newborns’ gastrointestinal (GI) tracts were inoculated
with organisms at an early stage of life due to the influence of maternal intestinal flora and diets (1).
These include aerobic Gram-positive cocci, enterobacteria, and Lactobacilli, which are the primary
colonizers. These bacteria rapidly consume O2, which enhances the growth of obligate anaerobic
species, collectively known as gut microflora (2, 3). In particular, the microflora of breast-fed
infants is dominated by a bifidobacterial population that purports to be in a better health condition
than formula-fed babies (4). Human milk oligosaccharides (HMOs) are enriched with complex
glycan compounds that are partially mediated by the modulation of the intestinal microbial
ecology and immunological homeostasis associated with the prevention of intestinal diseases,
improved general wellbeing, and reduced incidence of allergic symptoms (5, 6). Consequently,
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galacto-oligosaccharides (GOSs) are often the predominant
prebiotic oligosaccharides used in infant diets. It is believed
that including GOSs in infant formula boosts the population
of bifidobacterial, reduces pathogenic inoculums, and boosts
metabolic activity in immune system regulation (7). GOSs
are typically synthesized from lactose through the enzymatic
activity of β-galactosidase (as well as β-glucosidases and β-
glycosidases) via transgalactosylation (8). Besides GOSs, other
prebiotic oligosaccharides such as fructo-oligosaccharide (FOS)
and/or polydextrose (PDX) are also prevalent components in
breast milk, but they are fundamentally absent in cow’s milk
(9–11). In addition to the ability to enhance the growth of
Bifidobacteria and Lactobacilli, short-chain fatty acids (SCFAs)
are produced as the by-products of oligosaccharide fermentation.
In adult humans, the SCFA has a stronger link in the prevention
of colon cancer (12). Recently, POS has been proposed as a new
class of prebiotics capable of in vivo synergistic empowerment
of immunomodulation caused by GOS and FOS (13, 14). Mango
peel is a potential biomass for dietary fiber recovery with 5–11%
pectin depending on the extraction methods, varieties, and, also,
fruit morphological characteristics (15, 16). As a food additive,
mango peel pectin (MPP) has been utilized as a food additive
to alter the texture and firmness of food products, and a carrier
material for drugs and medicine (17, 18). The extracted MPP
could be partially hydrolyzed by a pectinase enzyme to obtain
MPOS as a prebiotic in human food (19).

PROBIOTICS

Probiotics are defined by the World Health Organization
as live microorganisms that enhance health benefits on
the host when consumed in adequate amounts (20). They
are non-pathogenic, beneficial, and active bacteria and
yeast. The highly potent and commonly used probiotics
are Lactobacillus spp., Bifidobacterium spp., Saccharomyces
boulardii, Propionibacterium spp., Streptococcus spp., Bacillus
spp., Enterococcus spp., and some specific strains of Escherichia
coli (Table 1). Especially, the genus of Lactobacillus and
Bifidobacterium of the Gram-positive, non-spore-forming,
non-mobile, obligated are those of the facultative anaerobic
bacteria. They are classified as lactic acid bacteria (LAB), which
are catalase-negative bacterial species that can produce lactic
acid as the main end-product of carbohydrate fermentation
(23). LAB are generally used as food additives (Table 2) for
health-promoting purposes.

The health mechanisms of these probiotic genera are
described in Figure 1, which includes (1) increased adhesion
to the intestinal mucosa, (2) enhancement of the epithelial
barrier, (3) inhibition of pathogen adhesion, (4) production
of antimicroorganism substance, (5) competitive exclusion of
pathogenic microorganisms (i.e., acid and SCFA), and (6)
modulation of the immune system (25, 26). Lactobacillus reuteri
is a well-studied probiotic bacterium that colonizes a large
number of mammals. It has been clarified as a heterofermentative
species that can grow in oxygen-limited atmospheres and
colonize the GI tract of humans and animals (27). It can

also survive in a variety of pH conditions, employ multiple
mechanisms for pathogenic microorganism inhibition, and
secrete many antimicrobial intermediates (28–30). B. animalis is
considered a natural inhibitor of human and other mammalian
GI tracts, as well as widely supplemented in numerous fermented
dairy products (31). The major subspecies of B. animalis include
animalis and lactis, of which the latter subspecies is regarded as
technologically suitable to use as a probiotic adjunct due to its
resistance against acid, bile, and oxygen than other members of
the genus (32, 33). Clinical properties for health advancement
and/or disease defense of the probiotics are to provide symptom
relief to individuals with common GI symptoms, irritable bowel
syndrome, and constipation and to boost the immune response
(34). The survival rate of probiotics in gastric conditions depends
on the types of prebiotics and their resources. Larsen et al. (35)
claimed that Lactobacillus fermentum PCC and L. reuteri RC-14
were more resistant to gastric tract in the presence of different
pectin types. The variable amount of polygalacturonic acids in
the backbone was also crucial for bacterial protection (35). The
protective function of pectin is linked primarily to the complex
fluctuation in surface charges and, as a result, influences the
pectin-bacteria electrostatic interactions. Additionally, Corcoran
et al. (36) and Hernandez-Hernandez et al. (37) suggested that
the survival improvement of Lactobacilli in the gastric juice by
prebiotic oligosaccharides was in association with the presence of
metabolizable sugars, which could maintain pH homeostasis by
increasing ATP generation.

TYPES OF PREBIOTICS AS FUNCTIONAL
FOOD INGREDIENTS

Prebiotics are short-chain carbohydrates (SCCs) that are non-
digestible by digestive enzymes in humans and sometimes known
as resistant SCCs because they are only fermented in the
intestinal tract (38). It encourages the growth and/or activity
of one or a limited number of intestinal bacteria that reside
in the gut rather than introducing the exogenous species (39).
Non-digested carbohydrate (CHO) molecules, saccharides (di-
, oligo-, and poly-), resistant starches, and sugar polyols have
been claimed to have the potentiality of prebiotic (40). The
carbohydrate sources are identified as prebiotic properties that
achieve the following criteria; (a) resistance to gastric acidity and
mammalian enzymes, (b) susceptibility to fermentation by gut
bacteria, and (c) ability to enhance the viability and/or activity of
beneficial microorganisms (41). For these, GOS, FOS, and inulin
are commercially accepted for food-grade prebiotics. GOSs and
FOSs are non-digestible carbohydrates derived from lactose that
can be found naturally in human milk. Inulin and fructan are
known as prebiotics derived from soluble dietary fibers, which are
vastly obtained from plants such as asparagus, chicory, tomatoes,
mango, onion, and garlic (40, 42). Prebiotic compounds are
classified based on chemical structures, chain length or degree
of polymerization, and applications (43). Most of the functional
food prebiotics are saccharide derivatives, which are mostly of
plant origin. Besides, protein or peptide and lipid prebiotics
can be naturally found (44). The different types of prebiotics
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TABLE 1 | Most important representatives of probiotic microorganisms.

Lactobacillus

species

Bifidobacterium

species

Other LABs Non-LABs

L. acidophilus B. adolescentis Enterococcus

faecalisa
Bacillus cereus

var. to yoia

L. casei B. animalis E. faecium Escherichia coli

strain nissle

L. crispatus B. bifidum Lactococcus lactis Propionibacterium

freudenreichii

L. galinaruma B. breve Leuconostoc

mesenteroides

Saccharomyces

cerevisiae

L. gasseri B. infantis Pediococcus

acidilactici

S. boulardii

L. johnsonii B. lactisb Sporolactobacillus

inulinus

L. paracasei B. longum Streptococcus

thermophilus

L. plantarum

L. reuteri

L. rhamnosus

aMainly used for animals.
bRecently reclassified as Bifidobacterium animalis sub sp. lactis (21).

Adapted from Holzapfel et al. (22) and Kechagia et al. (23).

and their plant sources are summarized in Table 3. Inulin is a
polysaccharide fructan that produces SCFAs that are extracted
from fruits and vegetables. The fatty acids such as propionate,
butyrate, and acetate endure the reduction effect of lipids and
cholesterol and possibly attain a reduction in hypertension risk
(58). Similarly, pectic oligosaccharides (POSs), which are the
products of partial hydrolysis of pectin, are currently classified as
emerging prebiotics, but only limited studies are there to support
their use at the commercial level (59).

PECTIC OLIGOSACCHARIDES

Pectic oligosaccharide is a non-digestible oligosaccharide that
possesses prebiotic activity. POS beneficially affects the host
by selectively enhancing the growth and/or activity of one
or a limited number of Bifidobacteria and Lactobacilli in the
colon (56, 60). The colonic fermentation of POS generates
SCFA, which provides a great variety of health effects, including
inhibition of pathogenic bacteria, constipation relief, reduction
in blood glucose levels, improvement in mineral absorption,
reduction of colonic cancer, and modulation of the immune
system (13). POS also has a potential inhibitory on the growth
of entero-putrefactive and pathogenic organisms (61, 62). Pectic
polysaccharide (i.e., pectin) extracted from various sources is
cut into smaller chains of POS using different preparations,
viz. enzymatic, chemical, and physical techniques (63, 64). The
techniques for POS preparation from several raw materials
and biomasses are comprehensively collected as shown in
Table 4. Enzymatic treatment has been extensively applied for
POS production due to the specificity and selectivity as well as
minimum adverse chemical modifications of products (74, 75).

TABLE 2 | Probiotic products and their compositions.

Products Probiotic compositions

Align B. infantis 35,624; 4 mg/capsule = 1 billion

CFU

Activia yogurt B. lactis; 100 million bacteria per g

Culturelle L. rhamnosus: 10 billion bacteria plus insulin

200mg per capsule

Culturelle for kids 1.5 billion bacteria per packet

Howaru L. acidophillus/B. lactis: 10 billion bacteria per

capsule

Kefir L. lactis, L. rhamnosus, L. plantarum, L. casei,

L. acidophillus, L. reuteri, Leuconostoc

cremosis, Streptococcus diacetylactis, S.

florentinus, B. longum, B. breve, B. lactis: 7–10

billion CFU per cup

Lactinex L. acidophilus, L. bulgaricus: 106 CFU/tablet

and 109 CFU/packet

Protectis L. reuteri: 100 million bacteria per dose

RepHresh Pro-B L. rhamnosus, L. reuteri: 5 billion CFU per

capsule; vaginal use

VSL#3 L. plantarum, L. paracasei, L. bulgaricus, B.

breve, B. infantis, B. longum, S. thermophiles:

225 billion bacteria per 2 capsules

Yakult L. casei: 8 billion bacteria per 80mL bottle

CFU, colony forming unit.

Pharmacist’s Letter 2012; 28(7):280707. Islam (24).

The hydrolysis enzyme of pectin has been used, which acts
synergistically to produce POS (64, 76, 77). The methyl esters of
galacturonic acid residues are cleaved by pectin methyl esterase
(PME) (78). This enzyme acts before polygalacturonase (PG).
PG degrades the glycosidic bond of the α-(1,4)-polygalacturonan
in a random position (79). Nevertheless, the less esterified the
structure of the pectin substrate, the greater the activity of PG
(80). Meanwhile, pectin lyase (PL) highly catalyzes the esterified
pectin, producing unsaturated methyloligogalacturonates
through transelimination of glycosidic linkages (81). Physical
pretreatments, including hydrothermal, dynamic high-pressure
microfluidization (DHPM), and irradiation, have been adapted
to partially degrade the raw materials for oligosaccharide
release (71, 82, 83). Using the hydrothermal method, arabino
and galacto-oligosaccharides (GOSs) were effectively obtained
from various bioresources. While the chemical hydrolysis of
pectin for the production of POS has been limitedly explored.
This is because there are some disadvantages to the chemical
process, including toxicity and limitation of the desired degree of
polymerization (75).

Furthermore, probiotics in the gut system respond differently
to alternate types of prebiotics. Olano-Martin et al. (84) reported
that different types of pectins and POSs had significant selective
effects on the growth of gut bacteria as shown Figure 2. The
data were regenerated using the principal component analysis
(PCA). From the figure, the first two dimensions of the PCA
accounted for 91.66% across the PCA score plot (PC1; 64.57%
and PC2; 27.09% of the variance). Overall, it was found that
the Lactobacillus spp. gave mostly positive responses to the
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FIGURE 1 | Major mechanisms of action of probiotics.

TABLE 3 | Types and sources of natural prebiotics.

Prebiotic types Prebiotic sources References

Arabinoxylooligosaccharides Wheat bran (45)

Cyclodextrins Water-soluble glucans (46)

Enzyme-resistant dextrin Potato starch (47)

Fructooligosaccharides Asparagus, sugar beet,

garlic, chicory, onion,

Jerusalem artichoke, wheat,

honey, banana, barley

tomato, rye

(48)

Galactooligosaccharides Human’s milk and cow’s

milk

(49)

Isomaltulose Honey, sugarcane juice (50)

Isomaltooligosaccharides Starch (51)

Lactulose Lactose (milk) (52)

Maltooligosaccharides Starch (51)

Pectic oligosaccharide Mango, sugar beet, citrus (19, 53, 54)

Raffinose oligosaccharides Seeds of legumes, lentils,

peas, beans, chickpeas,

mallow composite, mustard

(55)

Soybean oligosaccharide Soybean (56)

Xylooligosaccharides Bamboo shoots, fruits,

vegetables, milk, honey,

wheat bran

(57)

prebiotic pectins, while Bifidobacteria appeared opposingly. It
was also apparent that the low methoxyl pectin (LMP) and
its pectic oligosaccharide hydrolysate (POS II) were specifically
responsive to Lactobacillus plantarum 0207. Meanwhile, high
methoxyl type (HMP) and its hydrolysate (POS I) had a slight
influence on the growth of the two strains of Lactobacillus casei
and Lactobacillus acidophilus.

MANGO PECTIC OLIGOSACCHARIDES

Purification
Mango peel accounts for 20% of fruit biomass and is known as
a potential source of dietary fiber consisting of a high pectin
(5–10%) composition depending on fruit characteristics, the

extractions, and varieties (16, 37–41). Previous studies have
illustrated that peel from the Thai mango variety, Chok Anan,

provided a substantially high amount of pectin (13%), mainly
of low methoxyl content, illustrating gelation properties at low

sugar content; thus, it has been widely used as a food additive

(18). The MPP was used as a potential source for POS II with
pectinases and the longer the hydrolysis time and pectinase

concentrations, the lower the molecular weight (Mw) obtained

(85). The MPOS was evaluated for prebiotic activity with L.
reuteri and B. animalis, whose highest proliferation was 4% (w/v)

of the MPOS supplemented condition at 72 h of the fermentation
time (19). Pectinase and long hydrolysis cleaved pectin to

be active molecules with high prebiotic efficiency (13). It is
encouraged that purification processes are highly recommended
to obtain food-grade final products. Generally, the purification

of POS can be operated either by membrane-based technology,

including those of ultrafiltration with the regenerated cellulose
membrane of different pore sizes (83, 86), or chromatographic
separation (87, 88) with a specific resin/matrix (74). The

purification steps are chosen based on the selection of the
components from the mixture. In the case of POS produced

from orange peel wastes (OPWs), the POS was purified by a
two-step membrane process (i.e., discontinuous diafiltration and
concentration) to yield a refined product comprising up to 90%
oligosaccharides (89). Likewise, Holck et al. (90) implemented
a regenerated cellulose membrane for purification of sugar beet
POS, while Iwasaki and Matsubara (91) purified the oligomers
acquired from citrus pulp pectin from the membrane using two
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TABLE 4 | Preparation of POS from various sources by different techniques.

Sources/

types of POS

Preparation

techniques

Molecular

weight

In vitro probiotic

test

Major SCFAs

products

References

Apple pomace Enzymatic

technique

(Pectinex Ultra

SP-L, Viscozyme,

Rohapect Ma Plus

T, Rapidase Smart)

DP 7–10 Lactobacillus

plantarum, L.

brevis, L.

paracasei,

Leuconostoc

mesenteroides

Acetic acid,

propionic acid

(65)

Artichoke Enzymatic

technique

(Peclyve CP)

0.3–100.0 kDa n/a n/a (66)

Citrus peel Enzymatic

technique

(Peclyve CP)

<1.0–1.8 kDa Bifidobacterium

bifidum and L.

acidophilus

n/a (67)

Lemon peel Enzymatic

technique (Crude

gungal PL and

yeast PG)

51.4 kDa Bacterial groups;

Bifidobacterium,

Lactobacillus,

Enterococcus

Acetic acid,

butyric acid

(68)

Mango peel Enzymatic

technique

(Pectinex® ultra

tropical)

<1.0 kDa B. animalis and L.

reuteri

Acetic acid,

propionic acid

(19)

Orange peel Enzymatic

technique (Fungal

crude enzyme;

pectinase,

cellulase,

CMCase,

xylanase)

<1.0–>3.0 kDa B. infantis and L.

acidophillus

n/a (69)

Sugar beet pulp Enzymatic

technique

(Crude gungal PL

and yeast PG)

63.9 kDa Bacterial groups;

Bifidobacterium,

Lactobacillus,

Enterococcus

Acetic acid,

butyric acid

(68)

Sunflower Enzymatic

technique

(Commercial

cellulase

Aspergillus niger

with pectinase)

100–800 kDa Bacterial groups

from fecal

Acetic acid (70)

Apple pectin Physical technique

(Dynamic

high-pressure

microfluidisation)

n/a Bacterial groups

from fecal

Acetic acid,

propionic acid

(63)

Lemon peel waste Physical technique

(Hydrothermal

treatment)

DP 2–18 n/a n/a (71)

A. argute fruit Mixed technique

(Ultrasound-

assisted enzymatic

treatment)

<0.7–>3.0 KDa Bacterial groups

from fecal

Acetic acid,

propionic acid,

butyric acid

(72)

Hawthorn fruit Mixed technique

(Ultrasound-

assisted enzymatic

treatment)

0.8–2.2 KDa n/a n/a (73)

Citrus peel pectin Chemical

technique

(Trifluoroacetic

acid)

2.0–4.0 KDa Bifidobacterium

bifidum and L.

acidophilus

n/a (54)

DP, degree of esterification; PL, pectin lyase, PG, polygalacturonase.
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steps tomaintain the highMWconstituents and eliminate a small
molecule of monosaccharides and saccharose.

Structural Characterization
The POS structure is complicated because of the complex
chemical composition of pectin and the chemical alteration
during POS production. The complex mixtures of POS can
be analyzed using high sensibility and ability methods such as
matrix-assisted laser desorption ionization-mass spectrometry
(MALDI-MS) (92), electrospray ionization (ESI)-MS (93),
capillary electrophoresis-MS (94), capillary electrophoresis with
UV detection (95), and NMR and ESI-MS identification (96–
98) with fluorescent labeling (99). Arabino-oligosaccharides
degraded from sugar beet pulp pectin were able to be classified
by MALDI-time-of-flight-MS and high-performance anion
exchange chromatography with pulsed amperometric detection
(HPAEC-PAD) (100). The Mw of POS can be evaluated using
the size exclusion chromatography (SEC) (19, 101), HPAEC-PAD
(64), as well as hydrophilic interaction liquid chromatography
(HILIC) with online ESI ion trap-MS-evaporative light scattering
detection (ELSD) (102). The presence of Mw of MPOS affected
the probiotic growth because the utilization of prebiotics by
lactic acid requires the presence of specific enzyme hydrolysis
and transport systems for the particular prebiotic (103). The
β-galactosidase activity in the tested strains was correspondent
with low-molecular-weight substrate (104). For the quantity
analysis of sugars in POS liquefaction, high-performance liquid
chromatography (HPLC) (19), HPAEC-PAD (53), and HPAEC-
fluorescence detection (105) are widely used to specify the
monosaccharide contents in the recovered POS. The major
sugar compositions of the oligosaccharide frommango peel were
fructose (24.41%) and glucose (19.52%) (19).

In vivo and in vitro Performance
Pectic oligosaccharides have been proposed as a new class of
prebiotics capable of exerting a number of health-promoting
effects, including bifidogenic flora promotion, antioxidant
activity (106), lowering the serum levels of total cholesterol
and triglyceride (107), antiadhesive properties for food pathogen
toxins (E. coli O157:H7), and apoptosis stimulation of colon
cancer cells (108). For the simulation of prebiotic fermentation,
B. animalis TISTR 2195 showed higher proliferation in 4% (w/v)
of MPOS supplemented (8.92 log CFU/ml) than that of L. reuteri
(8.53 CFU/ml) at 72 h of the fermentation time. This may be as
a result of the intracellular enzymes of Bifidobacterium, which
could hydrolyze the oligosaccharides into monosaccharides (i.e.,
glucose and fructose phosphates) and utilize them as a nutrient
source (67). The main SCFAs derived from MPOS were acetic
acid and propionic acid. Both acids are known as the main SCFAs
derived from POS fermentation (109). The highest value of total
SCFA was achieved from the 4% (w/v) MPOS supplementation
for both B. animalis (68.57mM) and L. reuteri (69.15 mM).

Besides, POS defends colonic cells against Shiga toxins (Stx)
secreted from E. coli O157:H7 by neutralization of Stx activity
from POS interaction with the galabiose receptor (110). The
higher the molecular mass of POS, the greater the inhibitory
activity obtained. This may be due to the increased access to

FIGURE 2 | The relationship between prebiotic types and the specific growth

rate of selected gut bacteria. The plot was regenerated from the data

presented in (84).

the receptor-binding sites on the toxin. POS also prevents the
adhesion of P-fimbriated E. coli to uroepithelial cells in vitro.
Oligogalacturonic acid, disaccharide, and trisaccharide were
the most active POS (111). In the case of cancer preventative
ability, POS can stimulate the apoptosis process in human
colonic adenocarcinoma cells (112). The incident is due
predominantly to the growth enhancement of Bifidobacteria
and further promotes their immunomodulatory capacity (113).
In vivo synergistic empowerment of immunomodulation
caused by GOSs and FOSs mixed with pectin-derived acidic
oligosaccharides showed systemic Th1-dependent immune
responses in a murine vaccination model. It can therefore be
assumed that the application of these oligosaccharides in infant
formulas is beneficial for the development of the infant’s immune
system (114). The potential for in vivo cardiovascular protection
of POS is also reported by Li et al. (107), and it was found that
haw POS (HPOS) significantly reduced the serum levels of total
cholesterol and triglycerides and inhibited the accumulation of
body fat. Therefore, HPOS can be applied as a drug therapy
to combat cardiovascular diseases. Additionally, in vivo and in
vitro studies confirmed that acidic POS was not cytotoxic or
mutagenic in the Ames test, making it suitable for use in food
products for children and babies (60).

CLINICAL PRACTICE GUIDELINES

Prebiotics are substances that exist naturally in food or
are fortified during manufacturing to improve the functional
efficacy of probiotics. Food containing both prebiotics and
probiotics is usually recognized as “symbiotic” (43). The fructan
inulin is the common prebiotic that has been categorized as
“Generally Accepted as Safe” by the American Food and Drug
Administration (58). POSs of plant origins have been proposed
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FIGURE 3 | Mango peel pectin and mango pectic oligosaccharide recovery from different varieties of mango fruits.

as excellent candidates for new-generation prebiotics (115–
117). It is believed that microorganisms are able to utilize
the carbon sources from POS better than they are with the
polysaccharides, and in fact, pectinolytic enzymes are only
characterized by Bacteroides sp. and Clostridium butyricum-
Clostridium beijerinckii group in the human gut (84). The
prebiotic effect of POS depends upon the Mw of the fractions.
Low-molecular-weight POS has better prebiotic potential than
high-molecular-weight POS (118), even though the clinical trials
and toxicity studies are limited. POSs have also been shown
to possess in vitro anti-inflammatory and antioxidant activity
(66, 119). It also illustrates a vasoprotective effect that increased
the serum SOD activity and lowered the content of MDA in
these mice that are fed a high-fat diet, which can be used as a
supplement for protection against cardiovascular diseases (107).
Moreover, POS improves the gut mucosal structure, which is a
barrier for rotavirus infection that induces diarrhea caused by
damaging the intestinal organs in children and young animals
(120). It is no doubt that MPOS is a novel prebiotic dietary fiber
with antipathogenic potential against Staphylococcus aureus, E.
coli, Bacillus subtilis, and Salmonella typhimurium (121). The
research study regarding these novel prebiotic resources is in a
very early stage. Optimization of the extraction and purification
steps together with the characterization of POS derived from the

MPP still needs to be explored to a greater extent. Consequently,
the clinical studies and safety evaluation of MPOS used in food
should be performed. All in all, it is conclusively recommended
from the information gathered herein that MPOS is a novel
functional food ingredient that provides the opportunity for a
sustainable development approach through biomass utilization
(Figure 3).
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