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Aim: We performed a two-sample Mendelian randomization (MR) analysis to evaluate

the association between serum vitamin D levels and atrial fibrillation (AF) risks.

Methods: Data on the single-nucleotide polymorphisms (SNPs) related to vitamin

D, 25-hydroxyvitamin D, and AF outcome were obtained from a UK Biobank study,

SUNLIGHT consortium, and the latest meta-analysis of genome-wide association studies

GWASs with six independent cohorts, respectively. MR analysis was performed to obtain

the estimates, followed by the use of inverse variance weighted (IVW) method, weighted

median method, maximum likelihood, MR-egger method, and MR-PRESSO methods.

Results: The IVW estimate showed that genetically predicted vitamin D and

25-hydroxyvitamin D levels were not causally associated with the risk of AF with two

models. The association was consistent in complementary analyses.

Conclusions: Our MR finding suggested that no genetic evidence of serum vitamin

D levels was significantly associated with AF risk. Further researches are necessary to

explore the potential role and mechanisms of circulating serum vitamin D levels on AF.

Keywords: 25-hydroxyvitamin D, vitamin D, atrial fibrillation, Mendelian randomization, cause-effect

INTRODUCTION

Atrial fibrillation (AF) is a common arrhythmia contributing to substantial social and medical
burdens with significant health and socioeconomic impact (1). The Global Burden of Disease
project estimated a worldwide prevalence of AF in about 46.3 million individuals in 2016 (2). The
prevalence of AF is estimated to rise to 16 million by 2050 in the United States and 14 million
by 2060 in the European Union (3). AF is associated with high healthcare system utilization, low
quality of life, and increased risk for hospitalization, heart failure, stroke, and death (4).

Vitamin D is an essential fat-soluble vitamin that undergoes 2 hydroxylation steps to produce
the active form. The first of these produces 25-hydroxyvitamin D, which can be measured to
determine vitamin D status (5). Vitamin D deficiency has become a pandemic health problem
in the world (6). In recent decades, the focus has been on vitamin D deficiency and nonskeletal
diseases risks, including various cardiovascular diseases (7, 8). However, unlike for the skeletal
disease, the association between vitamin D deficiency or 25-hydroxyvitamin D levels and AF
risks has been inconclusive. Two dose-response meta-analyses (9, 10) indicated that circulating
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vitamin D deficiency was associated with an increased risk
of AF in the general population, which were not consistent
with another meta-analysis of randomized controlled trials (11).
Conclusions about causality cannot be drawn merely based on
the presence of an association in an observational design, which
was retrospective or cross-sectional in design with limited sample
sizes and confounders.

To investigate the causal association between circulating
vitaminD andAF risks is challenging due to the reverse causation
and confounding. Mendelian randomization (MR) has emerged
as a powerful method for identifying the causation between risk
factors and diseases using genetic variants as instrument variables
(IVs) (12). MR analysis can largely overcome the confounders
with random assignment of an individual’s genetic variants at
conception. Moreover, the risk of reverse causation could also
be minimized since the presence of a disease could not affect
individuals’ genotypes (13).

In our study, we applied a two-sample MR analysis to
identify the potential causal association between circulating
serum vitamin D levels (including serum vitamin D and its
metabolite, 25-hydroxyvitamin D) and risk of AF using the
summary statistics from the publicly available genome-wide
association studies (GWAS) data.

METHODS

Data Resources and Study Design
We searched GWAS to extract leading single-nucleotide
polymorphisms (SNPs) as genetic instrumental variables.
Summary statistic data for vitamin D levels were derived from
a meta-analyzed GWAS for 35 biomarkers in the UK Biobank
(UKB) in 304,818 participants of White British European
ancestry (14). UK Biobank is a prospective cohort which
recruited more than 500,000 men and women aged 40–96 years
between 2006 and 2010, and their health is being followed on a
long-term (15). Summary statistic data for 25-hydroxyvitamin
D was drawn from the most recent GWAS on serum 25-
hydroxyvitamin D from the SUNLIGHT consortium with
79,366 European-ancestry participants including 31 studies
(16). This study identified 142 independent risk variants at 111
loci and prioritized 151 functional candidate genes likely to be
involved in atrial fibrillation (16). Data for AF was obtained from
the latest meta-analysis of GWASs for AF with six independent
cohorts (The Nord-Trøndelag Health Study, Michigan Genomics
Initiative, DECODE, UK Biobank, DiscovEHR Collaboration
Cohort, and AF Gen Consortium) with more than 1,000,000
subjects of European ancestry, including 60,620 cases with AF
and 970,216 controls (17). The details are presented in Table 1.

We designed a two-sample Mendelian randomization analysis
to estimate the causal effects of circulating serum vitamin D
and 25-hydroxyvitamin D levels (recommended biomarker for
vitamin D levels, Figure 1A) on AF risks with two models

Abbreviations: AF, atrial fibrillation; MR, Mendelian randomization; SNP, single

nucleotide polymorphisms; GWAS, genome-wide association; IVW, inverse

variance weighted; IVs, instrument variables; UKB, UK Biobank; MR-PRESSO,

MR pleiotropy residual sum and outlier test.

(Figure 1B). Model 2 was performed by extracting SNPs that
were associated with any potential confounders on AF risks,
while Model 1 was not.

Selection of Genetic Instrumental Variables
All genetic variants reaching genome-wide significance (p < 5
× 10−8) were selected as instruments for the MR analysis. The
corresponding linkage disequilibrium was tested to confirm if
there were any SNPs in linkage disequilibrium and whether the
SNPs were independent by pruning SNPs within a 10,000 kb
window with an r2< 0.001 threshold (18). Then, the SNPs were
extracted that were associated with any potential confounders
of the outcomes. In this study, blood pressure, blood glucose,
BMI, chronic nephropathy, coronary artery disease (CAD), and
C-reactive protein were identified as confounding factors when
AF was identified as the outcome (http://www.phenoscanner.
medschl.cam.ac.uk/) (19). SNP harmonization was conducted to
correct the orientation of the alleles. Finally, we used 62 SNPs
and 56 SNPs (3 SNPs were associated with BMI: rs56675301,
rs35635959, and rs1229984 and 3 SNPs were associated with
CAD: rs2207132, rs2229742, and rs2539986) as instrument
variables for VitaminD levels inmodel 1 andmodel 2, 6 SNPs and
5 SNPs (1 SNP was associated with white blood cell: rs10745742)
for 25-hydroxyvitamin D levels in model 1 and model 2,
respectively (Supplementary Tables 1–4). F statistics for every
instrument-exposure effect ranged from 31.678 to 169.767,
demonstrating the small possibility of weak instrumental variable
bias (Table 1). In another directional MR, we used 13 SNPs and
42 SNPs for AF on vitamin D and 25-hydroxyvitamin D levels,
respectively, and no SNPwas associated with confounding factors
when AF was identified as the exposure.

Statistical Analysis
T To obtain anMR estimate, an inverse variance weighted (IVW)
meta-analysis of each Wald Ratio (20) was performed. When
there was no evidence of directional pleiotropy (P for MR-Egger
intercept > 0.05) among the selected IVs, the IVW method was
considered with the most reliability (21).

Complementary analyses using the weighted median method
(22), maximum likelihood (23) and MR-egger method (22), and
MR Robust adjusted profile score (MR.RAPS) were utilized as
supplements to IVW. The weighted median analysis can generate
consistent estimates if at least 50% of the weight in the analysis
comes from valid instrumental variables (24). Cochran’s Q test
was applied to assess heterogeneity between individual genetic
variants estimates. If the p-value of Cochran’s Q test was <

0.05, the final results of MR were referred to a multiplicative
random-effects model of IVW; otherwise, a fixed-effects model
was used (25). To examine whether there was a violation of
the main MR assumptions due to directional pleiotropy, the
MR-Egger test for directional pleiotropy was performed (22),
where the intercept estimates the average pleiotropic effect across
the genetic variants and can be a useful indicator of whether
directional horizontal pleiotropy is driving the results of an MR
analysis (26). The possible directional pleiotropy was were also
examined by observing asymmetry in thefunnel plots to gauge
the reliability of the current MR analyses. Finally, MR-PRESSO
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TABLE 1 | Details of studies included and predictive strength of IVs in Mendelian randomization analyses (two-sided α = 0.05).

Exposures/outcomes Consortium Ethnicity Sample sizes Model R-squared %

(of variance in

Exposure)

F-statistic

(total)

Vitamin D UK Biobank European 304,818 Model 1 0.546 31.578

Model 2 0.521 33.279

25-hydroxyvitamin D SUNLIGHT European 79,366 Model 1 1.095 146.428

Model 2 1.059 169.767

Atrial fibrillation HUNT, DECODE, MGI,

DiscovEHR, UK

Biobank, and AFGen

Consortium

European 1,030,836 NA NA NA

AF, atrial fibrillation; HUNT, The Nord-Trøndelag Health Study; DECODE, DiscovEHR, Collaborative analysis of Diagnostic criteria in Europe study; MGI, Michigan Genomics Initiative; AF

Gen, Atrial Fibrillation Genetics. Model 1, SNPs were not extracted which were associated with any potential confounders of AF; Model 2, SNPs were extracted which were associated

with any potential confounders of AF.

FIGURE 1 | (A) Process of vitamin D metabolism. (B) Schematic overview of the present study design. Model 1, SNPs were not extracted which were associated with

any potential confounders of AF; Model 2, SNPs were extracted which were associated with any potential confounders of AF. 25(OH)D3, 25-hydroxyvitamin D;

24,25(OH)2D3, 24,25-Dihydroxyvitamin D3; 1,25(OH)2D3, 1,25-Dihydroxyvitamin D3; 1,24,25(OH)2D3, 1,24,25-Dihydroxyvitamin D3.

was performed to support the results by IVW method, which
detects and corrects the effects from outliers, yielding causal
estimates that were robust to heterogeneity (27). The leave-
one-out sensitivity analyses were implemented by removing
a single SNP each time to assess whether the variant was
driving the association between the exposure and the outcome
variable. To improve the visualization of the IVW and MR-Egger
estimates, we performed IVW radial variants and MR-Egger
radial variants models, which were similar to the conventional
IVW andMR-Egger regressionmodels, but regressed the product
of the Wald Ratio estimate and the square root of the weighting
for each genetic variant upon the square root of the genetic
variants weighting (28). R-squared was calculated to estimate the
proportion of variance in outcomes, and F-statistic value was
calculated to predict the strength of IVs.

A two-sided P-value of < 0.05 was considered suggestive
for significance. All analyses were performed using the package
“Two-Sample-MR” (version 0.5.6), “MR-PRESSO” (version 1.0),
and “Radial MR” (version 1.0) in R (version 4.0.5).

RESULTS

Association of Serum Vitamin D Levels
With AF Risks
Figure 2 reported the MR estimated for vitamin D levels
on AF. In model 1, the fixed-model IVW estimate showed
that genetically predicted vitamin D levels were not
significantly associated with AF risks (N = 53 SNPs,
OR: 1.028, 95% CI: 0.962–1.099, p = 0.408). After
extracting 6 SNPs, the result was consistent (N = 48
SNPs, OR: 1.011, 95% CI: 0.945–1.082, P = 0.751). The
association was consistent in complementary analyses using
weighted-median method, maximum likelihood, MR-egger,
and MR-RAPS method.

There were potential heterogeneities but no directional
pleiotropies for the analysis results (Supplementary Table 5).
Radial plots showed there were outlines in Model 1 and Model
2 (Figures 3A,B). To ensure the robustness of our results, MR-
PRESSO was also conducted with outliner correction which
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FIGURE 2 | Associations of vitamin D and 25-hydroxyvitamin D levels with AF in two-sample Mendelian randomization analysis. SNPs, single nucleotide

polymorphisms; IVW, inverse variance weighted; OR, odds ratio; RAPS, robust adjusted profile score.

showed consistent results that vitamin D levels had no effect on
the risk of AF (Table 2).

The scatter plots and forest plots are displayed in
Supplementary Figures 1A,B, 2A,B. The funnel plots
were symmetrical (Supplementary Figures 3A,B), and the
leave-one-out analysis revealed that no individual SNP was
substantially driving the association between vitamin D and AF
(Supplementary Figures 4A,B).

Association of Serum 25-Hydroxyvitamin D
Levels With AF Risks
In model 1, the random-model IVW estimate showed that
genetically predicted 25-hydroxyvitamin D levels were not
significantly associated with AF risks (N = 6 SNPs, OR: 1.005,
95% CI: 0.842–1.200, P = 0.955). After extracting 1 SNPs,
the result was consistent (N = 5 SNPs, OR: 1.019, 95% CI:
0.846–1.226, P = 0.621). The association was consistent in
complementary analyses by weightedmedianmethod, maximum
likelihood, and MR-egger method, while MR-RAPS method
was not applicable for limited SNPs. There were no potential
heterogeneities and no directional pleiotropies for the analysis
results (Supplementary Table 5). Radial plots showed there were
no outlines both in model 1 and model 2 (Figures 3C,D). To
ensure the robustness of our results, MR-PRESSO was also

conducted with outliner correction, which showed similar results
that vitamin D levels were not associated with the risk of AF
(Table 2).

The scatter plots, forest plots, and funnel plots aredisplayed
in Supplementary Figures 1C,D, 2C,D, 3C,D, and the
leave-one-out analysis indicated that no individual SNP
was substantially driving the association between them
(Supplementary Figures 4C,D).

Association of Serum AF With and Vitamin
D and 25-Hydroxyvitamin D Levels
The IVW method estimate showed that genetically predicted
AF was not significantly associated with vitamin D and 25-
hydroxyvitamin D levels risks (N = 13 SNPs, OR: 1.032, 95% CI:
0.977–1.075, p= 0.057; N = 42 SNPs, OR: 0.997, 95% CI: 0.989–
1.006, P = 0.527, Supplementary Table 5). The association
was consistent in MR-PRESSO (Supplementary Table 8).
The scatter plots, forest plots and funnel plots were
displayed in Supplementary Figures 1E,F, 2E,F, 3E,F, and
the leave-one-out analysis indicated that no individual SNP
was substantially driving the association between them
(Supplementary Figures 4E,F).
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FIGURE 3 | Radial plots to visualize individual outlier single nucleotide polymorphisms (SNPs) in the Mendelian randomization (MR) estimates for association between

vitamin D with AF by model 1 (A) and model 2 (B) or association between 25-hydroxyvitamin D with AF by model 1 (C) and model 2 (D). Black dots show valid SNPs

and purple dots display invalid outlier SNPs. There is no significant outlier SNP in present plots C and D. IVW, indicates inverse-variance weighted.

TABLE 2 | MR-PRESSO for causal effect between vitamin D and AF.

Exposure Model Raw estimates Outlier corrected estimates Distortion test

nSNP Beta OR (95%CI) P-value nSNP Beta OR (95%CI) P-value P-value

Vitamin D Model 1 53 0.039 1.040 (0.954,1.133) 0.368 50 0.05 1.051(0.978,1.130) 0.173 0.741

Model 2 48 0.021 1.021 (0.942,1.107) 0.613 47 0.03 1.031(0.958,1.108) 0.422 0.812

25-hydroxyvitamin D Model 1 6 0.005 1.005 (0.842,1.199) 0.958 6 NA NA NA NA

Model 2 5 0.019 1.019 (0.846,1.226) 0.853 5 NA NA NA NA

AF, atrial fibrillation; SNP, single-nucleotide polymorphisms; OR, odds ratio.

DISCUSSION

In this two-sample MR study, we found no significant causal
relationship between serum vitamin D levels and AF risks.

There is consistent evidence to show that low serum 25-

hydroxyvitamin D levels are associated with increased risk

of cardiovascular diseases, including hypertension, coronary
artery disease, ischemic heart disease, and stroke (7, 29–32).
However, the causal relationship between vitamin D and AF

is inconclusive. Previous retrospective studies investigated the
positive relationship between vitamin D and AF risks. For
example, Chen et al. (33) found that the serum 25(OH)D level
was significantly lower in the AF group than in the nonAF group.
However, this trial was not randomized, prospective, and blinded,
and low vitamin D levels could be presented in those without AF,
so that a mechanistic cause of low vitamin D was not proven.
Other two studies (34, 35) also showed the preventive role of
vitamin D in patients with AF. These two studies enrolled AF
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patient with hypertension and chronic heart failure, which are
risk factors of AF, respectively. It seemed that positive results
observed in these studies were amplified by confounding factors,
including the other cardiovascular diseases.

Several prospective cohort study and RCTs have been
performed to investigate the cause–effect of vitamin D
supplementation on AF. The Rotterdam Study (36), the
Multi-Ethnic Study of Atherosclerosis (MESA) (37) and the
Cardiovascular Health Study (CHS) (37) all showed vitamin D
deficiency was not associated with the occurrence of AF. A latest
meta-analysis suggested that vitamin D deficiency was modestly
associated with the occurrence of AF on a pooled analysis of
case–control studies, while there appeared to be no association
on pooled analysis of cohort studies (10). The discrepancy
among the findings of many observational studies is likely due to
the residual confounding. Our results are in accordance with the
most recent meta-analysis of randomized controlled trials, which
showed that serum vitamin D might not to play a major role in
the development of new-onset AF (11).

Different from the other CVDs, AF is a complex arrhythmia
that could be the outcome of various pathophysiological
processes (38). The pathophysiology of AF included the
basic electrophysiological and structural changes within
the left atrium, the genetics of AF, and wider systemic and
metabolic perturbations (38, 39). At present, the association
between serum vitamin-D levels and AF has several potential
pathophysiological mechanisms. Firstly, 1,25[OH]D, the
activated form of vitamin D, inhibits the renin–angiotensin–
aldosterone system (RAAS) (40, 41). RAAS plays a role in both
structural and electrical remodeling of the atrium, suppresses
cardiac myocyte hypertrophy and reduces inflammation (42). It
can be inferred vitamin D deficiency may impair the prevention
of AF by inhibiting RAAS. Secondly, vitamin D was associated
with an inflammatory milieu and could increase the synthesis
of C-reactive protein (CRP) directly or indirectly, which was
crucial for the pathogenesis of AF (43). However, studies have
suggested that vitamin D deficiency may be a consequence, not a
cause of inflammation (44). In a word, the potential mechanisms
of vitamin D and AF are still not fully illuminated and in dispute.

Our analysis has several strengths. Firstly, data from a large
genetic consortium for serum vitamin D (n = 304,818), 25-
hydroxyvitamin D levels (n = 79, 366), and AF (n = 1,030,836)
allowed to increase the statistical power to detect small effects
in complex phenotypes (45). Secondly, MR study avoided the
potential biases based on the three core assumptions (46).
Thirdly, the genetic variants used as the IVs were located
in different chromosomes, the potential gene–gene interaction
might have little effect on the estimated value (47). Furthermore,
the sensitivity analysis with different MR methods showed
consistent effects, including the radial plots and MR-PRESSO
process. All the results showed no significant causal effects of
serum vitamin D levels on AF risks.

There are some limitations in our study. Firstly, there were
some heterogeneities in the study. Due to the GWAS data, any

potential factors related to health status, age, and sex might
contribute to the heterogeneities. Secondly, our study could not
rule out the effect of canalization (i.e., dilution of the gene-
exposure association), and thus the estimate might be inflated
(48). Thirdly, the directional pleiotropy cannot be excluded,
which is almost completely mediated through other causal
pathways. Fourthly, the association between vitamin D deficiency
and different AF subtypes was not explored because of the limited
data, especially paroxysmal AF. Fifthly, our datasets included the
European populations which limited applicability of results to
non-European populations. Finally, there are potential biases in
our studies caused by overlapping use of UK Biobank data. More
studies are needed to verify the applicability of these results in
other populations and other ethnicities in the future.

CONCLUSION

Our MR study did not find the association between circulating
vitamin D levels and the AF risks. Further studies in different
ethnicities are necessary to explore the potential role and
mechanisms of circulating serum vitamin D levels on AF.
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