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Dietary modulation of the gut microbiota recently received considerable attention, and
ligand activation of aryl hydrocarbon receptor (AHR) plays a pivotal role in intestinal
immunity. Importantly, black raspberry (BRB, Rubus occidentalis) is associated with a
variety of beneficial health effects. We aim to investigate effects of a BRB-rich diet on
dextran sulfate sodium (DSS)-induced intestinal inflammation and to determine whether
its consequent anti-inflammatory effects are relevant to modulation of the gut microbiota,
especially its production of AHR ligands. A mouse model of DSS-induced intestinal
inflammation was used in the present study. C57BL/6J mice were fed either AIN-
76A or BRB diet. Composition and functions of the gut microbiota were assessed
by 16S rRNA sequencing and comparative metagenome analysis. Metabolic profiles
of host and the gut microbiome were assessed by serum and fecal metabolomic
profiling and identification. BRB diet was found to ameliorate DSS-induced intestinal
inflammation and host metabolic perturbation. BRB diet also protected from DSS-
induced perturbation in diversity and composition in the gut microbiota. BRB diet
promoted AHR ligand production by the gut microbiota, as revealed by increased levels
of fecal AHR activity in addition to increased levels of two known AHR ligands, hemin
and biliverdin. Accordingly, enrichment of bacterial genes and pathways responsible
for production of hemin and biliverdin were found, specific gut bacteria that are highly
correlated with abundances of hemin and biliverdin were also identified. BRB dietary
intervention ameliorated intestinal inflammation in mice in association with promotion of
AHR ligand production by the gut microbiota.

Keywords: black raspberry (Rubus occidentalis), gut microbiota, aryl hydrocarbon receptor (AHR), metabolomics,
inflammation
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INTRODUCTION

The gut microbiota is well-recognized for its critical functions in
the immune system (1, 2), metabolic processes (3), and diverse
signaling pathways (4). Mounting evidence has indicated that
an imbalanced gut microbiota is highly associated with various
human diseases, including inflammatory bowel disease (IBD)
(5), colorectal cancer (6), obesity (7), and neurological disorders
(8). Even with an increasing understanding of the association
between adverse health outcomes and gut microbial patterns, the
functional link between gut bacteria and the host remains elusive.
Concurrently, gut microbiome-derived specialized metabolites
contribute in a significant way to host physiology (3, 9, 10). For
example, bacterial metabolic products that are ligands to the aryl
hydrocarbon receptor (AHR) lead to effects on intestinal immune
cells and mucosal barrier (11–13). Thus, production of bacterial
metabolites is an important factor for health implications of gut
microbial activities.

Diet emerges as an essential determinant of gut microbial
structure and function (14). It is suggested that the Western
diet that is rich in saturated fat and simple sugars is associated
with elevated risk of metabolic diseases such as obesity,
diabetes, cardiovascular diseases, and chronic inflammation
(15). Alternatively, diets rich in berries, a good source of
antioxidant polyphenols and soluble fiber, protect from such
metabolic diseases (16). Therefore, health implications of healthy
or unhealthy dietary patterns are, respectively, associated with
concomitant gut microbial changes (17). In addition, dietary
modulation, especially whole food-based approaches, of the
gut microbiome received considerable attention due to the
advantages of low toxicity profiles and high patient compliance
(18). We previously characterized the gut microbiome and
its metabolic profile in healthy mice with consumption of
black raspberries (BRBs) which indicated its potential in
functional gut microbiome modulation (19, 20). Given the
perspective of whole food-based approaches coupled with
health benefits of berries, there is a need to elucidate the
effects of black raspberries on microbiota-associated diseases
such as intestinal inflammation through the lens of gut
microbiome modulation.

Intestinal inflammation is involved in development of
multiple intestinal disorders including IBD. IBD, including
Crohn’s disease and ulcerative colitis, is a complex inflammatory
disorder of the digestive tract, which is associated with an
abnormal interaction between gut bacteria and immune
system (5). In particular, intestinal AHR expression is
found to be significantly diminished in IBD patients (21),
and increased activation of AHR is shown to suppress
inflammation in mice of experimental colitis (22). AHR
is a ligand-activated transcription factor that has a variety
of endogenous and exogenous ligands (23, 24). Mounting
evidence showed that gut microbial metabolites are an
important source of endogenous AHR ligands (25). For
example, tryptophan metabolites produced by gut bacteria,
such as indole-3-acetate, act as AHR ligands and play a
protective role in intestinal homeostasis (26, 27). Together, these
observations suggested the relevance of microbiome-derived

metabolites to intestinal inflammatory status by acting as
AHR ligands.

Given the functional role of AHR in intestinal immunity,
coupled with production of AHR ligands by gut bacteria,
to modulate gut microbial production of AHR ligands is
an attractive therapeutic approach to intestinal inflammation
and associated diseases. Particularly, a BRB-rich diet has
been consistently shown to alleviate intestinal inflammation of
experimental colitis (28) and suppress colorectal cancer in mice
and humans (28–30). In the present study, we used the BRB diet
as an approach for gut microbiome modulation to investigate its
effects on intestinal inflammation. We hypothesized that a global
understanding of gut bacterial metabolites could yield insights
into currently uncharacterized microbiome-derived AHR ligands
that have the potential to beneficially affect host health. We first
validated the ameliorating effect on intestinal inflammation and
host metabolic dysfunction by the BRB diet in dextran sulfate
sodium (DSS)-treated mice. We next examined diversity and
composition in the gut microbial communities. Furthermore,
we showed that the cecal contents of BRB-fed mice had
significantly higher AHR activity in addition to enriched levels
of two known AHR ligands, hemin and biliverdin. Accordingly,
significantly enriched bacterial genes and pathways responsible
for production of hemin and biliverdin were found in the gut
microbiome of BRB-fed mice, specific gut bacteria that are
highly correlated with abundances of hemin and biliverdin were
also identified, suggesting the involvement of gut microbial
activities in producing these AHR ligands. This study offered
insights regarding microbial production of AHR ligands as
an attractive therapeutic approach for intestinal inflammatory
disorders via BRB-based dietary modulation. More importantly,
additional evidence was provided on the gut microbiota-
host communications through microbiome-derived metabolites
especially communications through individual microbiota-
derived metabolites.

RESULTS

Ameliorating Effect on Dextran Sulfate
Sodium-Induced Intestinal Inflammation
by Black Raspberry Dietary Intervention
To determine the effects of BRB dietary intervention on intestinal
inflammation, mice were given either AIN-76A diet (Control
diet) or BRB diet (Control diet with 10% freeze-dried BRB
powder; details of diet preparation and characterization are
described in section “Materials and Methods”) in addition to
plain water for 2 weeks, and 1% DSS was then added to the
drinking water of DSS-treated groups for another 2 weeks to
induce intestinal inflammation as described in Figure 1A. As
shown in Figures 1B–E, gene expression of pro-inflammatory
molecules was significantly increased by DSS treatment, and
which was significantly suppressed by BRB diet. Specifically,
DSS treatment significantly induced TNFα and iNOS expression
in the colon tissue of mice, and such pro-inflammatory
effects were significantly suppressed if concurrently given
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FIGURE 1 | Intestinal inflammatory levels of DSS-treated mice (AIN-76 + DSS) were significantly higher than that of controls (AIN-76A), which was alleviated in mice
with BRB dietary intervention (BRB + DSS). (A) Experimental design; 40 mice were randomly assigned into 4 groups: AIN-76A, AIN-76A + DSS, BRB, BRB + DSS;
mice from each group were fed the according diet, and 1% DSS was added in their drinking water for 2 weeks of mice with DSS treatment. Gene expression of
inflammatory markers, including TNFα (B), iNOS (C), IL-1β (D), and IL-6 (E) were significantly increased by DSS treatment, and significantly inhibited by BRB dietary
intervention. (AIN-76A, n = 5; AIN-76A + DSS, n = 4; BRB + DSS, n = 5; 5 mice were randomly selected per group, and for AIN-76A + DSS group, one mouse was
excluded for poor quality of the extracted RNA; data were expressed as mean with SEM, one-way ANOVA followed by Tukey’s test; **p < 0.01 ***p < 0.001
****p < 0.0001).

BRB diet (Figures 1B,C); we also observed similar trends
in the expression of IL-6 and IL-1β (Figures 1D,E). The
suppressed expression of pro-inflammatory molecules indicated

the ameliorating effects on intestinal inflammation by BRB
dietary intervention, which is consistent with the results of
previous studies (28).
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FIGURE 2 | Metabolic profiling of mouse plasma indicated that DSS treatment-induced host metabolic perturbation, at least in part, suppressed by BRB dietary
intervention. (A) Heat map shows a clear restoration pattern of metabolic features by BRB dietary intervention. Plasma metabolites, including uracil (B), indoleacrylic
acid (C), S-Adenosylhomocysteine (D), 3,4-Dihydroxyphenylglycol (E), and avenanthramide 1f (F), are significantly changed by DSS treatment, and significantly
suppressed by BRB dietary intervention. (n = 9; data were expressed as mean with SEM, Welch’s two sample t-test was conducted AIN-76A vs. DSS, DSS vs.
DSS + BRB, respectively; *p < 0.05).

Protection by Black Raspberry Dietary
Intervention From Host Metabolic
Perturbation
We examined host plasma metabolome profiles to further
investigate host response using an untargeted metabolomics
approach. Principal component analysis (PCA) showed that the
metabolome profiles of AIN76-A diet, AIN76-A diet + DSS and
BRB diet + DSS groups (Supplementary Figure 1A). Moreover,
788 significantly altered features were discovered between AIN-
76A diet and AIN-76A diet + DSS groups, and the comparison
between AIN-76A diet + DSS and BRB + DSS groups revealed 846
significantly altered features, which shared 234 features with the
former 788 features (Supplementary Figure 1B). Hierarchical
clustering heat map constructed using the intensities of these
234 shared features showed consistent patterns within individual
groups (Figure 2A). Metabolic perturbations induced by DSS
treatment were largely suppressed by BRB dietary intervention,
supporting the ameliorating effects of BRB on host inflammatory
status. We next conducted identification of those 234 shared
features. A number of metabolites (Supplementary Table 1)
were identified based on accurate mass, MS/MS spectra and
database matching. Figures 2B–F lists a few representative
metabolites that were significantly perturbed by DSS, and the
perturbation was then significantly suppressed by BRB dietary

intervention. Several bacteria-derived metabolites associated
with inflammation were significantly changed by DSS treatment
but suppressed by BRB diet, for instance, uracil (Figure 2B)
and indoleacrylic acid (Figure 2C). Previous studies showed
that bacterial production of uracil favors intestinal inflammation
(31), and indoleacrylic acid produced by the gut bacteria
is protective against intestinal inflammation (32), which is
consistent with their changes in the present study. Together
the data indicated that the host metabolic perturbation induced
by DSS treatment were partially suppressed by BRB dietary
intervention, confirming the protective role of BRB diet in DSS-
induced intestinal inflammation.

Perturbation and Restoration of Diversity
and Composition in Gut Microbial
Communities
We next analyzed 16S rRNA sequencing data to investigate
alterations in diversity and composition of the mouse gut
microbiota induced by DSS treatment with or without BRB
dietary intervention. Alpha diversities were measured and
compared in the overall microbial community using observed
OTUs, chao1, and PD whole tree metrics as shown in Figure 3A.
Generally, DSS treatment reduced alpha diversities regardless
of diet types, however, the reduction was attenuated in mice
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with BRB diet compared to that with control diet. Moreover,
principal coordinate analysis (PCoA) shows that AIN76-A
diet + DSS group was well separated from AIN76-A diet group;
AIN76-A diet + DSS and BRB diet + DSS groups were also
different (Figure 3B). Diversity analysis suggested that, with
BRB dietary intervention, reduction in gut microbial species
richness was partially restored with perturbation to a relatively
smaller extent. In addition, DSS treatment substantially changed
the gut microbial composition with a number of significantly
altered gut bacteria. Figures 3C–E and Supplementary Figure 2
showed bacterial genera that were significantly altered by
DSS treatment, and the alteration was significantly suppressed
by BRB dietary intervention. Particularly, increased levels
of Anaerotruncus, Trabulsiella, and Peptostreptococcaceae were
previously found in fecal samples of patients with colorectal
cancer and Crohn’s disease (33, 34), which is consistent with
their changes in the present study. Taken together, the data
suggested that DSS-induced perturbation in gut microbial
diversity and composition was at least partly suppressed by BRB
dietary intervention.

Gut Microbial Metabolome Featuring
Abundant Aryl Hydrocarbon Receptor
Ligands in Mice With Black Raspberry
Diet Treatment
Accumulating evidence suggested the link between AHR activity
and intestinal inflammation (21, 22, 35). To investigate the
mechanism underlying the ameliorating effect of BRB dietary
intervention, we examined the AHR activity in the gut
microbiome contents of mice on different diets. Figure 4A
showed the AHR activation of cecal contents by AHR reporter
assay. The levels of AHR activation of AIN-76A + DSS group were
significantly lower than that of AIN-76A group. In contrast, mice
on BRB diet had significantly increased levels of AHR activation
compared to mice on control diet regardless of DSS treatment
(AIN-76A vs. BRB + DSS; AIN-76A + DSS vs. BRB + DSS),
suggesting that BRB diet leads to increased levels of AHR ligands
in cecal contents. We next identified specific metabolites that
are AHR ligands, we conducted untargeted metabolomics on
fecal contents to identify the differential metabolites of the gut
microbiome contents between mice on BRB diet or control diet.
As shown in Figure 4B, the relative abundances of hemin and
biliverdin, that are previously reported AHR ligands, were found
to be significantly higher in mice fed BRB diet compared to
mice fed control diet (24). Specifically, hemin was increased
by 20-fold and biliverdin was increased by sixfold. Meanwhile,
we verified the AHR agonist activities of these two metabolites
using TCDD as positive control (Figure 4C). In addition, it
is previously reported that AHR activation ameliorated DSS-
induced colitis through prostaglandin E2 (PGE2) production
in the colon (36). Accordingly, we observed increased levels of
PGE2 in fecal samples with higher AHR activity (Figure 4D),
further supporting the role of AHR activity in ameliorating the
inflammation. Taken together, these data indicated that BRB
diet-modulated gut microbial metabolome had higher AHR-
activating capability as well as increased levels of AHR ligands

including hemin and biliverdin, which probably accounted for
the ameliorating effects on intestinal inflammation.

Enrichment of Hemin and Biliverdin
Probably Originated From Gut Bacterial
Metabolic Activities
To determine whether the gut microbiota was a possible source
for hemin and biliverdin, we compared microbial metagenome
from mice on control or BRB diets. We identified a variety
of bacterial pathways and genes that are responsible for heme
biosynthesis and transportation, which were significantly
more abundant in BRB diet-modulated gut microbiome
(Figures 5A,B). To further explore the relationship between
specific gut bacteria and intestinal AHR ligands, we conducted
functional correlation between the gut microbial species and
metabolites. Strong correlations were identified between relative
abundances of gut bacterial species and intensities of hemin and
biliverdin (rho > 0.8; p < 0.001). Specifically, bacterial species
Methylobacillus flagellates, Teredinibacter turnerae, Cyanothece
sp. PCC 7424, and Aromatoleum aromaticum are found to be
highly correlated with both hemin and biliverdin (Figures 5C,D
and Supplementary Figure 3). In addition, Methylobacillus
flagellates and Teredinibacter turnerae were previously reported
to possess the sets of genes that are involved in heme synthesis
and transportation (37, 38), further supporting the involvement
of bacterial metabolic activities in hemin and biliverdin. These
data provided evidence on the possibility that increased levels of
intestinal AHR ligands could be derived from the gut microbiota.

DISCUSSION

We used a BRB-rich diet to study the involvement of the gut
microbiota and its modulation in intestinal inflammation. The
data clearly showed that BRB dietary intervention reduced DSS-
induced inflammation in mouse colon and increased intestinal
levels of AHR activity. More importantly, the elevated AHR
activity probably originated from BRB-modulated production
of AHR ligands by gut bacteria. Figure 6 shows the proposed
mechanism underlying the ameliorating effects on intestinal
inflammation. Compared to mice on control diet, mice on
BRB diet suffered less severe intestinal inflammation from
DSS treatment. Furthermore, DSS-induced perturbation in the
gut microbiota was partially suppressed. Metabolic activities
of gut bacteria were modulated by BRB consumption, which
leads to increased intestinal levels of AHR ligands hence
enhanced intestinal AHR activation, contributing to amelioration
of inflammation and restoration of host metabolic profiles
via diverse mechanisms including production of PGE2. These
findings may offer novel insights regarding modulation of the gut
microbiota and its metabolites as a new mechanism of beneficial
health effects from BRB consumption. More importantly, dietary
effects on gut bacterial production of AHR ligands provided
additional evidence on the intertwined relationship among diets,
the gut microbiome and host health.

Accumulating evidence suggested the association between
IBD and the gut microbiota although other factors also play
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FIGURE 3 | Dextran sulfate sodium (DSS)-induced perturbation in gut microbial communities were partly rescued by BRB dietary intervention. (A) Alpha rarefactions
using PD whole tree, observed OTUs, and chao1 metrics, the x-axis is sequencing depth; compared to control subjects, DSS induced significant reduction in alpha
diversity, which was partly restored by BRB dietary intervention. (B) Principle coordinate analysis presents comparison of the mouse gut microbiota of different
groups (AIN-76A, BRB, AIN-76A + DSS, BRB + DSS). Relative abundances of inflammation-associated gut bacterial genera including Anaerotruncus (C), A genus in
family Peptostreptococcaceae (D), and Trabulsiella (E). (AIN-76A, n = 10; AIN-76A + DSS, n = 9; BRB + DSS, n = 10; *p < 0.05), **p < 0.01, ***p < 0.001.

FIGURE 4 | Mice with BRB dietary intervention had increased levels of intestinal AHR activity resulting from higher levels of AHR ligands. (A) Levels of cecal AHR
activity of different groups (AIN-76A, BRB, AIN-76A + DSS, BRB + DSS; n = 7; one-way ANOVA followed by Tukey’s test; ****p < 0.0001; ***p < 0.001). (B,C) The
levels of AHR agonists, hemin and biliverdin, were significantly higher in the gut microbiome of mice on BRB diet compared to that on control diet (n = 10; Welch’s
two sample t-test; ***p < 0.001). (D) PGE2, product of AHR-activated anti-inflammatory pathway, significantly increased in mice on BRB diet compared to controls.
(n = 10; Welch’s two sample t-test.

important roles such as genetic and environmental elements
(39, 40). For instance, reduction in alpha diversities of the
gut microbiota is highly associated with IBD development
(41). Furthermore, it is well demonstrated that AHR plays a
protective role in IBD via modulation of intestinal immune
response and barrier integrity (22, 42). AHR can be activated
by a range of ligands originating from dietary components
or gut microbial metabolic activities (25). Microbiome-derived
metabolites are an important source of intestinal AHR ligands

(25). It is suggested that, perturbation in the gut microbiome
associated with intestinal inflammation reduces production of
microbiome-derived AHR ligands, leading to decreased AHR
ligand availability in the intestine, hence decreased intestinal
AHR activity. Perturbed intestinal AHR activity contributes to
alterations in intestinal immune response and barrier functions
that further amplify the gut microbiome perturbation in a vicious
cycle, favoring chronic intestinal inflammation and consequently
leading to IBD (43). Thus, restoration of the perturbed gut
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FIGURE 5 | BRB-modulated mouse gut microbiome had enriched bacterial pathways (A) and genes (B) involved in production of heme-related metabolites, which
probably contributed to intestinal levels of hemin and biliverdin (n = 6; DESeq2 FDR adjusted p-value). (C,D) Scatter plots illustrating strong statistical association
between relative abundances of gut bacterial species and mass spectrum intensities of hemin (C) and biliverdin (D), two bacterial species Methylobacillus flagellates
and Teredinibacter turnerae are significantly correlated with both hemin and biliverdin (n = 6; rho > 0.8; p < 0.001), ****p < 0.0001.

microbiome especially its production of AHR ligands will
probably break the vicious cycle and ameliorate the intestinal
inflammation. In the present study, we assessed the severity of
intestinal inflammation and AHR activity in gut microbiome
contents (Figures 1, 4); and we found that the inflammation
was ameliorated in association with promotion of AHR ligand
production by the gut microbiota (Figure 4), suggesting the
protective role of AHR activation against intestinal inflammation.
More importantly, enriched abundances of bacterial pathways
and genes related to AHR ligand production in addition to strong
correlations between bacterial species and AHR ligands suggested
the involvement of the gut microbiota. Here, we have identified
one potential contributor, namely, microbiome-derived AHR
ligands to intestinal inflammatory status.

Aryl hydrocarbon receptor is a member of the basic
helix–loop–helix–(bHLH) superfamily of transcription factors.
A myriad of genes are regulated by AHR, including those
encoding xenobiotic metabolizing enzymes, such as Cytochrome
P450 1A1 (Cyp1a1) (44). Besides its toxicological involvement,

AHR activation upon binding to a wide array of endogenous
and exogenous ligands, leads to numerous key host physiological
functions in intestinal barrier function and intestinal immune
cells (43). AHR is expressed by intestinal epithelial cells (IEC) in
the intestine. IECs regulate AhR ligand availability to intestinal
immune cells, and their AHR signaling is pivotal in the regulation
of mucosal intestinal immune responses (43). IL-22 production
is mediated by AHR, which is involved in mucosal wound-
healing and production of antimicrobial peptides (AMPs) (21).
In addition, AHR activation is also involved in intestinal
expression of IL-10 and Reg3g, which are essential for intestinal
homeostasis (43). The gut microbiota communicates with the
host through production of functional metabolites (9). Cellular
functions and host physiology can be directly altered by bacterial
metabolic products. For example, many bacterial metabolites
act as signaling molecules (4). Short-chain fatty acids (SCFAs)
produced by gut bacteria regulate intestinal immune functions
through binding to the G-protein-coupled receptors (GPCRs)
(45). Likewise, tryptophan metabolites produced by gut bacteria
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FIGURE 6 | Dextran sulfate sodium (DSS) treatment caused gut microbial disruption in addition to severe intestinal inflammation, which was ameliorated if mice were
concurrently fed BRB diet. BRB dietary intervention increased intestinal AHR activity by modulating the gut microbiota and promoting production of
microbiome-derived AHR ligands, for instance, hemin and biliverdin. Intestinal AHR activation contributed to alleviation of inflammatory response and restoration of
host metabolic perturbation via diverse mechanisms including production of PGE2.

can bind to AHR affecting gut immune responses (13). Previous
studies on microbiome-derived AHR ligands mostly focused on
tryptophan derivatives (12, 25). However, bacteria are known to
possess the sets of genes and functional pathways in production
of heme-related molecules (46–49), which are also recognized
as AHR ligands (23, 24). The present study found significantly
increased levels of hemin and biliverdin in gut microbiome
contents in concert with enriched bacterial pathways and genes
involved in their biosynthesis (Figures 4, 5), adding more
members to the reservoir of microbiome-derived AHR ligands.

Intestinal inflammation is associated with host metabolic
perturbation (50), which is partially attributed to differential
gut microbial activities (51). A relevant animal model may
offer mechanistic insights and explore biomarkers regarding
intestinal inflammation and the gut microbiota. We observed
significantly perturbed metabolite fingerprints in plasma of
mice with intestinal inflammation, and the perturbation was
largely suppressed if mice were concurrently given BRB diet.
It is of necessity to point out that indeed there are some
features in the heat map that are not fully consistent with
the general pattern of restoration. Specifically, some of the
restored metabolites are microbiome-derived and inflammation-
relevant, which makes them great biomarker candidates of
gut microbiota-related inflammation. For example, uracil levels
in plasma were significantly increased by DSS treatment
and the elevation was largely prevented by BRB dietary
intervention (Figure 2B). Uracil may serve as a specific indicator
of bacteria-related intestinal inflammation because bacterial

production of uracil activates intestinal innate immune cells
and leads to inflammatory response (31). Likewise, DSS reduced
levels of plasma indoleacrylic acid, which was suppressed
if mice were fed BRB diet (Figure 2C). Indoleacrylic acid
can be produced by gut bacteria and is protective against
intestinal inflammation (32). Moreover, we also discovered
that S-Adenosylhomocysteine (SAH) decreased in mice of
DSS treatment (Figure 2D), which is in accordance with the
previous report (51). There is growing appreciation of the
possible association between mucosal DNA methylation and
colitis in humans (52, 53). Decreased levels of SAH may
indicate interrupted methylation because SAH is generated
when S-Adenosylmethionine (SAM), the methyl donor, loses
the methyl group. In addition, naturally occurring phenolic
compounds such as 3,4-dihydroxyphenylglycol (Figure 2E)
and avenanthramides (Figure 2F) with demonstrated anti-
inflammatory effects were observed to be upregulated in mice on
BRB diet, indicating a protective role of BRB possibly resulting
from its natural components (54, 55).

Ligand activation of AHR is an inviting therapeutic approach
for intestinal inflammation; and dietary modulation of the gut
microbiota received increasing attention (22, 56). Several recent
studies have focused on the provision of AHR ligands from
dietary components (42, 57), here we demonstrated that BRB-
modulated gut microbiome contents had elevated AHR activity
(Figure 4). While our data emphasize the gut microbiota could
be a major contributor to intestinal AHR activity, it remains to be
determined whether components in BRB are direct AHR ligands
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or precursors. Moreover, it is very likely that bacterial metabolites
besides hemin and biliverdin are AHR ligands. Future studies
on the search and identification of microbiome-derived AHR
ligands and their potential in treating intestinal inflammation are
warranted. Although whole food-based approaches to modulate
the gut microbiome has many advantages, the complexity
of functional components in BRB hinders characterization of
actual effective components. Therefore, to modulate the gut
microbiome using specific compounds in BRB to reproduce
similar effects is also warranted.

Several limitations are associated with this study. The major
goal of the present study was to better understand the role that
the gut microbiome plays in the anti-inflammatory effects of
BRB. Thus, a relatively low concentration of DSS administration
was used to induce low-grade, reversible intestinal inflammation
instead of a colitis model. In fact, we did not observe any
significant colitis by H and E staining in mice given DSS,
probably due to the low dose of DSS. Therefore, our data
may only be interpreted in context of intestinal inflammation
but not colitis. For analysis of gut microbial composition, a
relatively small sample size was included in the present study,
a larger sample size would definitely help to delineate the
microbial community more accurately. In addition, we only
conducted the comparison between AIN-76A and BRB groups
in investigation of the involvement of the gut microbiome in
intestinal AHR activity, with the major goal of demonstrating
that altered microbial metabolites such as AHR ligands are
associated with gut microbiome modulated by BRB diet. Also,
mounting evidence has shown sex differences regarding activities
and functions of the gut microbiome responding to external
factors (58–61) as well as host health conditions (62). A single
sex of mice was used for the present study, therefore, sex-specific
influences regarding changes in the gut microbiome responding
to the BRB diet and DSS treatment awaits future studies.

Intestinal inflammation most likely involves not just
one mechanism but rather a complex interplay of genetic,
environmental and microbial factors. Our study provided
evidence on the role of microbiome-derived AHR ligands.
Improved intestinal inflammatory status, host metabolic profiles
along with restored gut microbiota indicated protective effects of
BRB dietary intervention. Importantly, these effects are relevant
to increased microbial production of AHR ligands. In addition to
offering a potential mechanism of the anti-inflammatory effects
from BRB consumption, this study indicated the gut microbiota
as a source of intestinal AHR ligands, which provided new
thoughts on the development of therapeutic interventions for
intestinal inflammatory disorders.

MATERIALS AND METHODS

Study Approval
The study protocol (NO: A2013 06-033-Y3-A3) was approved
by the University of Georgia Institutional Animal Care and Use
Committee. All methods were performed in accordance with
the relevant guidelines and regulations. All efforts were made to
minimize animal suffering.

Diet Preparation
Custom purified American Institute of Nutrition (AIN)-76A
animal diet (Dyets, Inc., Bethlehem, PA, United States) was
used as the control diet. BRB diet used for dietary intervention
was prepared as described in Oghumu, et al. (63). Briefly,
whole ripe BRB (Rubus occidentalis) of the Jewel variety were
harvested from a single farm in Southern Ohio, and then were
freeze-dried and ground into powder. BRB powder was stored
at −20◦C until being incorporated into AIN-76A animal diet
pellets by 10% w/w concentration at the expense of cornstarch.
The diets were stored at 4◦C until being fed to mice. Mice
of control diet groups were fed AIN-76A diet, mice of dietary
intervention groups were fed BRB diet. Composition of control
and BRB diets can be found in the previous report (64).
Its preparation was standardized to ensure consistency and
reproducible results. The BRB diet used in the present study was
previously used in a large number of studies for chemopreventive
effects as well as microbiome modulation (19, 20, 65–69). Further
details regarding the BRB diet were previously discussed and
reviewed (70).

Mice
Specific-pathogen-free C57BL/6 mice (Male; 8 weeks of age;
Jackson Laboratories, Bar Harbor, ME, United States) were
housed in the animal facility of University of Georgia. Plain water
and standard pelleted rodent diet ad libitum were provided for
1 week for their acclimation. The environmental conditions were
maintained as 22◦C temperature, 40–70% humidity, and a 12:12 h
light:dark cycle. After 1 week of acclimation, the mice were
then randomly assigned to 4 groups (Figure 1A; AIN-76A, AIN-
76A + DSS, BRB, BRB + DSS; n = 10 per group). Their food was
provided with AIN-76A or BRB diets accordingly. After 2 weeks
of special diets, 1% DSS in drinking water was administered to
mice of DSS treatment groups for another 2 weeks. A lower
concentration (1%) of DSS administration was used compared
to the concentration used in the colitis model (3%) to induce
relatively low-grade, reversible intestinal inflammation. Regular
monitoring for health conditions was done twice a week. Fecal
samples were collected individually before sacrifice; Animals
were fasted overnight before sacrifice. Plasma, cecal contents,
and colon tissues were collected during necropsy and colon
tissues were treated with RNAlater (Thermo Fisher Scientific).
All samples were kept at −80◦C until further analysis. The
mice were treated humanely and with regard for alleviation
of suffering.

Quantitative RT-PCR
Colon RNA was extracted using RNeasy Mini kit (Qiagen,
Valencia, CA, United States) according to manufacturer’s
instructions. Then RNA was processed with DNA-freeTM

DNA Removal Kit (Thermo Fisher Scientific) to remove
DNA contamination. RNA quality and concentration were
determined using an Agilent TapeStation (Agilent Technologies).
Reverse transcription was performed with iScriptTM

Reverse Transcription Supermix (Bio-Rad Laboratories,
CA, United States) according to manufacturer’s instructions.
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qPCR was performed with the SsoAdvancedTM Universal
SYBR R© Green Supermix (Bio-Rad) and primers listed in
Supplementary Table 2. The reactions were run on a Bio-Rad
CFX96 TouchTM Real-Time PCR Detection System using the
protocol as previously described in Bian et al. (71) (Bian, Tu
et al. 2017). Results were analyzed by the 11Ct method of CFX
manager software (Bio-Rad) using Gapdh as the internal control.

16S rRNA Gene Sequencing and Analysis
16S rRNA gene sequencing was performed as previously
described in Chi et al. (72). Briefly, microbial DNA was extracted
from mouse fecal pellets using PowerSoil DNA isolation kit
according to manufacturer’s instructions. Then the DNA was
amplified using 515 (5′-GTGCCAGCMGCCGCGGTAA) and
806 (5′-GGACTACHVGGGTWTCTAAT) primers targeting the
V4 regions of 16S rRNA gene in bacteria (73). Individual
samples were normalized, barcoded and finally pooled for the
construction of the sequencing library, then sequenced using the
Illumina MiSeq (500 cycles v2 kit) in the Georgia Genomics
Facility of University of Georgia. Paired reads were assembled
using Geneious 8.15 (Biomatters, Auckland, New Zealand).
Operational taxonomic unit (OTU) picking and diversity analysis
were conducted using Quantitative Insights into Microbial
Ecology (QIIME, version 1.9.1).

Reporter Assay for Aryl Hydrocarbon
Receptor Activation
Aryl hydrocarbon receptor activation was measured using
a commercially available Reporter Assay System (INDIGO
Biosciences, Inc., State College, PA, United States). Mouse cecal
samples were suspended in PBS (100 mg/mL), centrifuged
at 5,000 rpm for 15 min at 4◦C, and then filtered with
0.2 mm filters (VWR, Fontenay-sous-Bois, France) as described
in the previously study (13). Cecal extraction was diluted
(1:10) with Compound Screening Medium (CSM) supplied in
the reporter assay kit. Hemin and biliverdin hydrochloride
(Sigma-Aldrich) were dissolved in DMSO and diluted with
CSM to a concentration of 50 mM. Potent AHR agonist
2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) was used as the
positive control.

Metagenomics Sequencing
Shotgun metagenomic sequencing was performed as previously
described in Chi et al. (72). Briefly, fecal DNA (10 ng/µL) was
fragmented using the Bioruptor UCD-300 sonication device.
The Kapa Hyper Prep Kit was applied to construct the
sequencing library according to manufacturer’s instructions. The
quantification of DNA was performed using the Qubit 2.0
Fluorometer. The sequencing was performed using the Illumina
NextSeq High Output Flow Cell (300 Cycles; PE150) in the
Georgia Genomics Facility of University of Georgia. The MG-
RAST metagenomics analysis sever (version 4.0.3)1 was applied
for automatic functional analysis of metagenomes using the
Subsystems database (74).

1http://metagenomics.anl.gov

Metabolomics Profiling
For fecal samples, 20 mg feces and 50 mg glass beads
(Sigma-Aldrich, MO, United States) were added to 400 µL
cooled methanol solution (methanol: water 1:1), followed by
homogenizing using a TissueLyser (Qiagen) for 15 min at 50 Hz.
The supernatant was collected after centrifuging for 10 min at
1,2000 rpm, dried up in a speed vacuum (Thermo), and then
resuspended for injection. For plasma samples, 80 µL cooled
methanol was added to 20 µL plasma. After incubation for 30 min
at−20◦C, the samples were centrifuged for 10 min at 12,000 rpm.
The supernatant was collected after centrifuging for 10 min at
1,2000 rpm, dried up in a speed vacuum, and then resuspended.

Liquid Chromatograph-Mass Spectrometer (LC-MS) analysis
was performed on a quadrupole-time-of-flight (Q-TOF) 6550
mass spectrometer (Agilent Technologies, Santa Clara, CA,
United States) with an electrospray ionization source. The mass
spectrometer was interfaced with an Agilent 1290 Infinity II
UPLC system. Metabolites were analyzed in the positive mode
over a m/z range of 50–1000 with a C18 T3 reverse-phased
column (Waters Corporation, Milford, MA, United States). The
XCMS Online sever (version 3.5.1)2 was applied for peak picking,
alignment, integration, and extraction of the peak intensities.
Relative abundances of metabolites were indicated by peak
intensities. A two-tailed Welch’s t-test was used for the assessment
of differentiated metabolite features. MS/MS data were generated
on the Q-TOF for the identification of differentiated metabolites.
The softwares of MS-DIAL (version 2.90) (75) and MS-FINDER
(version 2.40) (76) were used for the identification of metabolites
based on the MS/MS spectrum.

Statistical Analysis of Data
Unless otherwise indicated, all results are expressed as mean
values with standard deviation (∗∗∗∗p < 0.0001; ∗∗∗p < 0.001;
∗∗p < 0.01; ∗p < 0.05; N.S. p > 0.05). Statistical differences in
gene expression of inflammatory markers and AHR activation
were calculated by one-way ANOVA followed by Tukey’s test.
Differences in gut bacterial abundances were assessed by a non-
parametric test via Metastats (77). Two-tailed Welch’s t-test was
used to analyze metabolites that differed in abundance between
groups corrected for the FDR. The metagenomics sequence count
data for functional analysis were processed using DESeq2 (78)
for statistics analysis adjusted for multiple testing of FDR. Also,
alpha rarefaction and PCoA were used to assess diversities in
the gut microbial communities. PCA and hierarchical clustering
algorithm were used to visualize the comparison of metabolite
profiles. The correlation matrix between gut bacterial species and
metabolites was generated using Pearson’s correlation coefficient.
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